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Abstract

Introduction—The epidemiology of invasive Candida infections is evolving. Infections caused 

by non-albicans Candida spp. are increasing; however, the antifungal pipeline is more promising 

than ever and is enriched with repurposed drugs and agents that have new mechanisms of action. 

Despite progress, unmet needs in the treatment of invasive candidiasis remain and there are still 

too few antifungals that can be administered orally or that have CNS penetration.

Areas covered—The authors shed light on those antifungal agents active against Candida 
that are in late-stage clinical development. Mechanisms of action and key pharmacokinetic and 

pharmacodynamic properties are discussed. Insights are offered on the potential future roles 

of the investigational agents MAT-2203, oteseconazole, ATI-2307, VL-2397, NP-339, and the 

repurposed drug miltefosine.

Expert opinion—Ibrexafungerp and fosmanogepix have novel mechanisms of action and will 

provide effective options for the treatment of Candida infections (including those caused by 

multiresistant Candida spp). Rezafungin, an echinocandin with an extended half-life allowing for 

once weekly administration, will be particularly valuable for outpatient treatment and prophylaxis. 

Despite this, there is an urgent need to garner clinical data on investigational drugs, especially in 

the current rise of azole-resistant and multi-drug resistant Candida spp,
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1. Introduction

Candida spp. are the most common causes of invasive fungal infections in humans and 

are associated with high mortality rates1. As a result of the universal use of antifungals 

in prophylaxis and treatment, novel immunosuppressive therapies, central venous lines 
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and other invasive procedure, the population of patients at risk for invasive candidiasis is 

growing. In parallel, the epidemiology of invasive Candida infections continues to change, 

with increasing proportions of infections caused by non-albicans Candida spp., including 

multidrug resistant Candida glabrata as well as emerging multidrug resistant Candida auris 2.

Until very recently, the antifungal armamentarium was extremely limited, with just 

four classes of antifungals (polyenes, azoles, echinocandins, and flucytosine), each with 

limitations including toxicities, route of administration, and increasing resistance. The pace 

of antifungal drug development until approval stage has been lagging due to fundamental 

scientific, economic, and regulatory challenges ranging from the identification of target 

structures that are non-toxic in humans to obstacles in the design of clinical trials and the 

demands of approval agencies. In recent years, however, significant improvements have 

been made through novel ways of screening for compounds and by facilitating regulatory 

processes. In response to the global increase of antifungal resistance in Candida spp., new or 

repurposed treatments, including with new mechanisms of action, are required.

In this review, we discuss extensively the most promising drugs including new antifungal 

classes in late-stage clinical development with fosmanogepix (a novel Gwt1 enzyme 

inhibitor), ibrexafungerp (a first-in-class triterpenoid) and rezafungin (an echinocandin 

designed to be dosed once-weekly), and several auspicious antifungal agents in 

their early stage of development including drugs with novel areas of application 

(miltefosine), improved pharmacokinetic/pharmacodynamic (PK/PD) properties (MAT2203, 

oteseconazole) or novel mechanisms of action (ATI-2307, NP339, VL-2397) (Fig 1). 

Literature search was performed in February 2022 and included: PubMed search for each 

compound name (old and new names) separately, searching the reference lists for additional 

studies, as well as search through abstracts presented at major scientific meetings in the field 

during the last 10 years.

2. Antifungal resistance to licensed drug classes for systemic use

Drug resistance refers to a genetic variant (inherent or acquired) that is passed on to the next 

generation, which allows the fungus to grow in the high concentrations of antifungal drugs. 

Of note, antifungal resistance is a complicated phenomenon involving multiple factors and 

the outlines provided here only represent a simplified picture.

Azoles target 14-α lanosterol demethylase, encoded by ERG11, and disrupt the ergosterol 

biosynthetic pathway and once occupied by azoles, the accumulation of toxic intermediates 

hypothetically result in growth inhibition3. Therefore, drug target mutations modulating the 

azole binding are known to be one of the most widely known mechanisms underlying azole 

resistance. Mutations in catalytic site (Y132, P405), extended fungus-specific external loop 

(D446, G448, F449, and G450), proximal surface (F145), and residues between proximal 

surface to heme region (K143 and G464) are the most known ones proved to elevate 

fluconazole minimum inhibitory concentrations (MIC) ≥4 in Candida spp 4-6.

Studying a large collection of clinically-derived fluconazole resistant C. albicans isolates 

identified concomitant overexpression of ERG11 and efflux pumps, especially CDR1, 

Hoenigl et al. Page 3

Expert Opin Investig Drugs. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in conjunction with notable ERG11 mutations associated with azole resistance 4. Efflux 

pumps known to be involved in azole resistance are categorized into two groups, namely 

ATP-binding cassettes (ABC) transporters, such as CDR1, and major facilitator superfamily 

(MFS), such as MDR13. Gain-of-function (GOF) mutations occurring in transcription 

factors regulating the expression of CDR1 and MDR1, namely TAC1 (PDR1 in C. glabrata) 

and MRR1, respectively, render them hyperactive and thereby result in the overexpression 

of these efflux pumps followed by effective evacuation of azoles 7. Moreover, the GOF 

mutations occurring in UPC2 can result in overexpression of ERG11 as a compensation for 

the occupied drug target and to maintain the cellular homeostasis 7. Nonetheless, the role 

of such GOF mutations in other prevalent species, namely C. parapsilosis and C. tropicalis, 

are yet to be defined. Understanding the extent of involvement of efflux pumps in major 

Candida species are of paramount importance, as evidenced by the discovery that a Cdr1 

inhibitor, azoffluxin, showed promising in-vitro and in-vivo activities 8.

A lower level of drug uptake in laboratory-derived azole resistant C. auris isolates has been 

reported 8, which remained to be investigated in the context of clinical isolates. Although 

rare, mitochondrial dysfunction resulting small and slow growing cells with inability to use 

non-fermentable carbon sources, known as petite, has been proposed as another mechanisms 

involved in azole resistance 9. Petites may also confer to a higher tolerance to echinocandins 

and resistance to macrophage killing up to 24 hours after phagocytosis by macrophages 

compared to wild-type parental strains 10.

