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Abstract

As the third most common vascular disease, venous thromboembolism is associated with 

significant mortality and morbidity. Pathogenesis underlying venous thrombosis is still not 

fully understood. Accumulating data suggest fibrin network structure and factor XIII-mediated 

crosslinking are major determinants of venous thrombus mass, composition, and stability. 

Understanding the cellular and molecular mechanisms mediating fibrin(ogen) and factor XIII 

production and function and their ability to influence venous thrombogenesis and resolution 

may inspire new anticoagulant strategies that target these proteins to reduce or prevent venous 

thrombosis in certain at-risk patients. This article summarizes fibrinogen and factor XIII biology 

and current knowledge of their function during venous thromboembolism.
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INTRODUCTION

Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and/or pulmonary 

embolism (PE), affects 1–2 individuals per 1000 each year globally, with relatively higher 

incidence in North America and Europe than in Asia.1,2 VTE is the third most common 

vascular disease after acute myocardial infarction and stroke, and is associated with high 

mortality and morbidity.3,4 Up to half of patients with a DVT develop post-thrombotic 

syndrome and up to 4% patients with a PE develop chronic thromboembolic pulmonary 

hypertension, which reduce quality of life and result in a substantial economic health-care 

burden.5–8

Several classes of anticoagulants are currently used to prevent VTE or reduce thrombus 

extension, including indirect thrombin/factor [F] Xa inhibitors, vitamin K antagonist, 

and direct thrombin/FXa inhibitors. Heparin binds to antithrombin and accelerates the 

antithrombin-dependent inactivation of several coagulation proteases (e.g., thrombin, FXa, 

and FIXa).9 The oral vitamin K antagonist warfarin, first approved in the 1950s, is used for 

treatment or secondary prevention of VTE and stroke in patients with atrial fibrillation.10 

Warfarin blocks the vitamin K epoxide reductase and therefore, formation of vitamin K1 

and vitamin KH2, which are essential for γ-carboxylation of vitamin K-dependent proteins 

including FVII, FIX, FX, and prothrombin, and anticoagulant proteins C and S. Several 

small molecule inhibitors arrived on the market in the early 21st century; these direct oral 

anticoagulants inhibit FXa or thrombin and have been increasingly used for prevention or 

treatment of VTE and stroke because of their superior benefit-to-risk ratio compared to 
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heparin or warfarin.11 Clinical observations of individuals with FXII or FXI deficiency 

and experience with animal models of these deficiencies have sparked interest in FXII or 

FXI(a) inhibition as potentially safer anticoagulation strategies, and several FXI(a) inhibitors 

are in clinical development.12–16 By reducing the production or activity of procoagulant 

proteins, all of these anticoagulants can reduce thrombus extension and venous thrombosis 

recurrence. However, these drugs are also associated with bleeding risk, likely because they 

each reduce thrombin-mediated fibrin formation. This limitation has fueled a continued 

search for new effective drugs with improved safety profiles.

Factor XIII (FXIII) functions in the final step of the coagulation cascade, where its activated 

form FXIIIa catalyzes the formation of crosslinks within fibrin fibers to stabilize the clot. 

The use of new mouse models and development of novel technologies, including intravital 

microscopy to visualize blood cells, fibrin, and FXIII during thrombus formation in vivo, 

have revealed newly appreciated roles of fibrinogen and fibrin (collectively “fibrin[ogen]”) 

and FXIIIa-mediated crosslinking in venous thrombus structure, stability, composition, 

and mass. These findings suggest fibrin(ogen) and FXIII(a) might be effective targets for 

reducing venous thrombosis in certain situations.

FIBRIN(OGEN) AND FXIII IN HEMOSTASIS

Fibrin(ogen)

Fibrinogen structure and function.—Fibrinogen is one of the most abundant plasma 

proteins (2–4 mg/mL, 6–12 μM) and the most abundant circulating coagulation protein. 

