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Abstract

INTRODUCTION: Most dementia studies are not population-representative; statistical tools can 

be applied to samples to obtain critically-needed population-representative estimates, but are not 

yet widely used.

METHODS: We pooled data from the Kaiser Healthy Aging and Diverse Life Experiences 

(KHANDLE) study and the California Behavioral Risk Factor Surveillance Study (CA-BRFSS), 

a population-representative study. Using weights accounting for sociodemographic/health 

differences between KHANDLE and CA-BRFSS, we estimated cognitive impairment prevalence 

and age- and sex-adjusted racial/ethnic inequalities in California adults 65+ without prior dementia 

diagnosis.

RESULTS: After weighting KHANDLE, the estimated cognitive impairment prevalence in 

California was 20.3% (95% confidence interval 17.8%–23.0%); unweighted prevalence was 24.8% 

(23.1%–26.6%). Inequalities (larger prevalences) were observed among Black and Asian groups 

versus whites.

DISCUSSION: We employed a novel statistical approach to estimate population-representative 

cognitive impairment prevalence and inequalities. Such statistical tools can help obtain population-

representative estimates from existing studies and inform efforts to reduce racial/ethnic disparities.
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Introduction

Population-representative estimates of dementia and cognitive impairment, which includes 

persons at high risk for progressing to dementia [1], are needed to understand burden of 

disease and disparities [2,3]. However, dementia research study participants often differ from 

the general population on sociodemographic and health factors [2–4]. Participants are often 

predominantly white, highly educated, or have family history of dementia [2,4,5]. These and 

other potential differences may affect study outcomes, presenting a substantial obstacle to 

obtaining population estimates. This gap is especially salient when characterizing outcomes 

among minoritized racial/ethnic groups [3,5,6].

The Kaiser Healthy Aging and Diverse Life Experiences (KHANDLE) study, a recently-

recruited cohort study in California, was designed to evaluate how race/ethnicity and 

lifecourse factors influence late-life brain health and cognitive decline. KHANDLE recruited 

approximately equal proportions of Asian, Black, Latino, and white participants, making 

the sample more diverse than most dementia research studies [3,5]. However, even in 

diverse samples, selection processes that lead to differences between participants and the 

general population may remain and, if unaccounted for, could affect generalizability (i.e., 

yield selection bias). Statistical tools such as weighting can be used to generalize study 

results to populations of interest [7,8]. We aimed to generalize from KHANDLE and obtain 

race/ethnicity-specific prevalence and inequality estimates for cognitive impairment in the 

population of Asian, Black, Latino, or white, English- and Spanish-speaking California 

adults 65+ without prior dementia diagnosis.

Methods

Data and participants

We obtained cognitive impairment prevalence estimates in KHANDLE and used 

the California Behavioral Risk Factor Surveillance Study (CA-BRFSS), a population-

representative study, to generalize estimates to the California population. KHANDLE 

comprises community-dwelling older adults residing in the San Francisco Bay and 

Sacramento areas recruited between March 2017 and December 2018. Individuals eligible 

for KHANDLE were long-term members of Kaiser Permanente Northern California 

(KPNC), an integrated healthcare delivery system, were age ≥65 years on January 1, 

2017, spoke English or Spanish, and participated in Kaiser Permanente multiphasic health 

checkup exams between 1964–1985. Random sampling was stratified by race/ethnicity and 

educational attainment to recruit approximately equal proportions of Asian, Black, Latino, 

and white participants with diversity in educational attainment. Exclusion criteria included: 

diagnosis of dementia or other neurodegenerative disease (frontotemporal dementia, Lewy 

body disease, Pick’s disease, Parkinson’s disease with dementia, Huntington’s disease) 

and presence of health conditions that would impede participation in study interviews 

(i.e. hospice activity in past 12 months, history of severe chronic obstructive pulmonary 

disease in past 6 months, congestive heart failure hospitalizations in past 6 months, and 

history of end stage renal disease or dialysis in past 12 months). KHANDLE enrolled 1,712 
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individuals; this analysis includes 1,709 participants who reported Black, Latino, Asian, or 

white race/ethnicity.