Unlike mechanisms underlying azole resistance, echinocandin resistance (ECR) mechanism 

is more straightforward, which mainly involves the acquisition of mutations in the catalytic 

subunit of β-glucan synthase, encoded by FKS gene. These mutations mainly include those 

mapping to two short stretches of FKS gene, known as hotspot 1 (HS1) and HS2 3. In 

C. auris and Candida species within the CTG-clade, the most clinically relevant mutations 

accountable for ECR are mapped to HS1 and HS2 of FKS1, while mutations occurring 

in HSs of FKS1 and FKS2 are associated with ECR in C. glabrata 3. Of note, mutations 

outside but in close proximity to HS region has been shown to cause ECR and echinocandin 

therapeutic failure in vivo 11. HS mutations without in-vitro phenotype were found to 

be linked to echinocandin therapeutic failure in real-life 12. Historically, C. parapsilosis 
isolates are known to confer high MICs against echinocandins, which is due to an inherently 

occurring polymorphism, P660A, in HS1 of FKS1 13. Nonetheless, identification of R658G 

in HS1-Fks1 of clinical C. parapsilosis isolates proved that inherent high MICs per se may 

not confer full protection 14.

Amphotericin B (AMB) exert its potent antifungal activity through binding to ergosterol 

on the cell membrane, followed by formation of pores, leakage of the cellular contents, 

and thereby disturbing the cellular homeostasis. Moreover, accumulation of intracellular 

reactive oxygen species (ROS) once stressed with AMB further challenge the viability of the 

cells 15. Unlike increasing prevalence of ECR and FLZR in clinical isolates of Candida 
species, AMB resistance has rarely been reported and this rarity has been associated 

with severe fitness cost applied to the resistant colonies. Nonetheless, researchers have 

taken the advantage of studying species with inherent high MIC values against AMB to 

gain insight into mechanisms underpinning AMB resistance. Recently, a study found the 
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absence of ergosterol in the membrane of C. haemulonii species complex, potent membrane 

integrity once challenged with AMB, resistance to ROS, and changing respiratory status to 

fermentative pathway. Therefore, species within the C. haemulonii complex had poor growth 

on media containing non-fermentable carbon sources and minimally used oxygen 16. On 

the other hand, recent studies focusing on acquired AMB resistance in C. auris identified 

the involvement of ERG6 as a rare mediator of this phenotype and importantly a detailed 

genome-wide analysis of C. auris isolates identified multiple candidate genes potentially 

involved in AMB resistance 6. Moreover, non-synonymous mutations occurring in ERG3 
and ERG4 also have been found to be associated with AMB resistance in C. lusitaniae 17.

Although the current paradigm has largely focused on coding genes, which encompass only 

a minority of the genome, a growing body of evidence have identified the involvement of 

non-coding part of genome regulating important responses to both host-related stressors and 

antifungal drugs. Recently, a long non-coding RNA, named DINOR, was shown to regulate 

global responses to membrane-assaulting, DNA-alkylating agents, hydrogen peroxide, and 

antifungal drugs. Interestingly, mutants lacking DINOR showed an attenuated virulence 

while tested in vivo 18. Moreover, a recent comprehensive bioinformatic study identified 

numerous non-coding RNAs in major Candida species potentially involved in host-pathogen 

interaction, which could be served as a valuable resource for future studies 19. Therefore, 

these studies unveil that drug resistance mechanisms are much broader and complicated that 

we have envisioned and that such targets may represent promising hits for effective drug 

discovery in the future.

Of note, antifungal tolerance, a transient and reversible resistance caused by drug target 

copy number variation driven by chromosomal aneuploidy20, has also been recently reported 

that potentially could result in therapeutic failure. Details regarding this concept has been 

provided elsewhere21. Moreover, it has been suggested that specific SNP occurrence in the 

mismatch repair gene, MSH2, has been linked with a higher propensity of acquirement of 

drug resistance in C. glabrata22,23 and reported for other fungal pathogens24, but the direct 

involvement of such polymorphisms in drug resistance remains elusive and epidemiological 

studies have related such SNPs with sequence type prediction rather than a facilitator to 

development of drug resistance25,26.

3. Antifungal Drugs in Clinical Development

3.1. Fosmanogepix/Manogepix

3.1.1. Mechanism of action, PK PD, and Candida> resistance—Manogepix 

(APX001A, Amplyx Pharmaceuticals, Inc., San Diego, CA; formerly E1210, Eisai Co., Ltd., 

Tokyo, Japan), is the active moiety of the N-phosphonooxymethyl prodrug fosmanogepix 

(APX001, formerly E1211) 27,28. The drug targets glycosylphosphatidylinositol (GPI)-

anchored protein maturation by inhibiting the fungal inositol acyltransferase enzyme Gwt1, 

which is essential for trafficking and anchoring mannoproteins to the fungal cell wall and 

membrane 29,30. Broad-spectrum in vitro activity has been demonstrated against Candida 
spp., with potent activity also against azole and echinocandin-resistant strains of C. albicans, 
C. glabrata, and C. auris 31-35. Pan-resistant C. auris isolates (exhibiting resistance to 

triazoles, echinocandins, and amphotericin B) also exhibited low manogepix MICs 36 (Table 
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1). However, it lacks activity against certain species, including C. krusei and C. inconspicua, 

and to a lesser extent C. kefyr 32,34. Point mutations within Gwt1 (V162A in C. albicans 
and V163A in C. glabrata) following in vitro exposure can lead to significant increases in 

manogepix MICs, but not fluconazole resistance 37. However, clinical isolates with elevated 

manogepix MICs without Gwt1 mutations are universally resistant to fluconazole 32. This 

cross-resistance between manogepix and fluconazole has been attributed to efflux pumps, 38 

as point mutations within Gwt1 that confer reduced manogepix susceptibility do not affect 

fluconazole, and point mutations within lanosterol 14α-demethylase that lead to fluconazole 

resistance do not affect manogepix. However, these data are currently limited, and changes 

in both manogepix and fluconazole MICs were minimal despite marked increases in 

transcription levels of genes encoding efflux pumps in C. albicans (CDR11, SNQ2, and 

MDR1) and C. parapsilosis (MDR1)38.

The potent in vitro activity of manogepix has also translated into in vivo efficacy in 

experimental models of candidiasis caused by different Candida species, 35,39,40 with 

the effectiveness being maintained against infections were caused by strains resistant to 

clinically available antifungals. The PK/PD parameter most closely associated with efficacy 

is the AUC/MIC, followed by Cmax/MIC. In one murine model of invasive candidiasis 

caused by C. albicans, the total AUC/MIC ratios associated with fungal burden stasis ranged 

from 675.5 to 11,270, corresponding to free fraction AUC/MIC ratios of 1.35 to 22.54 due 

to extensive protein binding of manogepix (99.8%)40. Robust penetration of manogepix into 

liver abscess and clearance of C. albicans from the liver has also been reported in a murine 

model of intra-abdominal candidiasis 41. Pharmacokinetics of fosmanogepix/manogepix are 

summarized in Table 2.