Fibrinogen is expressed constitutively, but its expression can be upregulated 2–3-fold 

above baseline in response to inflammation.17 Fibrinogen circulates as a large (340 kDa) 

hexameric glycoprotein consisting of 2 each of 3 polypeptides: 2 Aα-, 2 Bβ-, and 2 

γ-chains (AαBβγ)2.18 Alternative splicing within the fibrinogen γ-chain leads to a subset of 

molecules containing one γ’-chain (~8–15% of total circulating fibrinogen). The fibrinogen 

chains are synthesized and assembled in hepatocytes and the fully-formed fibrinogen 

hexamer is secreted into the blood (Figure 1A).19 Following vascular injury, activation of 

the coagulation cascade leads to production of thrombin. Thrombin proteolytically cleaves 

fibrinogen, which releases N-terminal fibrinopeptides from the Aα- and Bβ-chains in the 

central E region to generate fibrin monomers. The newly exposed “knobs” on the α- and β-

chains can then insert into “pockets” in the C-terminal globular γC and βC regions of the D 

domain of another fibrin molecule, enabling formation of fibrin oligomers and protofibrils. 

Through subsequent lateral aggregation and branching events, the half-staggered, double-

stranded protofibrils assemble into fiber polymers, and ultimately produce an insoluble 

3-dimensional fibrin network.20 Several molecules and environmental conditions influence 

clot structure. In particular, thrombin has a profound effect on fibrin structure; low thrombin 

concentrations generate thick fibrin fibers in coarse and permeable networks that are 

susceptible to fibrinolysis, whereas high thrombin concentration produce thin fibrin fibers in 

densely-packed networks that are less permeable and resistant to fibrinolysis.21

Fibrin(ogen) interaction with plasma proteins and cells.—Fibrin(ogen) provides 

binding sites for plasma proteins involved in clot formation (thrombin), stabilization 
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(FXIII), and lysis (tissue-type plasminogen activator [tPA], plasmin[ogen], α2-antiplasmin, 

plasminogen activator inhibitor-2), and other proteins. Fibrin(ogen) also interacts with 

receptors on multiple cell types: αMβ2 and αXβ2 on monocytes;22–24 αIIbβ3 and 

glycoprotein VI (GPVI) on platelets;25,26 αvβ3, α5β1, intercellular adhesion molecule-1, 

and VE-cadherin on endothelial cells;27–30 and αvβ3 on fibroblasts31. These interactions 

mediate the diverse roles of fibrin(ogen) in hemostasis, immunity, inflammation, 

and infection.32 For example, fibrin(ogen) binding to monocytes enhances monocyte 

activation.23 Interaction of extravascular fibrin(ogen) with the toll-like receptor-4 on 

macrophages stimulates chemokine secretion and promotes an immune response.33 

Fibrin(ogen) binding to the activated platelet integrin receptor αIIbβ3 serves as a bridge 

that mediates platelet aggregation, clot contraction, and thrombus consolidation. Fibrin is 

also a ligand for platelet collagen receptor GPVI and this interaction is associated with 

phosphatidylserine exposure.26 Fibrinogen can also increase the permeability of cultured 

endothelial cells and may contribute to microvascular leakage in cardiovascular disease.34 

Assembly of fibrin(ogen) on leukocytes and endothelial cells stabilize leukocyte attachment 

and migration to endothelium.35 Binding and incorporation of plasma proteins and blood 

cells into the nascent fibrin network can alter protofibril formation and polymerization, 

network density, pore size/clot permeability, elasticity, and the rate of fibrinolysis, with 

direct consequences for the clot’s mechanical and fibrinolytic properties.20,36

Quantitative and qualitative fibrin(ogen) defects.—Fibrinogen disorders can be 

congenital or acquired and are classified as quantitative deficiencies marked by no 

or low plasma fibrinogen (afibrinogenemia or hypofibrinogenemia, respectively), or 

qualitative abnormalities associated with abnormal function of fibrinogen molecules 

present at either normal or low levels (dysfibrinogenemia or hypodysfibrinogenemia, 

respectively). Congenital fibrinogen disorders are typically caused by mutations within 

the fibrinogen structural genes FGA, FGB, and FGG. Afibrinogenemia is relatively 

rare and occurs in ~1 in 1 million individuals, whereas hypofibrinogenemia and 

dysfibrinogenemia are more common. Acquired fibrinogen disorders are usually caused 

by clinical situations that alter synthesis (e.g., liver disease), increase consumption (e.g., 

cancer, sepsis with disseminated intravascular coagulation), alter plasma concentration 

(e.g., hemodilution during transfusion), or promote autoantibody formation (e.g., myeloma, 

autoimmune disease, or drug-induced). Combinations of these mechanisms (e.g., blood 

loss, consumption, hemodilution, and hyperfibrinolysis) frequently occur in trauma and 

contribute to poor outcomes.37–39 The phenotype of individuals with fibrinogen deficiency 

is highly variable and can be asymptomatic or can be associated with increased bleeding 

and/or thrombosis. A more detailed description of fibrinogen deficiencies can be found 

elsewhere.40–42

FXIII

Structure and activation of plasma FXIII.

