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A peptide from ostrich (Struthio camelus) egg white protein hydrolysate (OEWPH) was pu-

rified, characterized, and its antioxidant and enzyme inhibitory properties were evaluated.

The OEWPH was prepared using pepsin and pancreatin, and then fractionated using

reversed-phase high performance liquid chromatography. The antioxidant activity of the

WG-9 peptide was investigated based on its scavenging capacity for 1,1-diphenyl-2-

picrylhydrazyl (DPPH) radical, 2,20-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)

diammonium salt (ABTS), superoxide (O2
��), hydroxyl (OH��), and lipid peroxidation inhi-

bition. The angiotensin-converting enzyme (ACE) inhibitory activity and kinetic parame-

ters of the peptide were determined using N-[3-(2-Furyl)acryloyl]-L-phenylalanyl-glycyl-

glycine (FAPGG) as a substrate. Tandem mass spectrometry analysis of the purified peptide

revealed a sequence of WESLSRLLG (MW: 1060 Da; WG-9). This peptide inhibited linoleic

acid oxidation and acted as a DPPH (IC50 ¼ 15 ± 0.4 mg/mL), ABTS (IC50 ¼ 130 ± 4.5 mg/mL),

superoxide (IC50 ¼ 160 ± 6.4 mg/mL), and hydroxyl (IC50 ¼ 150 ± 6.7 mg/mL) radical scavenger.

The ACE-inhibitory activity and kinetic parameters of the WG-9 peptide were determined,

showing an ACE inhibitory activity with IC50 of 46.7 ± 1.4 mg/mL. The parameters of peptide/

ACE interactions were investigated by molecule docking. Furthermore, viability assays

showed that the identified peptide had no cytotoxicity against an HFLF-PI-5 cell line. In

conclusion, the WG-9 peptide showed potent antioxidant and ACE-inhibitory activity.
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1. Introduction

Bioactive peptides are derived from different protein hydro-

lysates displaying various biological features, including

opiate-like, antihypertensive, antioxidative, mineral binding,

antimicrobial, antithrombotic, hypocholesterolemic, and

immunomodulatory properties [1e3]. Antioxidant peptides

can defend the human body against damages created by

reactive oxygen species (ROS), such as superoxide anion rad-

icals (O2
$�), hydrogen peroxide (H2O2), singlet oxygen (1O2),

hypochlorous acid (HOCl$), and hydroxyl radicals (OH$�). ROS

has the potential to attack macromolecules, such as lipid

membranes, enzymes, proteins, and DNA, thus leading to

many health disorders. Bioactive antioxidant peptides prin-

cipally consist of two to 20 amino acid residues, and their

bioactivity depends upon the amino acid sequence, hydro-

phobicity, and molecular weight of the peptides [4]. Many

studies focused on egg white proteins, especially from

chickens, because chicken eggs constitute one of the major

protein sources in our diet [5]. Egg white accounts for ~58% of

the entire egg mass and has a protein content of 10e12%,

comprising mainly of ovalbumin, ovotransferrin, ovomucoid,

globulins, and lysozyme [6].

High blood pressure could lead to the occurrence of coro-

nary heart disease, and its treatment decreases the risk of

cardiovascular disease and related irritations [7]. Regulation of

blood pressure is associated with the rennin-angiotensin

system (RAS), which plays a key role in the control of arterial

pressure [8]. Angiotensin I-converting enzyme (dipeptidyl

carboxy peptidase I, kinase II, E.C 3.4.15.1; ACE), belongs to the

class of zinc metalloproteases that requires zinc and chloride

for its function. ACE is a key renineangiotensin system (RAS)

enzyme that regulates arterial blood pressure through the

equilibrium of water and salt in the body. There are many

synthetic drugs that are ACE inhibitors, including captopril,

enalapril, lisinopril, etc. Because of some negative side effects

associated with these synthetic drugs, such as dry cough,

hyperkalemia, hypotension, renal failure, decrease in white

blood cells, and angioedema, attention has become focused on

naturally-derived drugs [9]. Antihypertensive peptides derived

from food proteins are safer than synthetic ACE inhibitors [10],

and milk, soybean, and egg proteins are sources of peptides

with potentially ACE-inhibitory effects [11]. These peptides are

obtained fromhydrolysis usingdifferent proteases. SomeACE-

inhibitorypeptideshavebeenderived fromovalbumin [12] and

ovotransferrin [13]. Egg white proteins are well-recognized for

their excellent functional and nutritional properties.