3.1.2. Clinical Studies—Fosmanogepix has been reported to be safe and well tolerated 

in several phase I clinical trials. In each, all adverse effects were mild and transient, with 

headache being the most frequently reported, and no clinically significant adverse effects 

were observed 42,43. Fosmanogepix was also well-tolerated with no treatment-related serious 

adverse effects or discontinuations in the MITT group (n = 20) of a phase II multicenter, 

open-label, non-comparative, single-arm study in non-neutropenic patients with invasive 

candidiasis (Supplemental Table 1) 44. In this study, a successful outcome, defined as 

clearance of Candida spp., was observed in 80% in the MITT population, and overall 

survival at day 30 was 85% with no deaths considered to be related to fosmanogepix. 

Negative blood cultures occurred a mean of 2.4 days following fosmanogepix initiation, 

while 15% of patients who failed therapy had persistently positive cultures. No worsening 

of renal function, evidence of drug-related nephrotoxicity, or required dosage adjustments 

were reported in this study in which the majority of patients (66%) had renal insufficiency, 

suggesting that fosmanogepix may be safe in the setting of impaired renal function 44,45. 

A multicenter, open-label, non-comparative study to evaluate the efficacy and safety of 

fosmanogepix against invasive candidiasis caused by C. auris was terminated early due 

to the impact of COVID-19 on trial related activities (NCT04148287). A phase III study 

comparing fosmanogepix to echinocandin therapy for the treatment of invasive candidiasis is 

currently in the planning stages.
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3.1.3. Future Role in treating Candida infections—The U.S. Food and Drug 

Administration (FDA) has granted fast-track status to fosmanogepix for the treatment of 

invasive candidiasis. Its broad spectrum in vitro and in vivo activity against most Candida 
spp., including C. auris, is encouraging, and clinical trials will further define the role of 

fosmanogepix for the treatment of invasive candidiasis/candidemia, including infections 

caused by strains resistant to other antifungals (Table 3).

3.2. Ibrexafungerp

Ibrexafungerp represents a first-in class triterpenoid antifungal, a new class of antifungals 

also called the”-fungerps”.

3.2.1. Mechanism of action, PK PD and Candida Resistance—While the binding 

site is different, the mode of action is similar to that of the echinocandins. By non-

competitively inhibition of the 1,3-beta-D-glucan synthase enzyme, ibrexafungerp impairs 

the synthesis of a major Candida cell wall component, 1,3-beta-D-glucan. Ibrexafungerp 

is fungicidal against Candida spp.28,46,47. Whilst for most Candida spp., ibrexafungerp 

reveals good in vitro activity, including azole-resistant Candida strains 48, in vitro activity 

against echinocandin resistant FKS-mutants turned is variable 49,50. In detail, specific FKS-

mutations have been associated with an increase in MIC compared to wild-type strains 
49 including F641S, F649del, F658del and F659del mutations 51-54. However, in general, 

activity of ibrexafungerp against FKS-mutants is higher compared to that of echinocandins, 

with approximately 70 to 85% of FKS-mutants being susceptible to ibrexafungerp but only 

17 to 50% are susceptible to echinocandins 55. Importantly, also difficult to treat Candida 
spp. like echinocandin resistant C. glabrata 50 and C. auris 56 are usually susceptible to 

ibrexafungerp (Table 1).

Ibrexafungerp may either be administered orally or intravenously, while most of the 

currently available studies have investigated the oral formulation. This is based on the 

good bioavailability of 30 to 50% after oral intake 57,58. For invasive fungal diseases, 

ibrexafungerp is usually administered with a loading dose for two days, followed by a 

maintenance dose. A peak plasma concentration is usually reached after 4 to 6 hours with 

a median half-life time of approximately 20 to 30 hours, allowing for once daily dosing 
59. Even though ibrexafungerp is highly protein bound (99%), tissue distribution is high, 

maybe as a consequence of low protein binding affinity. In a murine model, high tissue to 

bloodstream area under the curve ratios after oral administration have been observed within 

bone marrow (25-fold), kidney cortex (21-fold), liver (50-fold), lung (31-fold), skin (12 to 

18-fold) and spleen (54-fold), whilst there was insufficient distribution into brain tissues and 

the eye lens (0 and 0.08, respectively). The route of ibrexafungerp elimination is mainly via 

feces and it is only marginally recovered from urine 60. Most relevant pharmacokinetic data 

of Ibrexafungerp are displayed in Table 2.

3.2.2. Clinical studies—Ibrexafungerp is already approved by the U.S. Food and Drug 

Administration for treatment vulvovaginal candidiasis (VVC) with a recommended dose of 

300 mg twice daily for one day 61. This recommendation was based on two phase 3 trials, 

VANISH-303 and VANISH-306 62,63. In these randomized control trials, ibrexafungerp 

Hoenigl et al. Page 7

Expert Opin Investig Drugs. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated superiority over placebo for the primary endpoint, which was clinical cure at 

day 11 (±2) in the modified intention-to-treat analyses [RR (95% CI) 1.70 (1.2 – 2.5) for the 

VANISH-303 trial and RR (95% CI) 1.35 (1.06 – 1.73) for the VANISH-306 trial.

Several studies investigating the efficacy and safety of ibrexafungerp in invasive candidiasis 

are currently ongoing. Ibrexafungerp has already been investigated as an oral step-down 

strategy in patients with invasive candidiasis including candidemia who initially were 

treated with intravenous echinocandins in comparison to fluconazole, and non-inferiority 

was demonstrated in terms of a favorable global response 64. In addition, six out of eight 

patients in this study who were suffering from C. glabrata or C. krusei infection had a 

favorable outcome when treated with ibrexafungerp in contrast to fluconazole 64. In the 

currently ongoing open-label, single arm FURI trial (NCT03059992; Supplemental Table 

2) patients with invasive candidiasis that are intolerant to standard-of-care treatment or 

have refractory invasive candidiasis may be treated with oral ibrexafungerp. Final study 

results are not yet available, however, an interims analysis ibrexafungerp demonstrated good 

efficacy in these patients 65. The majority of patients included had C. albicans or C. glabrata 
infections and 70% turned had clinical improvement, complete or partial remission, whilst 

no patient had disease progression during ibrexafungerp treatment 65. In addition, interims 

analysis of the phase 3 CARES trial (NCT03363841), highlighted that 80% of patients with 

invasive candidiasis due to C. auris had a complete response with ibrexafungerp treatment 
66.