FXIII, known as “fibrin stabilizing factor,” is a member of a family of nine transglutaminase 

proteins. FXIII is the only member of this family that is present in plasma, as well as 

cells. Plasma FXIII consists of a dimer of catalytic A-subunits (FXIII-A2) and a dimer 
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of carrier/inhibitory B-subunits (FXIII-B2) that circulate as a heterotetrameric complex 

(FXIII-A2B2, 320 kDa, 14–28 μg/mL). Each A-subunit is an ~83 kDa molecule with 

731 amino acids arranged in four structural domains: an activation peptide (AP-FXIII 

[residues 1–37]), a β-sandwich domain (residues 38–184), a catalytic core domain (residues 

185–515), and two β-barrel domains (residues 516–628 and 629–731). Each B-subunit 

is an ~80 kDa molecule consisting of 641 amino acids assembled in ten sushi domains, 

each held together by two internal disulfide bonds.43 The FXIII A- and B-subunits are 

synthesized in different tissues; the A-subunits are produced in hematopoietic cells thought 

to be resident tissue macrophages in the aorta,44 whereas the B-subunits are synthesized 

in hepatocytes (Figure 1A).45 Assembly of the FXIII-A2B2 heterotetramer occurs in the 

plasma (Figure 1A). The equilibrium dissociation constant (KD) for the interaction between 

FXIII-A2 and FXIII-B2 subunits is ~10−10 M, such that 99% of FXIII-A2 circulates in the 

FXIII-A2B2 complex.46 The B-subunits stabilize the A-subunits by preventing spontaneous 

activation, and are essential for maintaining plasma FXIII levels.47,48 Although early 

studies suggested FXIII-A2B2 circulates bound to the alternatively-spliced γ’ sequence 

in fibrinogen, more recent studies showed the FXIII-B subunits mediate binding of FXIII-

A2B2 to fibrinogen residues γ390–396 in both humans and mice.49 In addition to residues 

γ390–396, fibrinogen residues α371–425, and particularly αGlu396 within the αC domain, 

have also been implicated in FXIII binding and activation.50,51 FXIII-B2 circulates in a 

~2-fold molar excess relative to FXIII-A2. Essentially all FXIII-A2B2 and FXIII-B2 circulate 

bound to fibrinogen residues γ390–396.49 A small pool of FXIII-A2B2 is found in platelet 

α-granules, likely endocytosed with circulating fibrinogen.52

In concert with fibrin formation, thrombin proteolytically activates FXIII by thrombin-

mediated cleavage of the Arg37-Gly38 peptide bond and dissociation of the N-terminal 

activation peptides. This process is accelerated by the presence of polymerized fibrin.53 

Activation peptide release is followed by calcium-mediated dissociation of B-subunits from 

the A-subunits and exposure of the active site cysteine.

Structure, activation, and activity of cellular FXIII.

Cellular FXIII consists of only FXIII A-subunits (cFXIIIA, FXIII-A2). FXIII-A2 is present 

in cells of bone marrow origin and mesenchymal lineage, including osteoblasts and 

chondrocytes,54,55 monocytes/macrophages,56–58 and megakaryocytes and platelets59–61. 

Cellular FXIII-A is activated nonproteolytically by increased intracellular Ca2+, can be 

exposed on the membrane surface62,63, and is involved in multiple cellular functions.55 

Almost half of circulating FXIII-A is present in platelets64, and FXIII-A is one of the 

most prevalent platelet proteins (~83,000 copies per platelet)65. Unlike most coagulation 

proteins in platelets that are located in the α-granules, platelet FXIII-A is localized in the 

cytoplasm (Figure 2).61,66 FXIII-A exposure on platelets requires stimulation by strong 

dual agonists (e.g., convulxin plus thrombin or thrombin receptor activation peptide), but 

mechanisms regulating the exposure and release of FXIII-A from platelets, as well as 

other cells, are unclear. Two populations of FXIII-exposing platelets are formed after 

strong stimulation: ballooned procoagulant (phosphatidylserine-exposing) platelets with 

FXIII-A on a protruding “cap,” and spread platelets with FXIII-A in a diffuse distribution 