The aim of this study was to hydrolyze ostrich (Struthio

camelus) egg white protein with pepsin and panceratin and

identify the major peptides produced during enzymatic hy-

drolysis reaction. Furthermore, antioxidant, molecular dock-

ing, and ACE-inhibitory activity of the peptide were

investigated.
2. Methods

Ostrich lungs were prepared from Mashhad Meat Industrial

Complex (Mashhad, Iran), and ACE from ostrich lung was
purified as previously reported [14]. Fresh ostrich egg was pre-

pared from Esteghlal market (Mashhad, Iran). Pepsin (porcine

gastricmucosa, EC 3.4.23.1), pancreatin (porcine pancreas), 1,1-

diphenyl-2-picrylhydrazyl (DPPH), glutathione (GSH), 2,20-

azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS), po-

tassium persulfate, potassium phosphate, trichloroacetic acid

(TCA), ferric chloride, 3-(4,5-dimethylthia-zol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), ethylenediaminetetra-

acetic acid (EDTA), and trifluoroacetic acid (TFA) were pur-

chased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).

Ultrafiltrationmembraneswith a 3-kDa cut off were purchased

from Millipore (Bedford, MA, USA).

2.1. Enzymatic hydrolysis

The hydrolytic reaction was carried out according to the

method of Megı́as et al [15]. One hundred milliliters of ostrich

egg white was mixed with 400 mL distilled water and then

homogenized for ~10 minutes. The egg white was separately

hydrolyzed using various enzymes (pH 2.5 for pepsin in 0.1M

Glycine-HCl; pH 7.5 for solution of pancreatin in 0.1M phos-

phate buffer) at 37�C. A ratio of 20:1 (w/w) egg white protein to

protease was used to prepare the hydrolysate. Pepsin (5 mg)

was used as the first protease at the beginning of the reaction

and after a 120-minute incubation, the pH was adjusted to

7.5mg and 5mg pancreatinwas added as the second protease.

The temperaturewasmaintainedat37�Cthroughout theentire

process. In order to inactivate enzyme activity, each aliquot

was heated at 90�C for 10minutes. Hydrolysates were clarified

by centrifugation at 10,000 g for 15 minutes and then passed

throughanultrafiltrationmembranewithacutoffof 3kDa.The

filtered solution was stored at �20�C for further analyses.

2.2. Peptide purification

The resulting filtrate was fractionated using reversed-phase

high-performance liquid chromatography (RP-HPLC) on a

semi-preparative C8 column (10mm� 250mm,manufactured

by Macherey-Nagel GmbH & Co., Duren, Germany). The mo-

bile phase included eluent A, which was composed of 0.1%

TFA in distilledwater (v/v), and eluent B, whichwas composed

of 0.098%TFA in acetonitrile. The elutionwas conducted using

a linear gradient of 5e50% eluent B at a flow rate of 2 mL/min

for 45 minutes. The absorbance of the eluted peaks was

monitored at 220 nm using a UV detector. All fractions were

collected and lyophilized for antioxidant activity assays. The

most active fraction was further purified on an analytical C18

RP-HPLC column (4.6 mm� 250mm) using a linear gradient of

0.8% eluent B/min to obtain pure peptide.

2.3. Peptide identification and peptide synthesis

The peptide with the highest antioxidant activity was picked

out to identify its molecular mass and amino acid sequence.

The sample was desalted using Zip Tips (Millipore) and

analyzed by matrix-assisted laser desorption/ionization-time

of flight (MALDI TOF)-TOF mass spectrometer using a 5800

Proteomics Analyzer (Applied Biosystems at Proteomics In-

ternational Pty. Ltd., Nedlands,Western Australia). The amino

acid sequence was determined by the de novo sequencing
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method. The PEAKS Studio version 4.5 SP2 (Bioinformatics

Solutions Inc., Waterloo, ON, Canada) was used for analysis of

the derived tandem mass spectrometry (MS/MS) spectra.

The identified peptide was synthesized using the solid-

phase method (GL Biochem Shanghai Ltd., Shanghai, China)

using the standard Fmoc (9-fluorenyl-methoxycarbonyl)

chemistry. Crude synthetic peptides were subjected to RP-

HPLC to purify the peptide using a semi-preparative C8 col-

umn (10 mm � 250 mm, MachereyeNagel GmbH & Co.).
2.4. DPPH radical scavenging assay

Five hundred microliters of peptide sample at concentrations

of 0.007e1 mg/mL was mixed with 500 mL of 99.5% ethanol

containing 0.02% DPPH. This mixture was kept in the dark at

room temperature for 30 minutes before measuring the

absorbance at 517 nm using a spectrophotometer (Shimadzu

UV mini 1240; Shimadzu Scientific Instr. Inc., Durham, NC,

USA). As a control, distilled water was used instead of the

sample.Glutathione (GSH)at concentrationsof 0.007e1mg/mL

was also used as a positive control for comparison, and DPPH

radical scavenging activity was calculated as follows [16]:

Radical scavenging activity (%) ¼ (AControl � ASample/AControl)

� 100 (1)

2.5. ABTS radical scavenging activity assay

ABTS radical scavenging activity was determined as described

by Hasbal et al [17] with some modifications. The resulting so-

lution obtained from the reaction of ABTS (7mM inwater) with

potassium persulfate (2.45mM final concentration) was placed

in the dark for 16 hours to produce ABTSþ radical. The resulting

solution was diluted bymixing 1 mL ABTS solution with 50mL

ethanol to obtain an absorbance of 0.70 ± 0.02 at 734 nm.