3.2.3.1. Future Role: Due to the broad use of azoles and echinocandins, resistances 

against the main antifungal agents used to treat invasive candidiasis are complicating the 

management of these patients in clinical routine. Ibrexafungerp, as a new first-in-class 

antifungal, may overcome some of echinocandin resistance mechanisms and thus extend 

the treatment options. Currently ibrexafungerp is only FDA approved for the treatment of 

VVC as final results from several phase 2/3 trials are still pending. Depending on the final 

results, further indications like the treatment of multi-resistant Candida strains, treatment of 

refractory Candida infections or oral step-down treatment after initial intravenous treatment 

may granted in the near future (Table 3).

3.3. Rezafungin

3.3.1. Mechanism of action, PK/PD and Candida Resistance—Rezafungin 

(formerly SP3025 and CD101; Cidara Therapeutics, San Diego, CA) is a second-generation 

echinocandin with a novel pharmacokinetic profile28. As with other echinocandins, the 

antifungal activity results from inhibition of the enzyme complex β-1,3-D-glucan synthase 

responsible for fungal cell wall biosynthesis28. A structural modification at the cyclic 

hexapeptide core differentiates rezafungin from its chemical analogue anidulafungin 67. 

This modification increases chemical stability to host degradation pathways and results in a 

considerably longer half-life while maintaining the antifungal activity and safety profile of 

the echinocandins 67,68.

Two phase I dose-escalation studies (NCT02516904 and NCT02551549, Supplemental 

Table 1) have demonstrated the novel PK properties with a prolonged half-life of more than 
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80h 69. This allows for once-weekly administration of rezafungin. Mean plasma Cmax and 
AUC increase in proportion to dose 69. In a murine model of intra-abdominal candidiasis, 

rezafungin had better penetration into abdominal abscesses than micafungin 70. Lack of 

reactive intermediates and stability in liver microsomes reduces the risk of liver toxicity 68. 

Renal clearance has a minor role in rezafungin excretion 69. Pharmacokinetics of Rezafungin 

is summarized in Table 2.

In vitro activity of rezafungin against Candida spp. is comparable to those of other 

echinocandins 28. The majority of C: albicans isolates were inhibited at MIC values 

≤0.125μg/ml using both CLSI and EUCAST methods 71,72. Wild type C. dubliniensis, C. 
fabianii, C. glabrata, C. inconspicua, C. kefyr, C. krusei, C. lipolytica, C. pulcherrima, C. 
sojae and C. tropicalis were also inhibited by MICs ≤0.125μg/ml 72,73. C. lusitaniae and C. 
auris MIC values were 0.25μg/ml 73. C. metapsilosis, C. orthopsilosis and C. guilliermondii 
were less susceptible with MIC values between 0.5μg/ml and 1μg/ml 73. C. parapsilosis was 

the least susceptible isolate with MICs up to 4μg/ml 72. C. albicans, C. dubliniensis, C. 
glabrata, C. krusei and C. tropicalis isolates harboring FKS hot spot mutations were overall 

similarly in vitro susceptible to rezafungin as to other echinocandins 71,74. Rezafungin was 

active against azole-resistant strains of C. albicans, C. glabrata and C. tropicalis 73,75. In 

summary, rezafungin has in vitro activity against most wild-type and azole-resistant Candida 
spp., including C. auris. Cross-resistance with other echinocandins to FKS mutations has 

been observed 74.

In vivo efficacy for the treatment has been demonstrated in immunocompromised murine 

models of disseminated candidiasis by C. albicans, C. auris, C. glabrata, and C. parapsilosis 
76,77.

3.3.2. Clinical Studies—Both phase I dose escalation studies (Supplemental Table 

3) have shown a favorable safety profile for once-weekly intravenous doses of 400mg 

rezafungin with the majority of adverse effects (AEs) reported being mild 69. In addition, a 

randomized, double-blind, phase I study evaluating cardiac effects of supratherapeutic doses 

detected no adverse effects on QT interval or echocardiogram 78.

The Phase II STRIVE trial (NCT02734862) was a randomized controlled trial that evaluated 

rezafungin IV compared to caspofungin followed by oral fluconazole for the treatment of 

invasive candidiasis 79. In terms of safety, the most reported AEs were mild to moderate 

diarrhea, fever, hypokalemia, and vomiting 28. For efficacy, 200 mg rezafungin once weekly 

with 400 mg loading dose showed the highest cure rates and lowest all-cause mortality 

at day 30 79. Of note, certain forms of invasive candidiasis such as endophthalmitis and 

osteomyelitis were excluded.

Currently, two phase III trials are further determining rezafungin efficacy. The randomized, 

double-blind ReSTORE trial (NCT03667690) evaluates rezafungin against caspofungin with 

optional fluconazole step-down for the treatment of invasive candidiasis. In preliminary 

results, rezafungin demonstrated non-inferiority, reaching a global cure rate of 59.1% at day 

14 compared to caspofungin with 60.6% 80. ICU stay was shorter for patients receiving 

rezafungin than caspofungin with 5 and 14.5 days in average, respectively. The randomized, 
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double-blind ReSPECT trial (NCT04368559) examines rezafungin for the prevention of 

IFD including Candida spp. in allogenic BMT patients. Fungal-free day 90 survival will be 

evaluated as primary outcome.

Rezafungin was also investigated for topical treatment of non-invasive acute vulvovaginal 

candidiasis (RADIANT, NCT02733432). Standard-of-care with fluconazole maintained the 

highest cure rate and the development of topical rezafungin formulations for VVC was 

discontinued 81.

3.3.3. Future Role in treating Candida infections—Rezafungin was designed with 

a novel PK profile that allows for once-weekly dosing while maintaining the advantages of 

the echinocandin class with low potential for renal or hepatic toxicity or serious drug-drug 

interactions 28. This may enable earlier hospital discharge and use in outpatient setting 

if prolonged treatment is demanded in invasive candidiasis. Sufficient penetration into intra-

abdominal Candida abscesses was demonstrated in a mouse model, which is encouraging for 

the treatment of deep-seated infections 70. More data are needed on tissue distribution and 

efficacy in certain forms of invasive candidiasis such as endophthalmitis and osteomyelitis 

(Table 3).

