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Abstract

Polymer–protein hybrids are intriguing materials that can bolster protein stability in non-native 

environments, thereby enhancing their utility in diverse medicinal, commercial, and industrial 

applications. One stabilization strategy involves designing synthetic random copolymers with 

compositions attuned to the protein surface, but rational design is complicated by the vast 

chemical and composition space. Here, a strategy is reported to design protein-stabilizing 

copolymers based on active machine learning, facilitated by automated material synthesis and 

characterization platforms. The versatility and robustness of the approach is demonstrated by 

the successful identification of copolymers that preserve, or even enhance, the activity of three 

chemically distinct enzymes following exposure to thermal denaturing conditions. Although 

systematic screening results in mixed success, active learning appropriately identifies unique 

and effective copolymer chemistries for the stabilization of each enzyme. Overall, this work 

broadens the capabilities to design fit-for-purpose synthetic copolymers that promote or otherwise 

manipulate protein activity, with extensions toward the design of robust polymer–protein hybrid 

materials.

Graphical Abstract

Polymer-protein hybrids (PPHs) offer new opportunities for protein stabilization in industrial 

and medical applications. Utilizing a combination of automated polymer synthesis and active 

machine learning, we report a “Learn-Design-Test-Build” strategy for protein-tailored copolymer 

design and synthesis. Further, utilizing large quantities of experimental data, structure-function 

relationships within PPHs are probed and biophysical characterization is performed to elucidate 

potential mechanisms of stability within PPHs.
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1. Introduction

Polymer–protein hybrids (PPHs) have emerged as attractive materials that leverage polymers 

to improve protein solubility and stability in often denaturing and abiological environments.
[1–5] One strategy, which has resulted in remarkable hours-long enzyme activity in toluene,
[6] tailors the composition of random copolymers based on protein surface chemistry. In 

principle, copolymers might be precisely designed to stabilize any given protein without 

compromising activity. However, identifying such copolymers, whether via rational design 

or screening, is challenging due to a large combinatorial design space (e.g., monomer 

chemistry, chain length, architecture).[7] Thus, fit-for-purpose PPHs could facilitate myriad 

applications—biofuel production,[8] plastics degradation,[9,10] pharmaceutical synthesis[11]

—but a robust strategy for their design remains elusive.

Over the last decade, machine learning (ML) has dramatically accelerated materials 

discovery across disciplines,[12–14] enabling more efficient identification of materials with 

target properties.[12,15–20] Nonetheless, ML-guided copolymer design is limited by several 

factors, including the availability of quality data necessary to train models.[7,21–24] Most 

polymer databases predominantly feature homopolymers,[25] and the laborious nature of 

polymer synthesis and characterization severely limits the number of systems that can 

be examined “in-house”.[26] Several copolymer design efforts have thus relied on data 

generated in silico.[20,27,28] Meanwhile, recent experimental work has used flow reactors or 

parallel batch synthesizers to provide modest data (<500 samples).[17,29,30] More scalable 

approaches would substantially extend capabilities to design copolymers for PPHs and other 

materials applications.

Here, we use active ML to rapidly design copolymers to form thermostable PPHs with 

glucose oxidase (GOx), lipase (Lip), and horseradish peroxidase (HRP) (Figure 1). To 

efficiently acquire data, we use automated oxygen-tolerant radical polymerization for 

copolymer synthesis[31,32] and develop a facile, thermal-stability assay to characterize 

PPHs. With this platform and five iterations of a Learn–Design–Build–Test cycle for 

each enzyme, we successfully identify PPHs with significant enzyme activity; these 

PPHs generally outperform those derived from a systematic screen with over 500 

unique copolymers. Notably, we demonstrate that our strategy, which utilizes active ML, 

appropriately adapts data acquisition to yield chemically distinct sets of top-performing 

copolymers for each enzyme. Post hoc analysis of our data and ML models reveals 

important relationships between specific copolymer chemistries and PPH stability, while 

biophysical characterization of our most efficacious PPHs provide mechanistic insight 

into how copolymers may preserve enzyme function under thermal stress. Overall, this 

framework will automate and accelerate the design of copolymers for stable PPHs across 

applications.
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2. Overview of Design Space and Strategy

2.1. Design Space and Initial Screen

To test our ML-based design paradigm, we consider three chemically distinct enzymes–

HRP, GOx, and Lip–with the design goal to maximize retained enzyme activity 

(REA) following thermal stressing. For reference, a PPH exhibiting 100% REA 

provides the same level of activity as the enzyme prior to thermal stressing. Because 

these enzymes possess distinct surface chemistries and molecular weights (Figure 1a), 

we consider a copolymer design space with eight possible monomers (Figure 1b) 

copolymerized with target degree of polymerization (DP) between 50 and 200 in 

increments of 25. The chosen monomers are classified as hydrophobic (2-diethylamino ethyl 

methacrylate (DEAMA), hydroxypropyl methacrylate (HPMA), butyl methacrylate (BMA), 

methyl methacrylate (MMA)), hydrophilic (N-(3-(dimethylamino)propyl) methacrylamide 

(DMAPMA), poly(ethyleneglycol) (n) monomethyl ether monomethacrylate (PEGMA)), 

or ionic (3-sulfopropyl methacrylate potassium (SPMA), (2-(methacryloyloxy)ethyl) 

trimethylammonium chloride (TMAEMA)); this set enables various interactions (e.g., van 

der Waals, hydrogen-bonding, electrostatic) with the enzyme, while balancing aqueous 

solubility. To encourage reproducible synthesis and minimize latency, up to four distinct 

monomers are selected for copolymerization for any given copolymer design. These choices 

(i.e., fractions of incorporation of up to four monomers and the degree of polymerization) 

result in a design space of ≈545 622 synthetically unique copolymers.