(Figure 2).67,68 FXIII-A is also exposed on extracellular vesicles released from GPVI and 
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protease-activated receptor (PAR)-activated platelets.69 Platelet FXIII-A can be activated 

by calpain (Ca2+-dependent cysteine proteinase) in purified systems.70 However, during 

platelet activation, elevated intracellular Ca2+ induces a conformational change in FXIII-A2 

that produces enzymatically active FXIII without proteolytic removal of the activation 

peptide (FXIII-A°).63,71 After exposure and/or release, FXIII-A° can be proteolytically 

cleaved by thrombin to produce activated FXIII-A* (FXIIIa). Proteolytically activated 

FXIII-A* has higher conformational flexibility and increased affinity toward glutamine 

substrates, suggesting activation peptide removal might make FXIII-A* more accessible to 

substrates.72,73 In activated platelets, nonproteolytically activated FXIII-A° can crosslink 

cytoskeletal proteins including myosin, actin, filamin, and vinculin. These events occur in 

later stages of platelet activation and may contribute to cytoskeletal remodeling and certain 

phases of platelet spreading (Figure 2).74–76 Although some studies suggested platelet 

FXIII-A is required for platelet contraction,77,78 others have seen little or no difference 

in the ability of clots to contract in the absence of FXIII activity.79–82

FXIII(a) function in hemostasis.

Plasma FXIIIa catalyzes the formation of covalent ε-(γ-glutamyl)-lysine isopeptide bonds 

between glutamine and lysine residues. FXIIIa is a relatively promiscuous enzyme, and 

proteomic analysis has identified almost 150 FXIIIa substrates in plasma, including 48 

that may be incorporated into the insoluble fibrin clot during coagulation.83 Plasma and 

cellular substrates for FXIIIa and their related crosslinking sites are reviewed elsewhere.84,85 

Nonetheless, the primary physiological function of plasma FXIII(a) is well-established: 

1) crosslinking fibrin γ- and α-chains into γ-chain dimers, α-chain polymers, and γ-α 
species to increase clot mechanical stability; and 2) crosslinking antifibrinolytic proteins 

(e.g., α2-antiplasmin) to fibrin(ogen) to protect clots against biochemical degradation by the 

fibrinolytic system (Figure 1B). Fibrin γ-chain dimer formation is a fast process that results 

from reciprocal intermolecular bond formation between the γ406 lysine of one γ-chain and 

a γ398/399 glutamine residue of another γ-chain. Crosslinking of α-chains is slower than 

γ-chain crosslinking and involves multiple glutamine and lysine residues.86 Crosslinking of 

α2-antiplasmin to fibrin (primarily at α-chain residue Lys303) lags slightly behind fibrin 

γ-dimer formation but precedes fibrin α-chain polymer formation.55,87,88 Platelet FXIII-A 

may also have antifibrinolytic activity by crosslinking α2-antiplasmin to fibrin(ogen), but 

this effect is only significant when plasma FXIII is below 20%.68 Similarly, FXIII(a) 

exposed on interleukin (IL)-4- and IL-10-stimulated monocytes may also stabilize thrombi 

against fibrinolytic degradation in settings where plasma FXIII concentrations are low.89

FXIII deficiency.

FXIII deficiency is a rare disorder, affecting ~1 in 2–3 million people. Congenital 

deficiency and FXIII activity below 3% is often identified by delayed umbilical cord 

bleeding and is associated with severe, life-long bleeding tendency, including intracranial 

bleeding in ~30% of patients.90 FXIII deficiency is also associated with abnormal wound 

healing and spontaneous miscarriage.90–93 Congenital FXIII deficiency can arise from 

mutations in genes encoding either the FXIII-A subunit (F13a1, type 2) or the FXIII-B 

subunit (F13b, type 1), although defects in FXIII-A account for 95% of FXIII-related 

bleeding disorders.91,93 Bleeding in FXIII-B deficiency is generally milder than that seen 
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in FXIII-A-deficient patients; this has been attributed to low residual levels of plasma 

FXIII-A2 in FXIII-B-deficient individuals, or to antifibrinolytic activity of platelet FXIII-

A which may compensate for the loss of plasma FXIII-A2B2.90,94 Acquired FXIII is 

more common than congenital deficiency, and can be caused by autoimmune disease, 

consumption (e.g., surgery, infection, inflammatory bowel disease, thrombosis), reduced 

synthesis (e.g., liver disease, leukemia, medication-related) and/or hemodilution. Since 

conventional coagulation tests available in most clinical settings are not sensitive to FXIII, 