Rezafungin use for preventing IFD including Candida infections in immunocompromised 

patients could overcome standard multidrug regimens as prophylactic agent. This includes 

prophylaxis in the setting of HSCT or during the early phase after SOT. Ongoing Phase III 

trials will provide valuable data on the safety and clinical efficacy of rezafungin both as 

treatment and prophylaxis for invasive candidiasis (Supplemental Table 1).

3.4. MAT2203

MAT2203 is a novel nanoparticle-based encochleated formulation that protects and delivers 

its antifungal cargo, AMB, from the gastrointestinal tract into the systemic circulation. This 

formulation attempts to deliver the potent broad-spectrum antifungal activity into the host to 

treat mucosal and systemic invasive fungal infections with reduced host toxicity. Preliminary 

in vitro and in vivo studies support this therapeutic platform 82.

3.4.1. Mechanism of action, PK PD and Candida Resistance—Cochleates are 

composed of negatively charged lipids along with divalent cations. Within the multilayer 

lipid matrix AMB can be carried so that in its encochleated state AMB is protected from 

harsh environments such as gastrointestinal tract but able to be released in blood, lymphatics 

and/or macrophages. In a murine model of systemic candidiasis MAT2203 appears to have 

potent anticandidal activity in kidney and central nervous system orally and compares 

favorably to treatment with AMB deoxycholate parenterally. MAT2203 appears to have a 

dose-dependent anticandidal activity in several important organ sites 83.

The animal models supported this creative delivery of one of the most potent and broad-

spectrum antifungal agents we have against Candida species. It also appeared to have 

reduced organ toxicity and could be tolerated by humans orally. Candida resistance is low 

by the nature of its fungicidal pay load but MAT2203 resistance will best be judged in the 
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hosts where its creative formulation must consistently meet its necessary tissue antifungal 

activities. Table 2 summarizes pharmacokinetics of MAT2203.

3.4.2. Clinical Studies—Phase l studies were performed to observe for toxicities in 

which most common side effects were gastrointestinal such as nausea but importantly 

renal function was preserved. The single doses of 200 mg and 400 mg of MAT2203 were 

judged to be well tolerated and these doses were taken into phase 2 studies on candidiasis. 

There are two clinical trials reported in candidiasis and both studies were under very 

challenging conditions and patient populations. First, a phase 2a study of MAT2203 in 

the treatment of chronic mucocutaneous candidiasis in patients refractory or intolerant to 

standard non-intravenous therapy. All four patients achieved 50% clinical improvement as 

an endpoint with measurable serum AMB levels and no toxicity noted in the 400mg or 

800mg/day dosing 84. The second study (NCT02971007) was a multi-center randomized 

study to evaluate the safety, tolerability and efficacy of 200 mg MAT2203 and 400 mg 

MAT2203 for 5 days in the treatment of moderate to severe VVC. The CAMB composites 

of clinical cure 52%; mycological eradication 36%; overall success 16% were observed. The 

comparator was one dose of 150 mg of fluconazole 85 .The 200 mg dose of MAT2203for 

5 days (25pts) showed: clinical cure (52%); mycological eradication (36%); overall success 

(16%). The 400 mg dose of MAT2203for 5 days (22pts) showed: clinical cure (55%); 

mycological eradication (32%); overall success (14%). The comparator of one dose of 

150 mg fluconazole (32pts) reported: clinical cure (75%); mycological eradication (84%); 

overall success (69%). There were no serious adverse side effects with any regimens and all 

reported side effects were between 22-27% for CAMB and 9% for fluconazole. From these 

studies it is clear that MAT2203 orally can deliver safely AMB levels into tissue that possess 

anti-Candida activity in humans. However, it is also true in the unique environment of 

vaginal candidiasis the delivery of AMB to the candida through an encochleated formulation 

does not yet approach the efficacy of fluconazole.

3.4.3. Future Role in treating Candida infections—It is clear from both animal 

studies and early human trials that the founding principle of MAT2203 is true. This 

encochleated product of AMB can provide systemic antifungal exposure of this polyene 

to the host through oral administration safely. However, at present for mucocutaneous 

candidiasis it remains suboptimal compared to standard antifungal regimens. Further studies 

are encouraged: (1) to optimize its dosage; (2) to understand how it could be used in step-

down therapy for candidemia; (3) to utilize as a prophylactic agent in high-risk patients for 

invasive candidiasis; and (4) to perform in combination treatment with other oral antifungals 

for Candida treatments. MAT2203, if approved, will likely find a niche in the management 

of candidiasis (Table 3).

3.5. Oteseconazole (VT-1161)

3.5.1. Mechanism of action, PK PD and Candida Resistance—Oteseconazole is 

one of several novel tetrazole agents which are characterized by a much greater affinity 

for fungal CYP51 compared to human cytochrome P450 enzymes86. This compound has 

greater selectivity and potentially fewer side effects and drug-drug interactions along with 

possible improved efficacy compared to currently available azole antifungals. Some studies 
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have suggested that the affinity for fungal CYP51 is at least 2000-fold greater compared 

to the human enzyme counterpart 87,88. As such, fewer drug-drug interactions and less 

direct toxicity are anticipated with this agent and this class of azoles. The target enzyme of 

oteseconazole (14-α demethylase) is the same as for other azoles as well as the mechanism 

of action (inhibition of ergosterol synthesis) (Fig 1).

Oteseconazole demonstrates broad activity against most Candida spp. In vitro studies 

suggest that the compound is active against fluconazole-resistant Candida strains such as 

Candida krusei and Candida glabrata, including selected echinocandin-resistant strains 89,90. 

The agent is also active against a broad array of dermatophytes, endemic fungi, and selected 

Mucorales species. Available data on oteseconazole pharmacokinetics is shown in Table 2.

3.5.2. Clinical Studies—Orally administered oteseconazole has been examined among 

women for different stages of VVC and among subjects with onychomycosis. In a 

randomized, placebo- controlled, double-blind dose-ranging study in women with recurrent 

VVC, oteseconazole was well-tolerated, when administered on a weekly basis at doses 

ranging from 150 to 300 mg. In terms of efficacy, a significant reduction in recurrent 

VVC compared to placebo was observed among women receiving any of 4 regimens of 

oteseconazole 91. In a second phase 2 trial involving women with acute VVC, patients 

received 3 different regimens of oteseconazole compared to standard-of-care treatment with 

single dose fluconazole 150 mg. Therapeutic cure was observed among almost 80% of 

women receiving oteseconazole compared to 62.5% in the fluconazole group. Recurrence of 

VVC at 3- and 6-months following completion of therapy was observed in 28% and 46% in 

the fluconazole group, while it was extremely rare in the oteseconazole groups 92. To date 

over 850 women have participated in clinical trials involving oteseconazole for VVC.