Before evaluating an iterative Learn–Design–Build–Test approach, we sought to gain 

perspective on the viability of a systematic search, relying on high-throughput 

experimentation and polymer chemist intuition. We first performed an initial screen with 

synthetic limits on certain monomers to ensure copolymer solubility and conversion. In 

particular, hydrophobic monomer content was limited to ≤ 70% mol fraction and ionic 

monomer content was limited to ≤ 50%. Additionally, in this screen, no copolymers were 

allowed to include both ionic monomers. Then, systematic composition-based perturbations 

were made to design copolymers with unique combinations of hydrophilic, hydrophobic, 

and ionic properties at three degrees of polymerization (50, 100, 200). This resulted in 504 

unique copolymers; the systematic nature can be readily identified by principal component 

analysis (Figures S1 and S2, Supporting Information). All copolymers constituting this seed 

dataset were tested with each of the three enzymes using enzyme-specific stability assays. 

To minimize wasted resources, the data obtained from the systematic screens are used to 

seed an active learning guided search.

2.2. Learn–Design–Build–Test Cycle

We iterate with a Learn–Design–Build–Test cycle (Figure 1) to identify high-performing 

PPHs. Each iteration consists of four steps: i) developing ML models to predict REA from 

copolymer characteristics; ii) identifying batches of 24 candidate copolymers for PPHs using 

active and unsupervised ML; iii) synthesizing candidate copolymers; and iv) performing 

thermal activity assays to determine REA for candidate PPHs. The results from step (iv) 

augment the dataset for a given enzyme before beginning the next iteration.
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Our discovery process invoked five total iterations based on experimental resources and 

demonstrated feasibility of enhancements to REA. As such, copolymers proposed in step 

(ii) during the first four iterations are generated to simultaneously explore and exploit 

knowledge of the chemical space. In the final iteration, dubbed “exploit round” or iteration 

5, we simply aim to maximize the REA of copolymers generated, subject to the constraint 

that they are unique (to within synthetic confidence) compared to other candidates. While 

our stopping criterion is principally exhaustion of a fixed budget for optimization, other 

reasonable criteria from active learning and optimization may be devised and deployed.
[34,35]

Below we further describe other methodological aspects of our Learn–Design–Build–Test 

cycle:

i. Learn: To cheaply assess the prospective stability of new PPHs, we trained 

Gaussian process regression (GPR) models to make surrogate predictions of 

REA directly from representations of the copolymer chemistry[36] (see Section 

5). These models provided instantaneous estimates of the REA for any given 

PPH based on data collected to that point.

ii. Design: The GPR models were combined with Bayesian optimization (BO) 

in an active learning paradigm to identify candidate copolymers according to 

prescribed objectives. In each of the first four iterations, 200 initial copolymers 

were produced by maximizing a data-acquisition utility function that biased 

optimal designs to favor designs across the explore–exploit spectrum (see 

Section 5). Similar acquisition functions have been used in previous work 

related to polymer design.[37,38] To preserve the diversity of candidates and 

match experimental capabilities to minimize latency, unsupervised ML clustering 

algorithms were used to identify and select 24 distinct copolymer candidates (see 

Section 5) during iterations 1–4.

iii. Build: Proposed copolymers from the Design step were synthesized 

by automated photoinduced electron/energy transfer reversible addition–

fragmentation chain transfer (PET-RAFT) polymerization in 96 well plates 

as previously described.[31,32,39,40] Briefly, synthetic information regarding 

copolymer designs is converted to synthesis procedures, which are undertaken 

by a Hamilton MLSTARlet liquid-handling robot, enabling highly parallelized 

preparation (see Section 5).

iv. Test: Once copolymerizations are complete, copolymers undergo a dilution series 

into DMSO and then an enzyme-specific assay buffer. Following this dilution, 

PPHs are formed through mixing copolymers with each enzyme (see Section 5). 

After PPH formation, REA is determined for each proposed PPH by measuring 

REA following enzyme-specific thermal stress assays, providing new data for the 

next iteration.
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3. Results and Discussion

3.1. Inefficiency of Screening

The vast majority of copolymers in the seed dataset did not result in substantial REA, 

with the mean values of 15.7% ± 21.3% (HRP), 12.9% ± 10.3% (GOx), and 2.1% ± 7.6% 

(Lip). These poor results are partly explained by the limited chemical space surveyed during 

systematic screening (Figures S1 and S2, Supporting Information); copolymers in the seed 

dataset account for only ≈0.1% of the total design space. Additionally, the REA for PPHs 

with Lip, HRP, and GOx vary significantly for any given copolymer design in the seed 

dataset, suggesting that copolymers should be tuned to specific enzymes and that systematic 

screening is likely to have mixed success across different enzymes.

3.2. Active Learning in a Combinatorial Design Space

Figure 2a–c shows that active learning facilitated identification of numerous, diverse 

copolymers that enhanced retained activity for each of the three enzymes. The median REA 

of PPHs found in the intermediate and final iterations of active learning show progressive 

and significant increase over those in the seed dataset. In particular, there is a difference of 

46.2%, 31.5%, and 87.6% between the median REA of seed PPHs and those found in the 

exploit round for HRP, GOx, and Lip, respectively. Even within the intermediate iterations 

(1–4), we typically find improvements in median REA iteration-over-iteration (Figure S4, 

Supporting Information), despite data acquisition sometimes foregoing potentially promising 

designs in favor of diversity or uncertainty. For Lip and GOx, the best PPHs are found 

within the exploit round and exhibit remarkable REA values of 107.9% and 67.4%, which 

significantly improve upon both the average and maximum values observed in the seed 

datasets. For HRP, the top-performing PPH is found during the initial screen with a 

measured REA of 93.1%; however, many of the top hybrids are still identified by active 

learning including one with an REA of 81.0%. More generally, we find that a large number 

of diverse copolymers offer reasonable stabilization of HRP, and active learning identifies 

some promising regions of the chemical space that are not exposed by our systematic 

search. Quantitatively, copolymers discovered using active learning are disproportionately 

represented as top performers, comprising 70.2%, 40.5%, and 42.5% of the top twentieth 

percentile of PPHs sorted by REA for Lip, GOx, and HRP, respectively. Interestingly, the 

exploit round also produces three PPHs for Lip that not only preserve but enhance its 

activity relative to the unstressed enzyme.