Samples (10mL of a peptideorGSHat 1mg/mL)weremixedwith

990 mL ABTSþ radical cation solution and incubated for 6 mi-

nutes, and then the absorbance was measured at 734 nm. All

solutions were prepared daily, and all determinations were

carried out in triplicate. Appropriate solvent blanks [negative

controls (NC)]were run for each assay, while GSHwas used as a

positive control (PC). The percentage of ABTSþ radical inhibi-

tion was calculated using the equation below:

Inhibition (%) ¼ (AControl � ASample/AControl) � 100 (2)

where AControl represents the absorbance without sample

and ASample represents the absorbance of the sample.
2.6. Hydroxyl radical scavenging assay

Thehydroxyl radical scavengingassaywascarriedoutbasedon

a method described by Girgih et al [7]. Peptide, GSH, and 1,10-

phenanthroline (0.75mM) were each separately dissolved in

phosphate buffer (0.1M, pH 7.4), while FeSO4 (0.75mM) and

0.01%H2O2wereeachseparatelydissolved indistilledwater.An

aliquot (50 mL) of peptide or GSH (equivalent to a final assay
concentration of 1mg/mL) or buffer (control) was first added to

a 96-well plate, followed by the addition of 50 mL 1,10-

phenanthroline and 50 mL FeSO4. To initiate reactions in the

wells, 50 mLH2O2 solutionwas added to themixture,whichwas

then covered and incubated at 37�C for 60 minutes with

shaking. Thereafter, the absorbance of the mixtures was

measured at 536 nm every 10 minutes for a period of 60 mi-

nutes. The reactionmixture without any antioxidant was used

as thenegative control, and themixturewithoutH2O2was used

as the blank. The hydroxyl radical scavenging activity (HRSA)

was calculated as follows based on absorbance change (DA):

HRSA (%) ¼ [(DAControl/min � DASample/min/DAControl/min)

� 100] (3)

2.7. Superoxide scavenging activity assay

The superoxide radical scavenging activity was determined

according to a method described by Pownall et al [18]. An

aliquot (80 mL) of the peptide sample or reduced GSH was

mixed (1 mg/mL final concentration) with 80 mL Tris-HCl

buffer (50mM, pH 8.3) containing 1mM EDTA directly into a

clear bottom 96-well plate. Forty microliters of 1.5mM pyro-

gallol dissolved in 10mM HCl was added to each well. A

mixture containing 160 mL Tris-HCl buffer and 15 mL pyrogallol

solution was used as control. Absorbance was measured at

420 nm for 4 minutes at room temperature. The antioxidant

activity was determined as the percentage of inhibiting py-

rogallol auto-oxidation, which was calculated from the

absorbance in the presence or absence of pyrogallol and the

sample [18].

Superoxide scavenging activity (%) ¼ [(DA420Control/min

� DA420Sample/min)/DA420control/min] � 100 (4)

2.8. Inhibition of linoleic acid auto-oxidation

Lipid peroxidation-inhibition capacity of the peptide was

determined in a linoleic acidmodel system [19]. Briefly, 1.3mg

of peptide or GSH was dissolved in 10 mL 50mM phosphate

buffer (pH 7.0) and added into a solution containing linoleic

acid (0.13mL) and 99.5% ethanol (10mL). The final volumewas

adjusted to 25 mL with distilled water, and the resulting

mixture was incubated in a storage bottle with a screw cap at

60 ± 1�C in a dark room. The degree of linoleic acid oxidation

was evaluated at 24-hour intervals by measuring the ferric

thiocyanate concentration. In practice, the resulting mixture

(0.1mL) was mixed with 4.7mL of 75% ethanol, 0.1mL of 30%

ammonium thiocyanate, and 0.1mL of 20mM ferrous chloride

dissolved in 3.5% HCl. After 3 minutes, the amount of thio-

cyanate was measured by reading the absorbance at 500 nm,

following color development with FeCl2 and thiocyanate.

2.9. ACE-inhibitory activity and IC50 determination

The concentration of ACE inhibitor required to inhibit 50% of

ACE activity was defined as the IC50 value. The ACE-inhibitory

http://dx.doi.org/10.1016/j.jfda.2015.11.010
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activity assaywas performed according to amethod described

by Holmquist et al [20] with slight modifications. The reaction

mixture was composed of 22 mL ACE (50 mU/mL), 50 mL WG-9

peptide (0.019, 0.039, 0.078, or 0.156 mg/mL final concentra-

tion), and 100 mL N-[3-(2-Furyl)acryloyl]-L-phenylalanyl-

glycyl-glycine (FAPGG) (0.5mM) as a substrate and 150 mL ACE

buffer [50mM Tris-HCl (pH 7.5), 0.3M NaCl, and 1mM ZnCl2].