FXIII deficiency is difficult to identify and may be underdiagnosed.95–97 Congenital 

FXIII deficiency is treated with plasma-derived FXIII-A2B2 (in patients with either A- 

or B-subunit deficiency) or recombinant FXIII-A2 (in patients with genetically-confirmed 

A-subunit deficiency). Patients with acquired FXIII deficiency associated with autoantibody 

development are treated with immunosuppressive agents combined with cryoprecipitate 

and/or FXIII concentrate.98–100

FIBRIN(OGEN) AND FXIII IN VENOUS THROMBOSIS

Pathophysiologic mechanisms in VTE.

VTE pathophysiology is usually described as the intersection of three major abnormalities 

(venous stasis, vascular dysfunction/injury, and blood hypercoagulability) known as 

Virchow’s Triad. In this conceptual model, reduced (stasis) or turbulent (nonlaminar) flow 

of blood around the venous valve pocket creates a hypoxic environment that activates 

endothelial cells and leads to abnormal expression of adhesion molecules that bind 

and retain leukocytes and platelets at the endothelial surface.101 Activated leukocytes, 

and potentially also the dysfunctional endothelial cells themselves, express tissue factor, 

triggering the coagulation cascade. Leukocytes, red blood cells (RBCs) and platelets that 

accumulate in the valve pockets promote thrombin generation and ultimately, the formation 

of a thrombus rich in RBCs and fibrin (Figure 1C). Venous thrombi can occlude venous flow 

and/or dislodge and migrate through the heart to the pulmonary vasculature.

Epidemiologic data associating changes in fibrin(ogen) and FXIII with VTE.

Previous reviews have summarized epidemiologic studies investigating relationships 

between fibrin(ogen) and FXIII in venous thrombosis102–104 and are only summarized here. 

Briefly, elevated fibrinogen is associated with increased risk of venous thrombosis. Risk 

persists even after adjusting for potential confounded effects of ongoing inflammation,102 

but is complicated by the relative presence of the alternatively-spliced fibrinogen γ’-chain, 

which offers protection against VTE.104 Similar discord in the literature investigating the 

role of FXIII in thrombosis has arisen through complexities in interpreting FXIII activity 

assays, complex relationships between FXIII and fibrinogen levels, polymorphisms that alter 

FXIII function, and potential sex-specific effects.103 However, together the findings suggest 

FXIII antigen, activity, and/or genotype influence thrombosis risk in certain populations 

and clinical situations. For example, meta-analyses show the common FXIII Val34Leu 

polymorphism (rs5985) protects against VTE.105 Presence of this polymorphism leads 

to faster activation by thrombin, and therefore, faster fibrin crosslinking.106 Interestingly, 

the functional impact of the FXIII Val34Leu polymorphism is manifested through a “gene-

environment interaction” in which homozygous presence of the Leu34 allele promotes 
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the formation of clots with thicker fibers and more permeable clots when fibrinogen 

concentrations are high, but formation of thinner fibers and denser networks when 

fibrinogen concentrations are low.107 Collectively, these studies provide strong support for 

the premise that both fibrin(ogen) and FXIII are major contributors to VTE.

Fibrin and FXIIIa as determinants of venous thrombus formation and composition.

Conventionally, venous clots are referred as “red” RBC- and fibrin-rich thrombi, and their 

fibrin content has been used as an imaging target.108 Platelets also contribute to both 

thrombus initiation109,110 and composition. Scanning and transmission electron microscopy 

of thrombi retrieved from patients as well as contracted whole blood clots formed in vitro, 

reveal the presence of closely packed, distorted RBCs (termed “polyhedrocytes”) in clot 

core.111 Platelet-mediated clot contraction generates the force required to compress these 

resident RBCs into polyhedrocytes. RBCs in circulation or in the thrombus may contribute 

mechanistically to VTE by interacting with other cells, supporting thrombin generation, 

altering fibrin structure, and/or slowing the diffusion of lytic enzyme into the clot and 

enhancing clot resistance to fibrinolysis (reviewed in 112).