Figure 2d–i examines both the progression of active learning and PPH performance as a 

function of the chemical constitution of copolymers. Based on the totality of measured 

REA values, we find that best-performing PPHs for each enzyme utilize entirely different 

copolymer chemistries, which justifies a tailored design strategy. In particular, optimal 

copolymers for HRP stabilization predominantly feature hydrophobic and ionic monomers 

and smaller DP (<100) (Figure 2a,d). While active-learning-generated candidates primarily 

focus on uncovering this region of the chemical space, there are also many effective 

PPHs that limit ionic content as identified by the seed dataset (Figure 2g and Figure 

S2c, Supporting Information). In this case, a wide range of diverse, high-performing 

PPHs are identified by active learning, despite outlier points in the HRP dataset (Table 

Tamasi et al. Page 6

Adv Mater. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



S1, Supporting Information). For GOx, optimal copolymers are either predominantly 

hydrophobic or hydrophilic with very little ionicity and have DP typically in the range 

of 100–150 (Figure 2b,e). Accordingly, active learning for GOx stabilization predominantly 

probed these regions of the chemical space and remained globally stagnant in its search 

(Figure 2e,h), fine-tuning relatively promising regions identified in the seed dataset (Figure 

S2a, Supporting Information). Conversely, optimal copolymers for Lip stabilization possess 

sizable incorporations of monomers from all three chemical groupings with generally 

larger DP (Figure 2c,f). Active learning-proposed candidates progress toward this promising 

region of the chemical space with each subsequent iteration (Figure 2f,i). Notably, this 

region of the chemical space is completely avoided in the seed dataset (Figure S2b, 

Supporting Information), suggesting that the Lip design campaign benefited from both 

exploration- and exploitation-based candidate proposals. Therefore, the active learning 

paradigm appropriately adapted optimization to identify high-performing PPHs for each 

enzyme across chemical space, accounting for less than 20% additional data beyond the 

initial systematic screen and ≈0.02% of the total design space.

3.3. Understanding Chemical Features Driving PPH Performance

Given the identification of highly stable PPHs for each enzyme, we sought to understand 

the specific chemical features of copolymers that gave rise to their performance. Figure 

3a compares the features of copolymers underlying PPHs with the top ten highest REA 

for each enzyme. While top-performing PPHs for a given enzyme tend to have some 

chemical similarity across effective copolymers, there is substantial chemical diversity 

between PPHs for different enzymes. This suggests that copolymer pairing with HRP, 

GOx, and Lip may be highly enzyme-specific. To investigate this, we cross-evaluated 

the efficacy of the top-performing copolymers discovered for each enzyme to retain the 

activity of all three enzymes in our study. For example, the top ten copolymers identified 

as highly effective for stabilizing HRP were additionally formulated into GOx-PPHs and 

Lip-PPHs. Then, respective GOx and Lip stability assays (see Section 5) were performed 

to determine the efficacy of top performing HRP copolymers in stabilizing GOx and Lip, 

for which the copolymers were not designed. We then repeated this process for the top 

ten performing GOx and Lip copolymers to observe all combinations of top-performing 

copolymers with each enzyme in this study. Experimentally, we observe that the REA 

of PPHs designed for a specific enzyme are significantly higher than that of PPHs 

formed by non-specific copolymers (Figure 3b). Further, virtual cross-evaluation using 

enzyme-specific GPR models trained on all iterations of data similarly suggest that REA 

is significantly diminished when top-performing copolymers for one enzyme are paired with 

another. Together, these results not only suggest an intricate connection between copolymer 

chemistry and size with the stability of PPHs, but such correlations can be effectively 

learned from data.

To further explore the relationship between copolymer features and PPH activity, we 

computed Shapley additive explanations (SHAP) values[41,42] to quantify how chemical 

features of the copolymers (fractions of incorporation and DP) contributes to REA 

predictions by our GPR models. Here, positive SHAP values indicate positive contributions 

REA (negative SHAP values suggest negative contributions), and we use the mean absolute 
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SHAP value of a feature as a proxy for its overall importance to model prediction. Figure 

3c shows that different copolymer features have distinct impact on REA predictions. To 

elucidate these differences, we compare SHAP values for the fractions of incorporation 

for each monomer (Figure 3d–f) and DP (Figure 3g–i) for each enzyme. Although we 

previously associated hydrophobic chemistry with high-performing PPHs for HRP (Figure 

2f,i), Figure 3d reveals that the exclusion of BMA is favorable (higher REA), while the 

inclusion of MMA, a similar hydrophobic monomer, is associated with higher REA. Similar 

observations can be readily identified for Lip (Figure 3f), for which SPMA and TMAEMA 

monomers (both highly ionic) represent the most and least important features based on their 

mean absolute SHAP values. Such differences in SHAP values between monomers with 

the same chemical classifications underscore the intricacy of designing effective polymer–

enzyme pairing.

Figure 3c–i also indicates that the relative importance of copolymer features varies across 

enzyme models. For example, we find that different chain length regimes favor high 

predictions on REA, depending on the enzyme-specific GPR model (Figure 3g–i). For HRP, 

smaller copolymers (DP = 50, 75) display the highest SHAP values, while the highest SHAP 

values for Lip are observed for DP = 125 or 150. DP = 200 is generally associated with 

lower REA, perhaps suggesting that shorter copolymer sequences enable more facile pairing 

with enzyme chemical domains to promote stabilization.

To understand the evolution of feature importance during discovery, we compared mean 

absolute SHAP values for all non-gelling copolymers derived from GPR models trained 

after each stage of data acquisition. Figure 3j–l shows that the importance of features can 

shift significantly, even with the addition of small amounts of data (typically 20 data points 

added per iteration or less than 4% increase in prior data available). This is most evident 

following for Lip, wherein mean absolute SHAP values for SPMA, MMA, DMAPMA, and 

DP all substantially increase after the third and fourth iteration. This behavior might be 

related to data acquisition over previously unexplored regions of chemical space, which is 

partly shown in Figure 2e. The effects for HRP and GOx are overall less dramatic; most 

rankings are unchanged between iterations, with occasional shifts of one or two ranks upon 

exposure to new data. Nonetheless, even if the rank-ordering of features is unchanged, mean 

improvement in measured REA for PPHs across iterations suggests that GPR models had 

sufficient fidelity to effectively optimize REA, at least within a local chemical space.