The control sample contained 22 mL ACE (50 mU/mL), 100 mL

FAPGG, and 200 mL ACE buffer. The reaction was performed at

340 nm for 2 minutes. ACE-inhibitory activity was calculated

as follows [21]:

ACE inhibition (%) ¼ [1 � (DAinhibitor/DAControl)] � 100 (5)

The IC50 was determined using the plot of inhibition per-

centage against five peptide concentrations. The IC50 value

was calculated from semi-logarithmic plots.

2.10. Kinetic measurements

Various concentrations of N-[3-(2-Furyl)acryloyl]-L-phenyl-

alanyl-glycyl-glycine (FAPGG) substrate (0.011mM, 0.023mM,

0.046mM, 0.093mM, and 0.187mM) were incubated under ACE

assay conditions as described above in the absence or pres-

ence of 0.46 mg/mL and 0.09 mg/mL inhibitory peptide WG-9

at 37�C. The inhibitory kinetics were examined by

Lineweaver-Burk plots, using the vertical axis for velocity and

the horizontal axis for FAPGG concentration. The Michaelis

constant (KM) and maximum velocity (Vmax), along with the

inhibition type of the peptide, were determined graphically

using LineweavereBurk plots. The inhibitor constant (Ki) was

estimated from a Dixon plot [22].

2.11. Molecular docking analysis

Automated molecular docking studies of the WG-9 peptide on

the ACE-binding site were performed using Molegro Virtual

Docker (MVD 2010, version 4.2.0, for Windows 32; CLC Bio,

Aarhus, Denmark). The three-dimensional structures of tACE

(for the C-domain, PDB ID: 1UZF), which belongs to the com-

plex of ACE-captopril and human somatic ACE (for the N-

domain, PDB ID: 2C6N) were used. The docking runs were

performedwith a radius of 20�A,with coordinates x:�64.977, y:

�18.645, and z: �21.183. The Molecular Operating Environ-

ments (MOE; 2009.10 Chemical Computing Groups, Montreal,

Quebec, Canada) andMolegroMolecularViewer (MMV2012.2.5

for Windows) were used to calculate interaction parameters

between WG-9 peptide and ACE. Total binding energy, inter-

molecular energy, electrostatic energy, and the binding affin-

ity (pKi) of enzyme-peptide complex were calculated.

2.12. Cytotoxicity assay

Cytotoxicity assays were conducted according to the method

of Mossmann [23]. The HFLF-PI 5 cell line (C-169) derived from

human lung tissue was purchased from The National Cell

Bank of Iran (Pasteur Institute of Iran, Tehran, Iran) and was

cultured andmaintained in Rosewell ParmMemorial Institute

medium supplemented with 100 U/mL penicillin, 0.1 mg/mL
streptomycin, and 10% fetal bovine serum and maintained at

37�C under a humidified atmosphere and 5% CO2. Cells were

seeded in complete medium in a 96-well plate at a density of

1 � 105 cells/mL, and 0.1 mL of cell suspension was seeded per

well into 96-well microtiter plates. After reaching 75%

confluence, the cells were incubated with different concen-

trations of the sample (0�1mg/mL) for 24 hours, 48 hours, and

72 hours. Phosphate-buffered saline (PBS) was used as a con-

trol. The medium was then discarded and the adherent cells

were washed twice with PBS, then 20 mL of MTT stock solution

(5 mg/mL in PBS) was added to each well, and the plates were

further incubated overnight at 37�C. Then, 100 mL dimethyl

sulphoxide was added to each well in order to solubilize the

formazan crystals produced by the viable cells. After complete

dissolving of formazan blue, the absorbance was measured at

570 nm as a reference wavelength using an enzyme-linked

immunosorbent assay (ELISA) plate reader (ELX800 ELISA

reader; Bio-Tek Instruments, Winooski, VT, USA). The per-

centage of cytotoxicity was calculated as follows [23]:

Cytotoxicity (%) ¼ (1 � AbsSample)/AbsControl) � 100 (6)