In experimental models of venous thrombosis, elevated fibrinogen shortens the time to 

vessel occlusion, increases fibrin deposition within thrombi, and increases fibrin stability.113 

Clots with increased fibrin network density, including those formed in the presence of 

high tissue factor concentrations, retain higher numbers of RBCs.114 Notably however, 

FXIII(a) crosslinking of fibrin promotes RBC retention in clots independent of fibrin 

network density.81,114,115 Following inferior vena cava ligation, FXIII-deficient mice 

(F13a1−/−) produce thrombi with decreased RBC content and consequently, reduced mass 

than wild-type mice.81,115 Similarly, human whole blood clots retain fewer RBCs in 

the absence of FXIII.115 Experiments with FXIIIa inhibitors and recombinant fibrinogen 

variants associated this effect with the production of α-chain-rich high molecular weight 

crosslinks.114 Subsequent studies suggested these crosslinks are produced primarily by 

plasma, but not platelet, FXIII.81 The ability of clots to retain RBCs depends not only on the 

presence of FXIII, but also on the timing of its activation. Studies using a FXIIIa-sensitive 

near-infrared fluorescence imaging agent (A15 peptide) showed significant crosslinking in 

acute thrombi, but less incorporation in aged thrombi116, consistent with the early activation 

of FXIII that is synchronized with fibrin formation. Delayed FXIII activation associated 

with reduced FXIII (F13a1+/−) or reduced FXIII-A2B2 binding to fibrinogen (as in mice 

bearing mutated fibrinogen, Fibγ390−396A) decreases RBC retention in venous thrombi in 

mice.49,81,115 Interestingly, accelerated FXIII activation also decreases RBC retention in 

clots, but in a gene/environment mechanism; compared to the FXIII 34Val allele, presence of 

the FXIII 34Leu allele reduces the impact of elevated fibrin(ogen) on whole blood clot mass 

in vitro, and thus may protect from venous thrombosis in vivo.117

Fibrin and FXIIIa as determinants of PE and venous thrombus resolution.

PE is the most serious complication of DVT and happens when part or all the 

thrombus detaches from the venous vessel wall, travels to a pulmonary artery, and 

prevents oxygen exchange. Failure of timely dissolution of PE can result in chronic 

thromboembolic pulmonary hypertension, right heart failure, and cardiogenic shock.118 

Wolberg and Sang Page 8

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical observations119–123 and experimental studies with mice124–126 support roles for 

both fibrin(ogen) and FXIII(a) in maintaining venous thrombus stability and preventing 

embolization.

Plasmas from patients with a history of VTE produce clots with abnormal characteristics, 

including reduced permeability and delayed clot lysis.119 Even in patients with DVT who 

have discontinued anticoagulation, the formation of plasma clots with reduced permeability 

and prolonged clot lysis in vitro are associated with increased risk of recurrent DVT.127 

These same characteristics are also associated with increased risk of developing chronic 

thromboembolic pulmonary hypertension, post-thrombotic syndrome, and persistent venous 

obstruction.120,121,128–131 The fibrinogen β chain (FGB [rs1800790]) and FXIII Val34Leu 

polymorphisms have been implicated as determinants of altered clot properties in acute 

PE.123

Using intravital video microscopy and lung histology of a FeCl3-induced model of acute 

thrombosis, Gross and co-workers found reduced thrombus stability and increased emboli 

in mice treated with the direct thrombin inhibitor dabigatran and in FXIII-deficient 

mice, leading to the hypothesis that by reducing thrombin production, anticoagulant 

treatment reduces activation of FXIII and the thrombin-activatable fibrinolysis inhibitor and 

decreases thrombus stability.132 They subsequently showed that supplementation with FXIII 

stabilizes venous thrombi and decreases embolization without altering thrombus size.124 We 

confirmed the role of FXIII in venous thrombus stabilization using a new mouse model of 

VTE. In this model, DVT are first induced by ligating the inferior vena cava (generating 

blood stasis) to slowly produce large RBC-enriched thrombi similar to human DVT, and 

then these thrombi are allowed to embolize by releasing the ligature. Using this model, 

we observed that complete FXIII deficiency increases PE incidence, but partial deficiency 

(i.e., F13a1+/−) does not,125 likely due to preservation of fibrin crosslinking in mice with 

reduced FXIII.81 Mice with mutations in the fibrin γ-chain crosslinking sites (FGG3X) also 

show increased PE following FeCl3-induced femoral vein thrombosis.126 Collectively, these 

studies suggest the thrombus-stabilizing effect of FXIII is manifested at least in part through 

mechanical stability provided by fibrin γ-γ crosslink formation. FXIIIa may also protect 

against PE through its ability to crosslink α2-antiplasmin to the clot and increase thrombus 

biochemical stability.