Oteseconazole has also been studied for treatment of onychomycosis due to Candida spp. 

and various dermatophytes. In a randomized, double-blind trial involving 269 subjects 

with onychomycosis, 1 of 4 regimens of oteseconazole were compared to placebo 93. 

Oteseconazole dosing regimens were 300 mg to 600m g daily for 2 weeks, followed by once 

weekly dosing for 10 or 22 weeks. Efficacy in the placebo arm was 0% compared to 32% 

and 42% in the oteseconazole treatment arms.

3.5.3. Future Role in treating Candida infections—The potential role of 

oteseconazole in the treatment of Candida infections is probably limited to those involving 

mucosal surfaces and nail structures. The agent is currently being considered as a treatment 

for recurrent vulvovaginal candidiasis 94 and onychomycosis. Oteseconazole is only 

available orally, and at present there are no plans to develop it into a therapeutic option 

for invasive candidiasis (Table 3).

3.6. ATI-2307

3.6.1. Mechanism of action, PK PD and Candida Resistance—ATI-2307 is 

an aromatic diamidine, like pentamidine and furamidine, that acts by disrupting the 

mitochondrial membrane potential (Fig 1) 95,96. Available data suggests that ATI-2307 

disrupts mitochondrial membrane potential through inhibition of respiratory chain 

complexes III and IV in Saccharomyces cerevisiae and C. albicans, resulting in decreased 
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intracellular adenosine triphosphate (ATP) 97. In isolated S. cerevisiae mitochondria, 

membrane potential collapsed at 8.8 μg/mL, while nonfermentive growth in yeast cells 

was inhibited at concentrations of 0.001 to 0.002 μg/mL 98. This difference may be due 

to ATI-2307’s ability to concentrate in yeast cells. In vitro studies have demonstrated 

that ATI-2307 concentrates 3200 to 5100 times the extracellular concentrations in C. 
albicans cells, but only 35 times in rat hepatocyte cells 99. Animal models have 

indicated that ATI-2307 exhibits more than 500-fold higher selectivity for fungal than 

mammalian mitochondria 98. Uptake of ATI-2307 appears to occur by high-affinity 

spermine and spermidine transport system regulated by Agp2 100. In Table 2, most relevant 

pharmacokinetic parameters of ATI-2307 are listed.

ATI-2307 inhibits growth of Candida (MICs 0.00025 to 0.0078 μg/ml) and Cryptococcus 
spp. (MICs 0.0039 to 0.0625 μg/ml for Cryptococcus neoformans), filamentous fungi, 

including isolates that are resistant to clinically approved azoles and Malassezia furfur 101. 

Furthermore, ATI-2307 shows activity against echinocandin-resistant strains of C. albicans 
and C. glabrata as well as fluconazole-resistant strains of C. auris. ATI-2307 did not exhibit 

activity against Saccharomyces cerevisiae and Trichosporon asahii 101,102.

3.6.2. Clinical Studies—To this date, there are no publications relating to clinical 

studies. According to the sponsor (Appili Therapeutics, Inc.) three Phase 1 studies have 

been completed 103,104. In those studies, 80 healthy volunteers received at least 1 dose of 

ATI-2307. Single doses from 0.125 through 20 mg and multiple doses from 2.5 QD to 

20 mg BID up to a duration of 21 days were explored. ATI-2307 was found to be well 

tolerated at the maximum doses administered. There were no drug-related serious AEs. 

There were two infusion site reactions leading to withdrawal and one subject withdrew 

after experiencing mild to moderate paresthesias, dysphagia, dyspnea, and chest discomfort. 

The most frequently reported adverse events were mild to moderate tachycardia, oral 

hypoaesthesia, chills, headache, dysgeusia, hypoaesthesia, and paraesthesia. ATI-2307’s rate 

and extent of absorption increased more than proportionally with dose. The PK profile 

exhibited multi-compartment kinetics, with a terminal half-life of 17h at 20 mg. Plasma 

protein binding in humans was 54% and the Vd was 96L at 20mg105. Phase 2 development 

in cryptococcal meningitis and invasive candidiasis is being planned 104.

3.6.3. Future Role in treating Candida infections—Future role of ATI-2307 could 

be treatment of invasive candidiasis among other fungal diseases, such as cryptococcal 

meningitis. The drug exhibits a novel mechanism of action inhibiting mitochondrial 

membrane potential and is very potent as exhibited by low MICs in Candida and 

Cryptococcus species. ATI-2307 may play a role in treating invasive candidiasis caused 

by azole- and echinocandin-resistant strains, an emerging area of unmet need (Table 3).

3.7. VL-2397 (now GR-2397)

3.7.1. Mechanism of action, PK PD and Candida Resistance—VL-2397 

(formerly ASP2397) is a cyclic hexapeptide with a structure similar to the siderophore 

ferrichrome 106, that is now further developed by Gravitas Therapeutics as GR-2397. It was 

originally isolated from an Acremonium persicinum mould isolate found in a tropical forest 
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as part of a research program searching for new agents for pulmonary aspergillosis 106. The 

intracellular drug target is unknown, but the antifungal activity is dependent on uptake via a 

specific siderophore iron transporter SIT1 (Fig 1) 107. Consequently, the antifungal activity 

is limited to species in which SIT1 is present 107,108. For candidiasis, the spectrum is limited 

to SIT1 positive strains, including C. glabrata and C. kefyr (current name Kluyveromyces 
marxianus) but include echinocandin and azole resistant C. glabrata 107,109,110.

In vivo efficacy in a neutropenic murine model of invasive candidiasis caused by wild-

type and azole- and echinocandin-resistant C. glabrata isolates was presented at the ASM 

microbe in 2017 110. PK/PD data has not been published for Candida, whereas for A. 
fumigatus, fAUC/MIC was the PK/PD parameter best associated with efficacy in a murine 

model of invasive pulmonary aspergillosis 111. Table 2 lists pharmacokinetic information on 

VL-2397. There are no data on acquired resistance in Candida.