2.13. Hemolytic activity

Hemolytic activity of the WG-9 peptide was studied using

fresh human red blood cells (RBCs) obtained from the pe-

ripheral blood (Oþ). Five milliliters of blood in 50 mL EDTA was

centrifuged at 4500 g for 10 minutes, then plasma (superna-

tant) was discarded and the pelleted RBCs were washed three

times with PBS consisting of 10mM phosphate buffer and

130mM NaCl (pH 7.4) and centrifuged at 4500 g until total

isolation of erythrocytes from plasma was completed. The

purified RBCs were diluted with 20 mL PBS buffer. To assess

hemolytic activity, 10 mL WG-9 peptide at final concentrations

of 12.5 mg/mL, 25 mg/mL, 50 mg/mL, 100 mg/mL, and 200 mg/mL

was added to 190 mL of cellular suspension. Themixtures were

incubated for 30 minutes at 37�C. Following centrifugation of

samples at 4000 g for 5 minutes, 100 mL supernatant was

diluted with 1 mL PBS and the free hemoglobin in the super-

natant was measured by a UV-Vis spectrophotometer at

560 nm. PBS was used as a negative control.
3. Results

3.1. Isolation of antioxidative peptide

In this study, the antioxidant activity of a peptide resulting

from enzymatic hydrolysis of ostrich egg white with pepsin

and pancreatin was evaluated. This protein hydrolysis was

subjected to HPLC fractionation (Figure 1A). Only one main

peak was observed on the chromatogram under the condi-

tions applied for hydrolyzing. The use of a pepsin-pancreatin

model for gastero-intestinal digestionmay be themain reason

we observed a low number of peaks in the HPLC chromato-

gram. After collecting the fraction, it was freeze-dried and

identified by MS/MS. As shown in Figure 1B, the deduced

sequence from the fragment ions (b and y fragments) was

http://dx.doi.org/10.1016/j.jfda.2015.11.010
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Figure 1 e (A) Semi-preparation of OEWPH on a C8 column (10 mm £ 250 mm). Nearly 15 mg OEWPH was dissolved in

solvent A (water containing 0.1% TFA) and was injected on the column. Bymonitoring the absorbance at 214 nm, the elution

was accomplished at a flow rate of 2 mL/min using a linear gradient of acetonitrile as solvent B (5e45% for 40 minutes). The

major peak, which appeared after 26 minutes, was chosen to be identified by MALDI-TOF/TOF sequencing. The y-axis

indicates absorbance units (mAU). Characterization of the antioxidant peptide: (B) MS/MS spectrum of the purified peptide

(upper section) and analysis of MS/MS spectrum for purified peptide (lower section, the unit of X-axis is m/z). By manual

calculation, the sequence of this peptide is displayed with the fragmentations observed in the spectrum. MALDI-TOF/

TOF ¼ matrix-assisted laser desorption/ionization-time of flight; MS/MS ¼ tandem mass spectrometry; OEWPH ¼ ostrich

egg with protein hydrolysate.
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found to have the sequence of WESLSRLLG (called WG-9) with

the molecular weight of 1060.22 Da. We previously purified

and identified a bioactive peptide named DG-10 from ostrich

egg hydrolysate showing wound-healing properties [24]. Here,

the antioxidant and ACE inhibitory activity of the WG-9 pep-

tide was reported. For this purpose, the WG-9 peptide was

then synthesized using a solid-phase method with a yield of

75%. The synthetic peptide was purified up to 98% by C8 RP-
HPLC using acetonitrile containing 0.1% TFA as the mobile

phase. The collected fraction was lyophilized and used for

further characterization.

3.2. Antioxidant activity

Antioxidant properties of the identified peptide from ostrich

egg white proteins were evaluated. It was found that systems

http://dx.doi.org/10.1016/j.jfda.2015.11.010
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consisting of two ormore radicals were required to investigate

the radical-scavenging activities of a desired antioxidant [25].

Therefore, in this study, the DPPH, ABTS, hydroxyl, and su-

peroxide radical-scavenging activities of the peptide were

investigated. Figure 2A shows the DPPH-radical scavenging

activity of the WG-9 peptide as compared to GSH. At 15 mg/mL

GSH and WG-9, 67% and 50% DPPH-radical scavenging was

observed, respectively. The ABTS-radical, superoxide-radical,

and hydroxyl-radical scavenging capacities of the peptide

were also measured. Similar to the DPPH-scavenging activity,

the ability of the peptide toward scavenging ABTS radical,

superoxide radical, and hydroxyl radical also increased rela-

tive to concentration (Figure 2BeD). The IC50 values of the
Figure 2 e (A) DPPH-, (B) hydroxyl-, (C) superoxide-, (D) ABTS-ra

inhibition of the WG-9 peptide. GSH was used as a positive contr

the lipid peroxidation assay. The assay was carried out in tripl

sulphonic acid) diammonium salt; BHA ¼ butylated hydroxyan

GSH ¼ glutathione.
peptide scavenging activity were 15 ± 0.4 mg/mL and

130 ± 4.5 mg/mL for DPPH and ABTS radicals, respectively. Our

results also showed that the WG-9 peptide had IC50 values of

160 ± 6.4 mg/mL and 150 ± 6.7 mg/mL for hydroxyl- and

superoxide-radical scavenging, respectively. GSH revealed

more potent antioxidant properties that WG-9 in all assays,

with an IC50 < 15 mg/mL.