Interestingly, the ability of FXIII to stabilize thrombi may also potentiate PE sequelae by 

hindering resolution of thrombi that embolize. Compared to wild-type mice, mice with 

α2-antiplasmin deficiency (SERPINF2 −/−) have fewer thrombi in the lungs and decreased 

mortality after photochemical-induced PE in the jugular vein.133 In a model in which 

preformed thrombi are deployed in the jugular vein, α2-antiplasmin inhibition facilitates 

thrombus dissolution similar to effects of recombinant tPA, without increasing bleeding.134

FIBRIN(OGEN) AND FXIII AS POTENTIAL THERAPEUTIC TARGETS

All existing anticoagulants reduce thrombin generation or activity, and therefore inhibit 

thrombin-mediated platelet activation and fibrin formation. Consequently, each of these 

anticoagulants are associated with bleeding.101 Given the prominent roles of fibrin(ogen) 
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and FXIII in thrombus formation, composition, size, permeability, and stability, it is 

interesting to consider the potential of fibrin(ogen) and FXIII as therapeutic targets. These 

approaches, which target coagulation at a step downstream of current therapeutic targets, 

may allow for normal thrombin generation and therefore, preservation of hemostasis in high-

risk settings. For example, in patients with recurrent VTE in spite of apparently therapeutic 

levels of anticoagulants, fibrin(ogen) and/or FXIII(a)-targeting strategies may be an effective 

adjunct therapy for preventing recurrent VTE. Moreover, by reducing thrombus stability and 

facilitating clot dissolution, strategies that target fibrin(ogen) and/or FXIII may reduce long-

term sequelae of VTE, including post-thrombotic syndrome and chronic thromboembolic 

pulmonary hypertension.

Fibrin(ogen) reduction as a therapeutic strategy.

In addition to thrombosis, fibrin(ogen) also contributes to inflammatory and immune 

diseases and malignancy. Accordingly, a large body of work with genetically engineered 

mice expressing reduced or functionally altered fibrin(ogen) has shown benefit of fibrinogen 

reduction in diverse clinical settings. However, means to reduce fibrin(ogen) therapeutically 

are not established for widespread clinical use. Ancrod, a defibrinogenating agent purified 

from venom of the Malaysian pit viper, has been tested as a therapy for treating acute 

ischemic stroke.135 However, clinical trials showed mixed results, including an increased 

risk of bleeding136–138, and this approach invokes concerns about potentially biologically 

active fibrin(ogen) degradation products inducing pathological effects in the patients. 

Single-stranded antisense oligonucleotides and small interfering RNA (siRNA) targeting 

specific fibrinogen chains that reduce circulating fibrinogen without generating fibrin(ogen) 

degradation products have shown benefit in mouse models of cancer, diet-induced obesity, 

endotoxemia, peritonitis, and tumor metastasis, without compromising hemostasis.139,140 

Thus, these strategies may also be useful for reducing venous thrombosis in settings 

of heightened venous thrombosis risk, including constitutively elevated fibrinogen or 

hyperfibrinogenemia secondary to an inflammatory process.

FXIII inhibition as a therapeutic strategy.

FXIII-directed antagonists may have a relatively wide therapeutic range. FXIII reduction 

decreases thrombus mass in a dose-dependent manner125, whereas patients with at least 30 

U/dL FXIIIa activity are usually asymptomatic and spontaneous bleeding only occurs when 

FXIIIa activity is below 15 IU/dL.141,142 The finding that plasma FXIII, but not platelet 

FXIIIA, promotes RBC retention in venous thrombi81 suggests a FXIII(a) inhibitor would 

only need to reach the plasma compartment to effectively reduce thrombus mass. Indeed, 

the relative protection of platelet FXIII from plasma inhibitors may provide sufficient 

transglutaminase activity to crosslink hemostatic clots and reduce bleeding risk with this 

strategy.