3.7.2. Clinical Studies—A phase 1 study showed that VL-2397 was well tolerated up to 

1200 mg in healthy volunteers who received escalating single and multiple IV doses per day 

with no reported serious AEs related to the drug 112. Following single infusions of VL-2397, 

the overall and maximum exposures rose less than proportionally with increasing doses from 

3 mg to 1,200 mg as indicated by AUC and Cmax 112. The major serum binding protein for 

VL-2397 is zinc-α2-glycoprotein (Zinc-alpha-glycoprotein, ZAG), which was proposed as 

the likely primary source of nonlinearity 113. Body surface area was the only covariate with 

a significant relationship to clearance 113. Mean AUC24, Cmax and t½ after 300/600/1200 mg 

dosing were 47/91/165 ng*h/mL, 15/25/33 ng/ml and 72/84/86 h with no signs of VL-2397 

accumulation. Renal elimination increased with increasing dose (7%-47% for doses 3-1200 

mg) and played a major role in total body clearance at doses above 10 mg 112.

VL-2397 had early termination of phase 2 trial against aspergillosis due to a business 

decision, and there are currently no ongoing trials registered at www.clinicaltrials.gov 

website (viewed January 04, 2022).

3.7.3. Future Role in treating Candida infections—Given the narrow spectrum for 

Candida, the future role for VL-2397 in Candida infections will be targeted therapy of 

C. glabrata and C. kefyr (Kluyveromyces marxianus) infections. C. glabrata is the second 

most common Candida spp. causing invasive candidiasis in most countries in the northern 

hemisphere and Asia Pacific 2,114. It is intrinsically less susceptible to azoles and it is 

the Candida spp. that most frequently acquires antifungal drug resistance to echinocandins 

and azoles 115. Consequently, new agents with new molecular targets against C. glabrata 
will have a future role. C. kefyr (Kluyveromyces marxianus) is an uncommon species, 

most frequently encountered in patients with underlying hematologic disease. It is normally 

susceptible to the available antifungal agents, but acquired resistance to echinocandins have 

been described in which case VL-2397 would be a potential alternative 116. Finally, due to 

its renal excretion, it may have a specific role for C. glabrata infections involving the urinary 

tract (Table 3).
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3.8. NP339

3.8.1. Mechanism of action, PK PD and Candida Resistance—NP339 is a 2-kDa 

polyarginine polypeptide with antifungal activity 117. Synthetic polyarginine peptides have 

been developed as cell-penetrating peptides to deliver various cargoes (drugs or dyes) to 

the mammalian cell 118,119. However, Duncan et al. were the first to test their antifungal 

potential and to develop the novel polypeptide NP-339.

NP339 was designed based on endogenous cationic human defense peptides, which 

are important constituents of the immune defense against pathogenic microbes. NP-339 

specifically targets the fungal cell membrane through a charge-charge-initiated membrane 

interaction and does not penetrate the mammalian cell (Fig 1). As a consequence, it 

possesses a differentiated safety and toxicity profile in comparison to presently known 

antifungal agents. It is active against genera of Candida, Cryptococcus, Aspergillus, 

and Exophiala. Duncan et al. also mention efficacy against other fungi without further 

specification. It is fungicidal against both planktonic cells and biofilms. Furthermore, NP339 

has not only be proven to effective against fungi in tissue cultures but also in human whole 

blood and saliva.

Its fungicidal effect is achieved rapidly in vitro. In addition, it does not elicit development of 

resistance or cross-resistance to well-known and frequently used antifungals such as azoles 

or echinocandins. In murine models of candidiasis, a significant improvement in the vaginal 

candidiasis model as well as in the oropharyngeal candidiasis model could be achieved, 

whereas for disseminated candidiasis a trend, but not a significant effect on the fungal 

burden was observed. However, there is a need for further data generated in optimized in 
vivo models of infection.

NP339 is not cytotoxic or hemolytic in vitro. In addition, it does not cause a nonspecific 

immune response. The observations described by Duncan et al. indicate a unique safety and 

toxicity profile. Exogenous peptides are not processed in the liver, which minimizes the risk 

of the involvement of NP339 in adverse drug-drug interactions 120,121. Pharmacokinetic data 

of NP339 is not yet available.

3.8.2. Clinical Studies—As NP339 has only recently been developed clinical studies 

have not been performed so far. At present, it is not possible to predict the actual NP339 

efficacy and performance for clinical application. As its further development for application 

against specific fungal diseases is actively pursued future studies will show its efficacy in the 

treatment of candidiasis.

3.8.3. Future Role in treating Candida infections—The future role of NP339 could 

be the treatment of invasive candidiasis among other fungal diseases. The drug exhibits a 

novel mechanism of action by targeting the fungal cell membrane and does not penetrate 

the mammalian cell. The risk of the involvement in adverse drug-drug interactions is 

therefore small. This anticipates its applicability for the treatment of candidiasis in high-

risk patients, e.g. patients undergoing chemotherapy, transplant recipients and otherwise 

immunocompromised and seriously ill individuals already subject to poly-pharmaceutical 

interventions (Table 3).
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3.9. Miltefosine

3.9.1. Mechanism of action, PK PD and Candida Resistance—Miltefosine is an 

alkyl phosphocholine analog first developed as an anti-cancer drug that has found use in the 

treatment of leishmania 122. It has broad antifungal activity in vitro against a wide spectrum 

of fungi, including yeasts 123. Miltefosine has been shown to be active against planktonic 

cells and biofilms of C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, and C. 
auris 124,125. In addition, miltefosine and amphotericin B were synergistic against C. auris 
126. The mechanism of action has not been fully elucidated, but in C. krusei, miltefosine 

antifungal activity may be carried out by interaction with ergosterol, leading to apoptosis 

(Fig 1) 127. Resistance to miltefosine is reported and has been linked to lipid asymmetry 

across the plasma membrane 128.

Miltefosine has good bioavailability and is administered orally. In children, 

pharmacokinetics are non-linear, and an allometric weight-based dosing schedule achieves 

better exposure (and clinical response in visceral leishmaniasis). Gastrointestinal toxicity 

is common. High doses may result in hemolytic anemia. Teratogenicity precludes use in 

pregnancy 122. Published pharmacokinetic data on miltefosine is sparse (Table 2).

3.9.2. Clinical Studies—Nanocarrier formulations may offer drug delivery with lower 

toxicity. Alginate nanoparticles (AN) miltefosine did not cause hemolysis or other toxicity 

in Galleria mellonella larvae with candidiasis 129. In addition, miltefosine-containing 

nanocarriers were effective in the topical treatment of vaginal candidiasis caused by C. 
albicans in a murine model 130. Human clinical studies evaluating miltefosine in candidiasis 

are lacking.

3.9.3. Future Role in treating Candida infections—Miltefosine was granted orphan 

drug designation by the FDA on November 1, 2021 for the treatment of invasive candidiasis 
131 (Table 3).