3.3. Lipid peroxidation inhibition

The WG-9 peptide was able to protect linoleic acid from per-

oxidation damage during a 7-day period. Owing to the hy-

drophobicity of antioxidants, which is important for
dical scavenging activities and (E) lipid peroxidation

ol for scavenging properties, while BHA was considered for

icate. ABTS ¼ 2,20-azinobis (3-ethylbenzothiazoline-6-

isole; DPPH ¼ 1,1-diphenyl-2-picrylhydrazyl;

http://dx.doi.org/10.1016/j.jfda.2015.11.010
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Figure 3 e (A) ACE inhibition curve at various

concentrations of WG-9 peptide. (B) Lineweaver-Burk plots

for ACE in the presence or absence of the peptide. The

equations for the plot are as follows: y ¼ 0.0003x þ 0.0034

(R2 ¼ 0.996) for control (without peptide);

y ¼ 0.0004x þ 0.0035 (R2 ¼ 0.999) at 46 mg/mL WG-9; and

y ¼ 0.00069x þ 0.0034(R2 ¼ 0.995) at 90 mg/mL WG-9. (C)

The secondary plot for the WG-9 peptide is the competitive

inhibitor. ACE ¼ angiotensin-converting enzyme.
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accessibility to hydrophobic targets, it is presumed that the

presence of hydrophobic amino acids within the purified

peptide may have contributed to lipid peroxidation-inhibitory

activity by increasing the solubility of peptides in lipids,

thereby facilitating better interaction with radical species. As

shown in Figure 2E, the peptide inhibited the formation of

primary oxidation products significantly throughout the

oxidation period as compared to the natural antioxidant

butylated hydroxyanisole (BHA). However, the inhibitory ac-

tivity of BHAwasmore efficient than that of theWG-9 peptide.

3.4. ACE-inhibitory activity of the WG-9 peptide

The ACE-inhibitory activity of the WG-9 peptide was deter-

mined in vitro. The IC50 (amount of peptide required to inhibit

50% of the ACE activity) is shown in Figure 3A. The ACE-

inhibitory activity of the WG-9 peptide at 156 mg/mL was

91.48%, with an IC50 value of 46.7 ± 1.4 mg/mL.

3.5. Inhibition mechanism and insight into kinetics
study

The ACE-inhibitory pattern of the WG-9 peptide was investi-

gated using a Lineweaver-Burk plot [26]. The ACE-inhibition

pattern of the purified peptide explained how it binds to ACE

and inhibits enzyme activity. The Lineweaver-Burk plot of

ACE-inhibitory activity is shown in Figure 3B. The ACE-

inhibition pattern demonstrated that the WG-9 peptide had

competitive properties, suggesting that this inhibitor peptide

was able to interact with the ACE active site and prevent

substrate binding. The maximum velocity of the enzyme re-

action (Vmax) was 294mM/min and the Michaelis-Menten

constant (KM) of the reaction without the WG-9 peptide (con-

trol) was 0.088mM, while, these parameters were 0.118mM at

0.046 mg/mL WG-9 and 0.203mM at 0.09 mg/mL WG-9,

respectively. The inhibitor constant (Ki) was determined

from the intercept on the axis of the secondary plot of KM

against peptide concentration (I), with a calculated Ki value for

the WG-9 peptide of 0.065 mg/mL (Figure 3C).

3.6. Molecular docking

The WG-9 peptide was docked separately with the N- and C-

domains of ACE. Figure 4 shows the docking mode of WG-9

with ACE. The best docking score was selected among

twenty docking runs. Results revealed thatWG-9 occupied the

binding pocket of the ACE active site. The peptide is located in

the binding site of the N-domain, interacting with some polar

residues, including Arg500, Arg381, Ser378, Tyr338, Tyr369,

Glu362, His331, Lys489, Gln259, Glu431, Glu262, Gln259,

Ala334, and Asn494 (Figure 4A). These residues can form

hydrogen bonds or electrostatic interactions with the peptide.

The N-domain docking score (�214.0 Kcal/mol) was selected

among twenty docking runs. Figure 4B displays the interaction

map along with the docking mode of the WG-9 peptide with

the ACE C-domain. The highest docking score (�245.0 Kcal/

mol) was obtained for C-domain docking under the afore-

mentioned conditions. The peptide was inserted into the

binding site of ACE. Some amino acids play a role via van der

Waals forces, while others play a role via electrostatic
interactions. In the ACE/WG-9 interaction, the fifteen residues

surrounding the ACE active site, Arg381, Ser378, Tyr24, Tyr338,

Ala334, Asn494, Arg500, Glu362, Lys489, Gln259, Ser260,

Glu262, Glu431, Ser260, and His331, contributed significantly

in stabilization of the peptide-ACE complex. Ala334, Arg500,

Arg381, and Glu362 were especially important components in

the ACE active site andwere partly responsible for the binding

strength. The estimated values of binding affinity (pKi), the

intermolecular energy, binding energy, and electrostatic en-

ergy for WG-9-ACE complex are shown in Table 1.

http://dx.doi.org/10.1016/j.jfda.2015.11.010
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Figure 4 e (A) Docking results of WG-9 and the N-terminal region of tACE and (B) WG-9 and the C-terminal region of tACE. All

interactions in the active site have been simplified. Hydrophobic, polar, and acidic residues of ACE are represented by green,

violet, and red rings, respectively. Green arrows show hydrogen bands from donor atom to acceptor. ACE ¼ angiotensin-

converting enzyme.
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Table 1 e Estimated values of the binding affinity (pKi) and interaction energies for the peptide WG-9-ACE complex.