3.4. Revealing Mechanisms with Biophysical Characterization

Although mechanisms of stabilization for PPHs based on random copolymers have 

been hypothesized and studied in limited fashion using molecular dynamics simulation,
[6] experimental examination of these biophysical interactions is nascent. Therefore, we 

characterized (Figure S5, Supporting Information) and investigated a particular PPH for 

HRP identified in the exploit round—dubbed HRP-Exploit Polymer 1 (HRP-EP1)—using 

circular dichroism (CD) spectroscopy, small-angle X-ray scattering (SAXS), dynamic 

light scattering (DLS), and quartz crystal microbalance with dissipation (QCM-D). HRP 

was selected due to its amenability to these characterization techniques, while detailed 

characterization of other enzyme systems proved challenging due to weak CD spectroscopy 
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signal-to-noise and solubility limitations. We first investigated the impact of heating 

and cooling on the secondary structure of HRP by CD spectroscopy (Figure 4a). The 

corresponding measured α-helix, β-sheet, and random coil content is provided in Table 

S2, Supporting Information. We initially hypothesized that the addition of copolymer EP1 

would reduce thermally induced unfolding of HRP; however, the CD data suggests only a 

slight retardation of unfolding. Upon heating, the α-helix content for HRP degrades from 

≈34.8% to 17.4%, while the α-helix content for the HRP-EP1 system is 20.3% after heating. 

However, following cooling, HRP-EP1 exhibited 31.6% α-helix content compared to just 

24.6% for HRP alone. This suggests that EP1 facilitates significant refolding of HRP in a 

chaperone-like manner.

To further understand the nature of the HRP-EP1 interactions, we used SAXS to compare 

the physical dimensions of HRP and its complexes in pre- and post-stress states. Guinier 

analysis of the data (Table S3, Figure S6, Supporting Information) showed that both HRP 

and HRP-EP1 have the same radius of gyration (Rg, 24.6–25.0 Å) in the pre-stressed state. 

Similarly, in the pre-stressed state, the pair-distance distribution function P(r) remains highly 

similar upon complexation of HRP with EP1 (Figure 4b). Post-stress, the differences are 

dramatic in the pair-distance distribution function. While the maximum particle diameter 

(Dmax) of native HRP increases from 80 to 200 Å, that of HRP-EP1 increased only to 94 Å 

(Table S3, Supporting Information). Additionally, while the Rg of HRP-EP1 increases only 

slightly to 26.9 Å, a larger 51.9 Å component appears in the Guinier plots of HRP (Figure 

4c, blue line), likely indicative of a denatured or aggregated sub-species of HRP created 

through thermal stress. Additionally, Kratky plots (Figure S7, Supporting Information) show 

peaks at q = 0.065 and 0.075 Å−1 in HRP and HRP-EP1, respectively, which indicates a 

compact structure similar to that of the native protein. This clearly suggests that the complex 

promotes a certain level of conformational integrity in HRP even if secondary structure is 

impacted.

Finally, DLS was performed to complement the SAXS results by providing the distribution 

of hydrodynamic radii (Rh) in the samples (Figure 4d). All samples show peak intensities 

between 3.0–3.3 nm with minimal signal intensity for Rh > 10 nm. Additionally, measured 

polydispersity index remained under 0.2 for all samples, suggesting relatively monodisperse 

solutions (Figure S8, Table S4, Supporting Information). These results indicate that 

stabilization of HRP in PPH-EP1 is indeed driven by the formation of a complex rather 

than via larger macromolecular assembly. Further support of complex formation by QCM-D 

showed significant differences in the Sauerbrey mass thickness following injection of EP1 

onto surface immobilized HRP (Figure 4e and Figure S9, Supporting Information). While 

native HRP exhibited a thickness of 3.6 nm, HRP-EP1 increased to 5.1 nm post injection at 

80 min.

4. Conclusion

Polymer–protein hybrids offer a powerful approach to stabilize sensitive proteins in a range 

of environments. Here, we developed a robust design framework integrating automated 

polymer chemistry and ML to efficiently discover polymer–protein hybrids with enhanced 

thermostability for three chemically distinct enzymes. Notably, the ML-guided acquisition 
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of data was effectively tailored to each enzyme. In addition, by analysis of developed 

surrogate ML models, we determined particular chemical features of copolymers that drive 

increased retained activity for each enzyme. Furthermore, the biophysical characterization 

of a successful polymer–protein hybrid design reveals chaperone-like assistance in structural 

refolding as a possible mechanism of stabilization. Taken together, these results highlight the 

existence of a complex structure–function relationship underlying protein-polymer hybrid 

activity that can be learned and exploited for materials optimization.

This discovery platform for polymer–protein hybrids can be extended in numerous 

directions. First, it provides an exemplary approach that can be extended to other 

proteins, other copolymer chemistries, and/or alternative design objectives, such as other 

environmental stresses. Furthermore, enabled by the vast and flexible chemical space 

spanned by the copolymer chemistries, the platform can be expanded accommodate 

the simultaneous pursuit of multiple design objectives. Advancement in this area could 

significantly accelerate their use as functional, commercial materials in myriad applications. 

One intriguing possibility is also to generalize the surrogate models to incorporate chemical 

features of both proteins and their encapsulating copolymers. This would not only be a 

step toward constructing more physically informed surrogate models, but it would also open 

the door to using protein features as additional degrees of freedom for design. In a similar 

vein, the assay data collected in this study can be used in conjunction with simulation-based 

models to further elucidate and validate molecular-level mechanisms for stability. Such 

simulations might also aid in identifying and selecting key features for surrogate models 

or even provide in silico figures of merit that correlate with stability. Last, while our 

ML workflow appeared generally insensitive to the biased nature of the seed dataset, it is 

possible high-performing PPHs could have been discovered starting from a smaller, more 

targeted selection of experiments. Insights in this area could help reduce resources required 

for high-throughput materials discovery efforts.