4. Conclusion

Several promising antifungal agents are currently in late-stage clinical development that 

will add to the armamentarium against antifungal resistant Candida spp. Many of these 

antifungals offer novel mechanisms of action, some allowing for less frequent or oral dosing, 

having the potential to significantly advance care for Candida infections.

5. Expert Opinion

Several of the drugs discussed in this review have novel mechanisms of action. While 

preclinical data and also clinical trials often focus on the treatment of refractory, resistant, 

or breakthrough infections 132, some drugs that show advantages in pharmacokinetics (e.g. 

allowing for oral or less frequent dosing) may soon have additional indications allowing 

broader clinical use. Importantly, even for those agents that are already in advanced clinical 

development, there are still some gaps of knowledge regarding their pharmacokinetics and 

pharmacodynamics and whether therapeutic drug monitoring may be required. Only once 

these drugs are broadly used in real-world scenarios, we will find out how prone these new 
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drugs are to the evolution of novel drug resistance mechanisms. Also, some of the new 

drugs in development have a much narrower spectrum of activity compared to some of the 

currently available broad-spectrum agents and may therefore be less promising for empirical 

therapy, which is frequent for Candida infections. Some of these drugs may therefore only 

be used in cases where the causative fungal pathogen has been identified on a species level.

Three of the drugs discussed in this review are in late-stage clinical development. 

Fosmanogepix has a novel mechanism of action and can be dosed orally or intravenously. 

While the drug has a broad spectrum of activity against most Candida spp. (including C. 
auris and multiresistant C. glabrata), it lacks activity against C. krusei. Ibrexafungerp has 

also a novel mechanism of action and is currently available only in the oral formulation. 

In 2021, ibrexafungerp has been approved by the FDA for the treatment of vulvovaginal 

candidiasis. The drug is currently being evaluated in a number of studies for treatment of 

a variety of infections caused by Candida spp. Given its oral formulation, ibrexafungerp 

will likely be a good primary and stepdown option for infections from Candida spp., and 

it will have a role in the treatment of azole-resistant Candida spp., and possibly against 

echinocandin resistant C. auris and C. glabrata isolates28. Rezafungin is a once-weekly 

intravenous echinocandin with favorable activity against Candida spp., including azole-

resistant Candida spp. Rezafungin may serve as a promising option for prolonged treatment 

for complicated cases of invasive candidiasis and allow for earlier hospital discharge in 

some cases with candidemia where step down to fluconazole is not an option. Moreover, its 

broad-spectrum activity against Candida spp., but also Aspergillus spp., and Pneumocystis 
jirovecii will make it a candidate in post-transplant prophylaxis28.

Other investigational antifungals that have activity against Candida spp. are currently in 

preclinical development or in the very early phase of clinical evaluation. This includes 

MAT2203, ATI-2307, and VL-2397. These drugs have the potential to play a significant role 

in managing invasive candidiasis.

MAT2203 is an encochleated formulation of amphotericin B and is an exciting antifungal 

as it may provide an oral option of polyene therapy, but currently, further studies are 

needed to evaluate the proper dose and efficacy. ATI-2307 exerts its activity by disrupting 

mitochondrial membrane potential and has activity against yeast and filamentous fungi, 

including azole-resistant Candida spp.; however, clinical data are lacking. VL-2397 depends 

on siderophore iron transporter SIT1 for its activity. While VL-2397 is a promising 

therapeutic agent against invasive aspergillosis, its anti-Candida spp. activity is limited 

to C. glabrata and C. kefyr (Kluyveromyces marxianus). However, pending more clinical 

data, VL-2397 will provide an option against azole-resistant C. glabrata and C. kefyr 
(Kluyveromyces marxianus), especially for urinary infections as it is mainly excreted in 

the urine. Oteseconazole binds with greater affinity to fungal CYP51 than currently licensed 

azoles, possibly leading to fewer side effects. It is orally available and has been proven 

effective in vulvovaginal candidiasis and onychomycosis. The polyarginine cationic NP339 

interacts charge-charge-initiated with the fungal membrane and is well tolerated in in vivo 
models. It has a broad spectrum of antifungal activity but evaluation in clinical trials 

is pending. Miltefosine already has a place in the treatment of leishmaniasis, whereby 

pharmacokinetics and side effects are known. Due to its antifungal activity that is carried out 
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by a largely unexplored mechanism it was recently granted orphan drug designation for the 

treatment of invasive candidiasis.

Despite the promise of newly approved and investigational antifungal drugs, unmet needs in 

the treatment of invasive candidiasis still exist. Even with these new and emerging options, 

there are still too few antifungals that can be given orally or have CNS penetration. There 

is an urgent need to garner clinical data on investigational drugs, especially in the current 

trend of the rise of azole-resistant and multi-drug resistant Candida spp, such as C. auris, 

C. glabrata, and C. parapsilosis. Thus, despite the promise that these new antifungal options 

hold, continued research and development into new options including drugs from novel 

antifungal classes will help replenish the current antifungal armamentarium.
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Article Highlights:

• For the first time in two decades, the antifungal pipeline is loaded and 

includes several repurposed drugs and drugs with new mechanisms of action.

• Ibrexafungerp, a first-in class triterpenoid antifungal, has recently been FDA 

approved for treatment of vulvovaginal candidiasis and may provide an 

option for treatment of multi-resistant refractory Candida infections or oral 

step-down treatment.

• Rezafungin is an echinocandin with a novel PK profile that allows for once-

weekly dosing, which may be of benefit particularly for outpatient treatment 

or Candida prophylaxis.

• Fosmanogepix has a novel mechanism of action with broad spectrum activity 

and has been granted FDA fast-track for the treatment of invasive candidiasis.

• MAT2203 is an encochleated product of amphotericin B, providing systemic 

exposure after oral administration, and may find a niche in the management of 

candidiasis
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Figure 1: 
Mechanism of action of the novel antifungals MAT2203, miltefosine, NP339, oteseconazole, 

ATI-2307 (=T-2307) and VL-2397. For ibrexafungerp, fosmanogepix and rezafungin a 

corresponding figure has been published before 28. Dotted lines indicate that the exact 

mechanism of action is still under investigation. Depicted mechanism for miltefosine is 

based on Wu et al., 2020 127; NP339 is based on Duncan et al., 2021 117; VL-2397 on Dietl 

et al., 2019 107 Abbreviations: CYP, cytochrome P; SIT1, siderophore iron transporter 1.
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