Several potential inhibitors of FXIII(a) or its crosslinked substrates (e.g., α2-antiplasmin)143 

have been tested in vitro and in animal models. These include antibodies that inhibit 

FXIII activation, competitive substrates that reduce crosslinking of fibrin and other 

plasma proteins, and direct inhibitors that bind to the active site of FXIIIa and inhibit 

its activity.134,144 Peptide-based inhibitors of FXIII(a), including leech-derived tridegin 
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and synthetic peptidic transglutaminase-inhibiting Michael acceptors, that decrease FXIIIa 

activity have gained particular interest.145–148 The drug-like FXIIIa inhibitor ZED3197, 

which has selectivity over other transglutaminases, decreases thrombus weight and 

facilitates flow restoration in a rabbit venous stasis model without increasing bleeding.146 

Given the nature of venous thrombus formation, FXIII-targeting strategy for VTE prevention 

will require specific inhibitors with longer half-life than current molecules. Leveraging 

the dependence of circulating plasma FXIII-A on FXIII-B47,48, Strilchuk et al recently 

achieved sustained depletion of plasma FXIII-A using siRNA against hepatic FXIII-B.48 

This approach led to enhanced reperfusion in a mouse model of carotid artery thrombosis, 

suggesting this method may also reduce thrombus mass in models of venous thrombosis.

CONCLUSIONS

The studies summarized here have identified mechanisms by which fibrin(ogen) and 

FXIII contribute to venous thrombus size, composition, and stability. Mechanisms include 

function-driving gene polymorphisms, interactions between fibrin(ogen) and FXIII that 

modify fibrin network structure and mechanical and/or biochemical stability, and the 

ability of clots to retain RBCs during platelet-mediated contraction. Abnormalities in fibrin 

structure and/or crosslinking may promote PE and/or facilitate the resolution of venous 

thrombi or PE. Although still quite speculative, development of molecules that target and 

modify fibrin(ogen) and FXIII(a) may alter the course of venous thrombogenesis and/or 

resolution. Future research is necessary to understand the effect of fibrin(ogen) and FXIII 

interaction with blood cells and the extracellular matrix on initiation, development, and 

resolution of VTE.
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VTE venous thromboembolism

DVT deep vein thrombosis

PE pulmonary embolism

F factor

FXIII factor XIII

GPVI glycoprotein VI

FXIIIa activated factor XIII

RBC red blood cell
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HIGHLIGHTS

• Fibrin(ogen) interactions with plasma proteins and blood cells mediates the 

diverse roles of fibrin(ogen) in hemostasis, immunity, inflammation, and 

infection.

• Factor XIII catalyzes the formation of covalent bonds between glutamine 

and lysine residues in fibrin and other proteins, which protects clots against 

biochemical degradation and mechanical disruption, and promotes retention 

of red blood cells in contracted clots.

• Both fibrin(ogen) and factor XIII contribute to venous thromboembolism.

• Targeting fibrin(ogen) or factor XIII may decrease the incidence and size 

of venous thrombi and reduce the pathologic consequences of venous 

thrombosis.
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Figure 1. Fibrinogen and FXIII in hemostasis and venous thrombosis.
(A) FXIII-A- and B-subunits are synthesized in bone marrow and liver, respectively and 

assembled in plasma. Fibrinogen is also synthesized in the liver. FXIII-A2B2 circulates 

in plasma bound to fibrinogen. FXIII-A2 also circulates in platelets and leukocytes. (B-

C) Vessel injury (hemostasis, B) or endothelial dysfunction associated with blood stasis 

(venous thrombosis, C) triggers the activation of coagulation and results in the production 

of thrombin which cleaves fibrinogen into fibrin and activates FXIII to FXIIIa. FXIIIa 

catalyzes crosslinks between fibrin molecules and between fibrin and antifibrinolytic 
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proteins (i.e., α2-antiplasmin [α2-AP]). Crosslinking provides mechanical and biochemical 

stability to the clot and promotes retention of red blood cells within contracted clots. 

Controlled clot formation seals the injury site during hemostasis and facilitates wound 

healing, whereas formation of large intravascular thrombi occludes the vessel and leads to 

venous thrombosis.
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Figure 2. Platelet FXIII-A activation and externalization.
In unstimulated platelets, FXIII-A exists in the cytoplasm in a diffuse distribution. 

After platelet activation, increased intracellular Ca2+ nonproteolytically activates FXIII-

A to FXIII-A° which crosslinks cytoskeletal proteins and contributes to cytoskeletal 

rearrangement and platelet conformational change. After stimulation by strong dual 

agonists (convulxin + thrombin), two populations of FXIII-A-exposing platelets are 

formed: spread platelets with FXIII-A in a diffuse distribution, and ballooned procoagulant 

(phosphatidylserine-exposing) platelets with FXIII-A on a protruding “cap”. FXIII-A is also 

exposed on extracellular vesicles (EVs).
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