5. Experimental Section

Materials:

Hydroxypropyl methacrylate (HPMA), 2-diethylamino ethyl methacrylate (DEAEMA), 

(2-(methacryloyloxy)ethyl) trimethylammonium chloride solution (TMAEMA), and N-(3-

(dimethylamino)propyl) methacrylamide (DMAPMA) were purchased from Sigma-Aldrich; 

methyl methacrylate (MMA) and 3-sulfopropyl methacrylate potassium salt (SPMA) 

from VWR; butyl methacrylate (BMA) from Alfa Aesar; and poly(ethylene glycol) (n) 

monomethyl ether monomethacrylate (PEGMA, Mn ≈ 400 g mol−1) from Polysciences. 

PEGMA was deinhibited prior to use by passing over mono-methyl ether hydroxyquinone 

inhibitor removal resin. Ethyl 2-(phenylcarbonothioylthio)-2-phenylacetate, 4-nitrophenyl 

butyrate (PNB), hydrogen peroxide (H2O2), D-(+)-glucose, sodium acetate, lithium bromide 

were purchased from Sigma-Aldrich; zinc tetraphenyl porphyrin (ZnTPP), dimethyl 

sulfoxide (DMSO), 3,3ꞌ,5,5ꞌ-tetramethylbenzidine (TMB) from Fisher Scientific; and 

potassium phosphate (mono and dibasic) and sodium acetate anhydrous from VWR.
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Automated PET-RAFT Synthesis:

Copolymers were prepared by automated photoinduced electron/energy transfer reversible 

addition–fragmentation chain transfer (PET-RAFT) polymerization in 96 well plates as 

previously described.[31,32,39,40] Briefly, the sequences and processes to be conducted 

by the Hamilton MLSTARlet liquid-handling robot were programmed in Python, 

indicating information on sample concentration, reagent volumes, and well position. Files 

containing reaction information were transferred to the Hamilton MLSTARlet to prime the 

robotic transfers. Stock solutions of monomer (2 M), ethyl 2-(phenylcarbonothioylthio)-2-

phenylacetate (RAFT chain-transfer agent (CTA), 100 or 50 × 10−3 M) and ZnTPP 

(photocatalyst, 4 or 2 × 10−3 M) were prepared in DMSO as 1 mL aliquots. Aliquots 

were loaded into the Hamilton MLSTARlet liquid-handling robot and automatically pipetted 

into 96-wells clear flat-bottom well plates (Greiner Bio-One). Monomer/CTA ratio was 

varied from 50–200 to control degree of polymerization while ZnTPP/CTA remained at 

0.01. Polymer mixtures were dispensed to a total volume of 200 µL and final monomer 

concentration of 1 M. The mixtures were then covered with well-plate sealing tape and 

radiated under 560 nm LED light (5 mW cm−2, TCP 12 Watt Yellow LED BR30 bulb) for 

16 h.

HRP Thermal Stability Assay:

The activities of PPHs for HRP were evaluated by its ability to oxidize TMB in the presence 

of H2O2. Copolymers were synthesized and diluted in DMSO before further dilution into 

assay buffer (50 × 10−3 M sodium acetate, pH 5.0) to a final concentration of 22.7 × 10−6 

M (<1% DMSO). From the 22.7 × 10−6 M polymer samples, 50 µL were mixed with 50 

µL of 10 µg mL−1 HRP (0.11 × 10−6 m) in polystyrene 96 well plates. The solutions were 

thermally sealed with plate-sealing film and then thermally challenged in a water bath at 60 

ºC for 30 min. This temperature was chosen as it reliably diminishes all HRP activity and is 

above HRP’s reported melting temperature of 55 ºC.[43] Substrate solution was prepared by 

diluting 40 × 10−3 M of TMB in DMSO to a final concentration of 0.4 × 10−3 M in 1% H2O2 

assay buffer. 5 µL of polymer–enzyme mixtures were added to 245 µL of substrate solution. 

Absorbance was measured in kinetic mode for 5 min in 20 s intervals; measurements were 

made at 653 nm, which is the maximum of the absorption peak. The initial rate of change 

of absorbance (ΔOD) was used to calculate the activity of HRP. Native HRP activity without 

heating served as a positive control (PC), while HRP heated at 60 ºC for 30 min served as 

the negative control (NC). REA was calculated for each PPH by the following equation

REA = Δ ODPPH − Δ ODNC
Δ ODPC − Δ ODNC

(1)

GOx Thermal Stability Assay:

The activities of PPHs for GOx were evaluated using an assay buffer containing glucose, 

TMB, and HRP. Copolymers were diluted in DMSO and then in assay buffer (50 × 10−3 M 

sodium acetate, pH 5.0) to a final concentration of 12 × 10−6 M (<1% DMSO). Resulting 

solutions were mixed with equal volumes of stock GOx solution (5 µg mL−1, 30 × 10−9 

M) in polystyrene 96 well plates. The solutions were thermally sealed with plate-sealing 
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film and then thermally challenged in a water bath at 65 ºC for 30 min. This temperature 

was chosen as it reliably diminishes all GOx activity and is above GOx’s reported melting 

temperature of 60 ºC.[44] After heating, 20 µL of the PPH samples were added to 100 µL 

of substrate solution (5% glucose, 0.4 × 10−3 M TMB, 0.11 × 10−6 M HRP in assay buffer). 

Absorbance was measured in kinetic mode for 5 min in 20 s intervals; measurements were 

made at 653 nm, which is the maximum of the absorption peak. The initial rate of change 

of absorbance (ΔOD) was used to calculate the enzyme activity. Native GOx activity without 

heating served as a positive control (PC), while GOx heated at 65 ºC for 30 min served as 

the negative control (NC). REA for all GOx-PPHs was calculated as previously described.

Lip Thermal Stability Assay:

Activities of PPHs for Lip were evaluated using PNB as the substrate. Copolymers were 

diluted in DMSO and then in assay buffer (50 × 10−3 M K2HPO4, 16.66 × 10−3 M K2HPO4, 

pH 7.4) to a final concentration of 120 × 10−6 M (<1.5% DMSO). From the 120 × 10−6 

M copolymer solutions, 50 µL were mixed with 50 µL of stock lipase solution (0.8 mg 

mL−1 24 × 10−6 M) in polystyrene 96 well plates. The solutions were thermally sealed with 

plate-sealing film and heated in a water bath at 70 ºC for 1 h. This temperature was chosen 

as it reliably diminishes all Lip activity and is above Lip’s reported melting temperature of 

60 ºC.[45] Substrate solution was prepared by diluting stock PNB solution (5.4 M) first to 10 

× 10−3 M in DMSO, followed by a final dilution to 0.5 × 10−3 M in assay buffer. Absorbance 

was measured in kinetic mode for 10 min in 20 s intervals; measurements were made at 

410 nm to monitor the production of p-nitrophenol. The initial rate of change of absorbance 

(ΔOD) was used to calculate the enzyme activity. Native Lip activity without heating served 

as a positive control (PC), while Lip heated at 70 ºC for 1 h served as the negative control 

(NC). REA for all Lip-PPHs were calculated as previously described.