System pKi (mM) Binding
energy (KJ/mol)

Intermolecular
energy (KJ/mol)

Steric and hydrogen-bonding
energy (KJ/mol)

Electrostatic
energy (KJ/mol)

WG-9-N-domain 24.22 �241.0 �13.13 �210.8 �16.0

WG-9-C-domain 25.31 �245.0 �13.13 �214.0 �18.2

ACE ¼ angiotensin-converting enzyme.
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3.7. Cytotoxic effect of the WG peptide on HFLF-PI 5 cells
and hemolytic activity

The cytotoxic effects of the purified peptide on humanHFLF-PI

5 cells were evaluated (Figure 5A). The peptide had no signif-

icantly effect on cell viability (p < 0.05) over 24 hours, whereas,

cell viability was significantly reduced after 48-hours and 72-

hours treatment with the WG-9 peptide (p < 0.05). The he-

molytic activity of the WG-9 peptide was assessed on blood

erythrocytes (Figure 5B), with the results showing that the

WG-9 peptide had no hemolytic effect on RBCs.
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Figure 5 e (A) Time- and dose-dependent effects of theWG-

9 peptide on viability of HFLF-PI-5 cells evaluated by MTT

assay. The peptide had no significant effect on the treated

cells after 24 hours (p < 0.05). (B) Hemolytic activity of the

WG-9 peptide against human erythrocytes. The assay was

carried out in triplicate. MTT ¼ 3-(4,5-dimethylthia-zol-2-

yl)-2,5-diphenyltetrazolium bromide.
4. Discussion

Based on the radical-scavenging assessments, we speculated

that the peptide isolated from ostrich egg white protein was

capable of converting free radicals into more stable products

and completing the cascade of radical-chain reactions. Our

results showed that the WG-9 peptide possessed the highest

antioxidant activity in DPPH-radical scavenging assays

(IC50 ¼ 15 ± 0.4 mg/mL), while antioxidant activity of the WG-9

peptide against ABTS, superoxide, and hydroxyl radicals

ranges from 130 ± 4.5 mg/mL to 160 ± 6.4 mg/mL. Thus, the

predominant antioxidantmechanism of the identified peptide

involves DPPH-radical scavenging.

Ovotransferrin is one of the major proteins existing in egg

white proteins, and peptides identified from digested ovo-

transferrin have exhibited antioxidant properties [27]. Lyso-

zyme can also protect against acute and chronic oxidative

stress [26]. Tanzadehpanah et al [28] reported a peptide from

enzymatic hydrolysis of ostrich egg white using a-chymo-

trypsin, pepsin, trypsin, and papain. The peptide sequence

LTEQESGVPVMK (MW: 1317.65 Da) showed IC50 values asso-

ciated with DPPH- and hydroxyl-radical scavenging as

28.6 ± 1.08 mg/mL and 137 ± 4.79 mg/mL, respectively [28]. In

comparison to the above-mentioned peptide derived from

ostrich egg hydrolysate, the WG-9 peptide exhibited a greater

degree of scavenging ability against both DPPH and hydroxyl

radicals.

Lipid peroxidation is a major cause of quality change and

deterioration processes affecting food flavor, texture, and

appearance. Peroxidation also affects nutritive value of foods

and may cause numerous diseases [29]. In the identified

sequence, two nonpolar aliphatic amino acids, Leu and Gly,

participated in antioxidant properties of the peptide and were

correlated with those reported in previous studies.

Through the use of polyunsaturated fatty acids, inhibition

of peroxidationwas examined in the presence of the identified

peptide. The three amino acid residues within the peptide

sequence, Trp, Gly, and Leu, were assumed to have contrib-

uted to the radical scavenging activity of the peptide. Aro-

matic amino acids can donate protons to electron-deficient

radicals and are effective in radical-scavenging activity [30].

The hydrophobic properties of the peptides play an important

role in quenching lipid-derived radicals [31]. Sampath Kumar

et al [32] isolated a peptide with high antioxidant properties

from horse mackerel viscera protein. The isolated peptide

with four amino acids (ACFL) showed greater levels of inhi-

bition of the oxidation process relative to a-tocopherol.

Similar to the ACFL peptide, the isolated peptide in this study

http://dx.doi.org/10.1016/j.jfda.2015.11.010
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contained Leu and aromatic amino acids, such as Trp [32]. The

presence of hydrophobic amino acid residue Leu plays an

important role in the inhibition of lipid peroxidation. In a

previous study, a peptide (HGPLGPL) presenting hydrophobic

amino acids, such as Gly, Leu, and Pro, from fish skin hydro-

lysate exhibited a strong activity against ROS and linoleic acid

peroxidation [33].