Circular Dichroism Spectroscopy:

CD wavelength and temperature scans of samples were collected using an AVIV Model 

400 CD spectrometer (AVIV Biomedical Inc.). Wavelength scans consisted of measurements 

from 260 to 190 nm, collecting points every 0.5 nm with a 1 nm bandwidth for 5 s, at 

all required temperatures. Temperature scans were consisted of measuring mean residue 

ellipticity at 222 nm from 30 to 90 ºC with a 5 s averaging time and 1.5 nm bandwidth. The 

ramp rate was 2 ºC min−1, and samples were equilibrated for 5 min at each temperature 

before measurement. The fraction of protein unfolding at different temperatures were 

calculated by assuming fully folded state at 30 ºC and fully unfolded state at 90 ºC. The 

melting temperature Tm was determined by fitting the temperature scans to a Boltzmann 

sigmoidal equation. The fractions of α-helices and β-sheets in the protein samples were 

calculated using CD deconvolution algorithms for wavelength scans (Table S2, Supporting 

Information).

Dynamic Light Scattering:

DLS of copolymers and polymer–enzyme mixtures were performed on a DynaPro DLS 

Plate Reader III, Wyatt Technologies. Concentration of HRP for DLS experiments was 

maintained at 0.2 mg mL−1 while polymer concentration was at 1 mg mL−1. The data was 

collected using a wavelength of 830 nm and a scattering angle of 173º. Fifteen acquisitions 
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were collected for each sample with an acquisition time of 5 s per acquisition using 

auto attenuation. Regularization analysis was performed using Rayleigh spheres model for 

hydrodynamic size measurement.

Small-Angle X-ray Scattering:

All scattering experiments were carried out at the Life Science X-ray Scattering (LiX) 

beamline 16-ID of the National Synchrotron Light Source II (NSLS-II) at Brookhaven 

National Laboratory (Upton, NY, USA). HRP was prepared at a final concentration of 1 

mg mL−1 in 50 × 10−3 M sodium acetate (pH 5.15) while lyophilized copolymers were 

reconstituted in sodium acetate buffer and mixed with HRP at a final concentration of 2.61 

mg mL−1 (10:1 molar concentration of polymer:HRP). Samples were denatured by heating 

in a water bath at 65 ºC for 1 h. All solutions were loaded into 96-well PCR plates and 

mailed in for data collection. An X-ray energy of 15.14 keV was utilized for solution 

SAXS. Three Pilatus detectors were employed to provide a q range of 0.005–3.13 Å, while 

the range 0.005–0.25 Å was taken as the small-angle region. For background subtraction, 

sodium acetate buffer blanks were run for every three samples. The subtracted data were 

analyzed in BioXTAS RAW 2.1 with ATSAS 3.0.4–6. Guinier analysis was performed to 

quantify the radius of gyration Rg, whereas pair-distance distribution analysis by an indirect 

Fourier transform method was conducted to quantitatively assess Rg, maximum dimension, 

and macromolecular structure.[46–48]

Quartz Crystal Microbalance with Dissipation:

All quartz crystal microbalance experiments were carried out on the Q-Sense Omega Auto 

(Biolin Scientific) with 5 MHz sensitivity, less than 1 nm surface roughness, and theoretical 

mass sensitivity of 17.7 ng cm−2 Hz−1. HRP was dissolved in 50 × 10−3 M sodium acetate 

buffer (pH 5.15) at 0.2 mg mL−1 whereas the final concentration of lyophilized copolymers 

was set to 0.52 mg mL−1 (10:1 molar concentration of polymer:HRP). Sodium acetate buffer 

was flowed as an initial equilibration step at 20 µL min−1 for 25 min. HRP, polymer, and 

mixtures of HRP with polymer were flowed at 40 µL min−1 for 10 min. Sodium acetate was 

flowed after each step at 20 µL min−1 for 25 min to remove any loosely associated enzyme 

or polymer. Transformations using the Sauerbery equation[49,50] were completed on the fifth 

harmonic frequency and dissipation responses to obtain surface thickness.

Polymer Characterization:

The molecular weights (Mw and Mn) and dispersity (Đ) were measured by gel-permeation 

chromatography using an Agilent 1260 Infinity II. Polymer samples were eluted through a 

Phenomenex 5.0 µm guard column (50 × 7.5 mm) preceded by superose Phenogel 12 10/300 

GL column (Cytiva 17–5173-01, column L × I.D. 30 cm × 10 mm, 11 µm avg. part. size) 

in 0.5× PBS (0.2% N3) using a flow rate of 0.5 mL min−1. GPC calibration was completed 

with Agilent PEG standards. Copolymers were prepared at 50:1 eluent/polymer ratio in 

0.5× PBS (0.2% NaN3) and filtered with a 0.45 µm nylon filter. Polymer conversion was 

calculated by obtaining 1H NMR spectra using a Varian VNMRS 500 MHz spectrometer 

with mesitylene as an internal standard and processed using Mestrenova 11.0.4.
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Machine-Learning Surrogate Models:

All copolymers were featurized as DP-explicit composition vectors with one-hot encoding 

vectors used as fingerprints for monomer units.[36] With eight possible monomers, the 

resulting feature vector possesses nine dimensions, with the first containing the DP of the 

copolymer divided by 200 and the remaining eight containing the fractions of incorporation 

for each monomer; the division in the first dimension represents DP on a similar scale 

as the remaining features. Gaussian process regression (GPR) models, trained to predict 

the Yeo–Johnson transformation[51] of the REA for a PPH, were preferred due to their 

superior predictive performance compared to other ML algorithms (Figure S3, Supporting 

Information). The Yeo–Johnson transformation is given by

ψ γ, λ =

γ + 1 λ − 1
λ λ ≠ 0, γ ≥ 0

log γ + 1 λ = 0, γ ≥ 0

− −1 + γ 2 − λ − 1
2 − λ λ ≠ 2, γ < 0

−log −γ + 1 λ = 2, γ < 0

(2)

and is used to transform REA measurements, which resemble random variables sampled 

from power-law distributions, to values that exhibit draws from a Gaussian distribution. The 

exponential parameter λ was found using maximum likelihood estimation, as implemented 

by python package scikit-learn. Use of this transformation was empirically found to 

improve predictive performance of models. In addition, preliminary comparisons amongst 

GPR models trained over the seed datasets revealed no evident advantage to using more 

advanced fingerprinting strategies over simple one-hot encoding (Figure S3, Supporting 

Information). Using available experimental data of various PPHs, enzyme-specific datasets 

were constructed wherein each datum is described by this feature vector and labeled by 

REA.

The relationship between the copolymer features and REA was modeled using GPR to both 

capture the nontrivial, nonlinear mapping and to facilitate active learning as GPR naturally 

provides uncertainty estimates on predicted labels. Covariances modeled by the Gaussian 

Process are calculated using the squared exponential kernel basis function

k x − x ′ = σ2exp − 1
2

x , x ′ 2

l2 + σn2 (3)

where x  is the feature vector of the copolymer, and l, σ, σn are kernel hyperparameters. 

Anisotropic kernels were explored but did not improve model performance. GPR models 

for each enzyme were constructed as follows: the dataset was first split into fivefolds. 

Four of five of the folds were then used to tune the GPR model hyperparameters, which 

were identified with 20-fold cross-validation and optimization by the Tree-structured Parzen 
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Estimator (TPE) approach[52] to minimize the mean squared error of labels. The optimal 

hyperparameters, along with data from four of five folds, were used to train a GPR model 

that made predictions on the remaining fold of data. This process was repeated four more 

times, such that all five of the original folds served as test sets. The five sets of optimized 

hyperparameters were then averaged and used to define a final GPR model with the full 

set of data available for an enzyme at a given iteration. The five sets of held-out test 

performance metrics were also averaged to quantify and validate the predictive capabilities 

of the model.

Candidate Copolymer Generation:

Bayesian optimization (BO) was used in tandem with a GPR model to propose promising 

candidate copolymers. For the first four rounds of active learning, candidates that maximize 

the expected improvement (EI) acquisition function were selected and given by

f x = Zσ x Φ Z + σ x ϕ Z (4)

Z =

μ x − f′ − ξ
σ x

σ x > 0

0 σ x = 0
(5)

where f x  is the predicted mean REA from the GPR, fꞌ is the current largest mean REA 

observed by the model, σ x  is the standard deviation from the GPR, Φ and ϕ are the 

cumulative and probability density functions of the normal distribution, respectively, and ξ 
is a hyperparameter that controls the balance between exploring unobserved regions of the 

chemical space and exploiting known regions of it to obtain high performing copolymers.

To effectively sample copolymer designs across the exploit–explore spectrum, 200 

copolymer candidates were sequentially generated for distinct ξ values that logarithmically 

vary from 0.001 to 30. To avoid proposing previously synthesized copolymers or those 

within the margin of synthetic experimental error previously synthesized or already 

proposed copolymers, an additional penalty function was added to the acquisition function 

based on x  (see also Supporting Information). In the final iteration or exploit round, 

copolymers that simply maximize REA predictions from the GPR model were proposed as 

candidates, although the penalty function was retained to avoid redundant proposals.

Candidate Copolymer Down-Selection:

While copolymer candidate generation is performed by maximizing acquisition functions 

that uniquely weight the balance between exploration and exploitation, it was found that 

weightings over a similar range yield similar optima, or designs. Unsupervised clustering 

methods were used to select 24 diverse candidates for synthesis from the larger set of 

200 candidates generated by the BO procedure. In general, this strategy helped to ensure 

that final candidate proposals were optimal, mutually diverse, and could be synthesized 
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and characterized with minimal latency. Related clustering methods have been deployed to 

enhance candidate diversity in other polymer design campaigns.[29]

In particular, the following protocol was used for candidate selection in the first four active 

learning iterations. First, a filter was applied to ensure that no copolymer featured fractions 

of incorporation of any given monomer that was less than 5%. This filter was imposed 

to establish reasonable margins of experimental control over the process of dispensing the 

monomer reagents with the robotic arm used to automatically synthesize the copolymers. 

Second, candidates were subsequently clustered using density-based spatial clustering of 

applications with noise (DBSCAN) using a distance threshold of 0.05 2 and a minimum of 

three points per cluster. Following the formation of clusters, the copolymer with the shortest 

Euclidean distance to the centroid position of the cluster in the copolymer feature vector 

space was selected as a representative candidate for further consideration. All non-clustered 

candidates, or noise-points, were also considered in this fashion, the procedure produced 

a set of relatively diverse and representative copolymer candidates that fairly considers 

“outliers.” Third, in cases where DBSCAN produced more than 24 candidates (this always 

occurred), precisely 24 candidates were proposed by application of k-Means clustering. 

Again, representative candidates were chosen based on proximity to the cluster centroid. If 

a cluster consisted of only two points, then the candidate with the higher REA was used. 

A different downsampling procedure was used in the exploit round, since diversity was no 

longer a priority for selection. Specifically, after producing the 200 polymer designs with 

BO, candidates were ranked by their REA in descending order and iteratively chosen for the 

final set of 24 candidates, provided they had compositions that were unique (within synthetic 

precision) from any copolymers that constituted the growing list at that point.