Examination of the peptide in HFLF-PI-5 cells showed that

the WG-9 peptide had no significant cytotoxic effect after 24-

hours treatment. The percentage of cell viability after 48-

hours and 72-hours treatment decreased to 80% as

compared to the control. Furthermore, exposure of human

RBCs to the WG-9 peptide resulted in no significant hemo-

globin release (p < 0.05), demonstrating that the peptide does

not disturb RBC membranes, resulting in release of hemo-

globin. One reason for this findingmay be that the peptidewas

derived from a natural food source.

As reported, ACE prefers substrates or competitive in-

hibitors that mainly have hydrophobic amino acid residues at

the N/C-termini [34]. Therefore, the presence of Leu, Trp, and

Gly in the peptide appears to play an important role in ACE-

inhibitory activity. Some antihypertensive peptides derived

from egg white proteins have been identified, including IVF,

YAEERYPIL, RADHPFL FFGVRCVSP, ERKIKVYL, and FRAHPFL

obtained from the peptic digestion of ovalbumin [11,35], and

KVREET derived from the chymotryptic digestion of ovo-

transferrin [36]. ACE-inhibitory peptides isolated from eggs

are mainly products of single enzymatic hydrolysis and they

are relatively large, while the results of this study were ob-

tained from two-step hydrolysis of ostrich egg white protein

with gastrointestinal enzymes. In one study, after two-stage

hydrolysis of cooked eggs, three potent ACE-inhibitory pep-

tides, MKR, RGT, and VAW, were isolated [37]. Majumder and

Wu [38] also reported that digestion of cooked eggs in vitro

generated a number of potent, low-molecular weight ACE-

inhibitory peptides. It was reported that short-chain pep-

tides, especially di- and tri-peptides, were more easily absor-

bed in the intestinal tract as compared to larger ones [39]. Trp,

Tyr, Phe, and Pro are the most favorable C-terminal amino

acids in peptides, because these amino acids made the most

important contributions to substrate binding in the ACE active

site. Our findings indicated that the presence of Trp in the N-

terminal region of the peptide promoted ACE inhibition.

Furthermore, the presence of Leu and Gly in our peptide also

may have played important roles in ACE-inhibitory activity.

Some of ACE inhibitors derived from food-protein hydro-

lysates are competitive inhibitors [34]. These were able to

enter and interact with the ACE active center and prevent

substrate binding. The structure of peptides is a prominent

factor affecting ACE-inhibitory properties. Although most of

the reported peptides have a competitive ACE-inhibition

pattern, some of the isolated peptides showed non-

competitive ACE-inhibition patterns. Results indicated that

aromatic amino acids at the C-terminal region and branched-

chain aliphatic amino acids at the N-terminal region were

suitable for peptide binding to ACE as a competitive inhibitor.

However, other reports demonstrated that inhibitory peptides

possess an aliphatic amino acid residue at their C-terminal

region [37,40]. These findingswere consistent with our results,

showing that the WG-9 peptide had a Trp at its N-terminus.
Our experimental results showed thatWG-9 was a potent ACE

inhibitor. To confirm this, molecular modeling of the peptide-

ACE complex was performed using molecular docking soft-

ware. Docking experiments performed with stable confor-

mations of the WG-9 peptide offered a molecular basis for the

inhibitory activity of the peptide on tACE. This enzyme con-

sists of a single polypeptide chain of 625 residues arranged in

two subdomains, 1 (residues 1e292) and 2 (residues 293e623),

around a central groove, where the active site of the enzyme is

located. The enzyme consists predominantly of extended a-

helices associated with a few short b-sheets. Two ACE do-

mains have distinct functions, including the N-terminal

domain that participates in processing bioactive peptides

(such as the hematopoietic peptide, N-acetyl-seryl-aspartyl-

lysyl-proline) and less in RAS, while the C-terminal domain

(tACE) plays a significant role in RAS and regulation of hy-

pertension. The docking results demonstrated that the WG-9

peptide had greater binding affinity to the C-terminal

domain of ACE (pKi ¼ 25.31), with a binding energy of

�245.0 Kcal/mol. This could be an advantage for the WG-9

peptide acting as a more potent anti-hypertension compo-

nent. The binding energy is critical in the identification of the

most effective binder to a given target between a set of

different ligands [41]. Our results revealed that residues, such

as Arg (cationic), Glu (anionic), Leu, Gly, and Trp (nonpolar)

interact with the binding site of ACE. Additionally, the pres-

ence of nonpolar amino acids, such as Trp, Leu, and Arg, in

unique positions in the sequence can strengthen anti-ACE

activity.

In conclusion, these results suggested that the purified

peptide may be a promising antioxidant for functional food

ingredients and/or pharmaceuticals. However, further studies

are required to investigate in vivo antioxidant or antihyper-

tensive activities.
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