Handling Polymer Gelation:

Upon construction of the seed dataset and throughout the active learning, a handful of 

copolymers were found to seemingly undergo gelation. While gelling copolymers recorded 

nonzero REA values, they were excluded from the dataset used to train the GPR models 

from iteration 1 onward due to the potential uncontrolled differences in copolymer–enzyme 

interaction environments that could obfuscate model training. However, the penalty function 

was used during the active learning procedure to avoid suggesting polymer candidates 

proximate to gelling copolymers across discovery campaigns across all three enzymes up 

to that iteration. While this strategy limited the number of gelled copolymers per iteration 

per enzyme to an average of six copolymers in the first two rounds of active learning, 

it ultimately proved ineffective for GOx as hydrophobic monomers were found to be 

effective for GOx stabilization but increased polymer gelation (Figure S11, Supporting 

Information). To combat this issue, a classifier that leveraged knowledge of prior polymer 

gelation across all enzymes and iterations up to that point was designed and integrated in 

the active learning scheme. The use of the classifier was limited to and ultimately facilitated 

the discovery of primarily soluble copolymers for iterations 4 and 5 of active learning for 

GOx. Further discussion on the development and integration of the classifier into the active 

learning scheme is supplied in the Supporting Information (Table S5, Figures S11 and S12, 

Supporting Information).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of study. a) Schematic illustration of the surface chemistry for horseradish 

peroxidase (HRP), glucose oxidase (GOx), and lipase (Lip). Amino acids are colored based 

on classification as ionic (blue), hydrophilic (green), and hydrophobic (magenta). Images 

for the protein are rendered using Visual Molecular Dynamics.[33] b) Monomers utilized 

for copolymer design. The colored boxes delineate rough classifications as ionic (blue), 

hydrophilic (green), and hydrophobic (magenta). c) Schematic representation of closed-loop 

Learn–Design–Build–Test discovery process used in this work. After initialization with 

a seed dataset, the process consists of: training an enzyme-specific Gaussian process 

regression (GPR) surrogate model to predict the retained enzyme activity (REA) of 

a polymer–protein hybrid (PPH) based on copolymer characteristics (learn); Bayesian 

optimization of copolymers to satisfy an expected improvement acquisition function 

and subsequent filtering to propose new copolymers (design) (ii); automated synthesis 

of proposed copolymers via photoinduced electron/energy transfer reversible addition–

fragmentation chain transfer (PET-RAFT) polymerization (build) (iii); and mixing of 

synthesized copolymers with enzyme to form PPHs that are thermally stressed and assessed 

for REA (test) (iv). The newly acquired and existing data is then used to begin a new 

Learn–Design–Build–Test iteration.
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Figure 2. 
ML guides design of highly stable polymer–protein hybrids. a–c) Copolymer designs and 

their measured REAs for HRP, GOx, and Lip. Marginal axes at the top contain Gaussian 

kernel density estimate distributions of REA in the seed dataset (blue), Learn–Design–

Build–Test iterations 1–4 (orange), and the final exploitation round (green). Medians of 

distributions are indicated by vertical lines. Main axes show the experimentally measured 

REA for all tested PPHs; individual markers are vertically located in bins according to 

their degree of polymerization with jitter added within bins to improve visual clarity. The 

marker color reflects the composition of the copolymer according to the ternary diagram 

(bottom right). d–f) Representation of active learning path traversed through copolymer 

chemical space for each enzymes. The chemical space is represented as a ternary diagram 

with coordinates providing the fraction of incorporation of hydrophobic, hydrophilic, and 

ionic monomers in copolymers. Colored stars indicate the mean composition of copolymers 
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proposed during a given iteration. The ternary diagrams are additionally colored by 

maximum REA observed for a PPH in a given region of the chemical space spanned by 

the ternary axes. g–i) Individual chemical compositions of copolymers proposed during each 

stage of active learning. The centroid of all points at a given iteration yields the position 

of the stars (d–f). The crosses denote copolymers that showed undesirable gelation during 

synthesis (see Section 5).
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Figure 3. 
Analysis reveals distinct priorities in copolymer features for each protein. a) Copolymer 

compositions and degree of polymerization (DP) for the top ten performing PPHs for HRP 

(orange), GOx (green), and Lip (purple). b) Cross-evaluation of top-performing copolymers 

across enzymes showing mean observed and predicted REA for each copolymer–enzyme 

pairing. Statistical significance was determined by Mann–Whitney U test. *(p < 0.05), **(p 
< 0.005), ***(p < 0.0005), unlabeled pairs are not significantly different. Top ten performers 

for each enzyme demonstrate high specificity in agreement with predicted activity. c) 

Normalized mean absolute Shapley additive explanations (SHAP) values calculated for 

HRP, GOx, and Lip for each model to quantify relative feature importance. d–f) Summary 

of SHAP values for GPR models calculated from available data after all five Learn–Design–

Build–Test iterations. Each point corresponds to a uniquely evaluated PPH, and the point’s 

position along the X-axis shows the impact of a feature on predicted REA. g–i) SHAP 

value distributions demonstrating the effect of degree of polymerization on REA predictions. 

Black candlesticks range from second to third quartiles of SHAP values and white dots 

represent the distribution mean. j–l) Mean absolute SHAP values calculated for all model 

features after model training on the seed dataset and after each iteration of active learning.
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Figure 4. 
Biophysical characterization indicates copolymer-assisted refolding. a) Circular dichroism 

wavelength scans of HRP (dashed lines) and HRP-EP1 (solid lines) at room temperature 

(black), upon heating (red), and after cooling for 24hrs (blue), demonstrating that HRP-EP1 

promotes retention of secondary structure in HRP during thermal stress and promotes 

significant protein refolding in comparison to HRP control. b) Pair-distance distribution 

function of HRP and HRP-EP1 by small-angle X-ray scattering demonstrating retained 

HRP-PPH morphology and size after exposure to thermal stress in comparison to native 

enzyme. c) Guinier analysis of HRP and HRP-EP1 before and after heating suggesting the 

development of a denatured or aggregated sub-population of HRP (blue line) in comparison 

to a single species observed in HRP, HRP-EP1, and HRP-EP1 after thermal stress (red 

lines). d) Dynamic light scattering size distributions of HRP with and without polymer EP1, 

demonstrating that no larger structures were observed after mixing. e) Surface thickness 

measured by Quartz crystal microbalance with dissipation after direct adsorption of HRP (t 
= 22 min) followed by injection of polymer EP1 (t = 82 min).
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