For our population-representative sample, we pooled data from the 2014–2018 CA-BRFSS. 

BRFSS is a national annual health survey that is representative of the population in each 

state [9]. Computer-assisted telephone interviews (English or Spanish) were conducted 

among California residents via landline and cell phones. Because proxy interviews were not 

permitted, we expect very few participants with moderate to severe dementia were included, 

mirroring KHANDLE’s exclusion of individuals with a dementia diagnosis. In this analysis, 

we restricted to participants who reported Black, Latino, Asian, or white race/ethnicity and 

were age ≥65 years (unweighted n=12,399). We applied sampling weights developed by 

the Centers for Disease Control to make CA-BRFSS representative of the California 65+ 

population (weighted n=5,317,953) [9–11]. Specifically, we calculated 2014–2018 pooled 

weights by multiplying each participant’s weight by the proportion of their respective year’s 

sample relative to the pooled sample [10].

Measures

Harmonized measures—To estimate weights accounting for sociodemographic and 

health-related differences between KHANDLE and the California 65+ population 

represented by CA-BRFSS, we harmonized variables across the datasets. We briefly 

describe the harmonization process below; Supplement 1 provides details.

Race/ethnicity: KHANDLE and CA-BRFSS asked participants to self-report race/ethnicity 

and allowed multiple responses. We derived a harmonized race/ethnicity summary variable 

as follows: participants reporting Latino ethnicity were categorized as Latino; otherwise, 

a primary race/ethnicity was assigned based on race reported (Black, Asian, or white). 

Participants who did not report Latino ethnicity and reported multiple races were assigned a 

primary race/ethnicity according to historical disenfranchisement in the U.S. (Black, Asian, 

then white). Due to small sample sizes for analysis in both samples, we excluded other 

races/ethnicities (e.g. American Indian/Alaska Native) and individuals with missing race/

ethnicity.

Sociodemographic variables: Age was harmonized as a continuous variable top-coded 

at 90 years, and we created indicators for sex (male/female), marital status (yes/no 

married or living with a partner as if married), interview language (English/Spanish), and 

history of military service (yes/no). Educational attainment was defined by highest grade/

degree completion: “less than high school graduate/GED”, “high school graduate/GED”, 

“technical/trade program or some college,” “college completion/graduate degree.” Per capita 

income was estimated and dichotomized at the median reported in CA-BRFSS (details in 

Supplement 1a).

Health-related variables: Self-rated health was assessed in KHANDLE and CA-BRFSS 

identically; we created an indicator for good health (“excellent/very good/good” versus 

“fair/poor”). Smoking history indicated whether participants currently smoked versus not. 

Serious vision impairment was defined using self-rated eyesight with glasses or contact 
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lenses (poor or legally blind) for KHANDLE and using self-report of blindness or serious 

difficulty seeing, even with glasses for CA-BRFSS. The harmonized physical activity 

measure captured exercise in the last month (details in Supplement 1b). Finally, we created 

two dichotomous activities of daily living measures indicating difficulty walking/climbing 

stairs and dressing/bathing (details in Supplement 1c).

Cognitive impairment outcome—Cognitive impairment was available only in 

KHANDLE; hence the need to generalize results from KHANDLE to the population 

represented by CA-BRFSS. Cognitive impairment, defined as mild cognitive impairment 

or dementia, was determined in KHANDLE as reported previously [12,13]. Briefly, 

all participants were administered two cognitive test batteries: the Spanish and English 

Neuropsychological Assessment Scales (SENAS) [14] and the NIH Toolbox Cognitive 

Health Battery (NIHTB-CHB) [15–17]. A random sample within each racial/ethnic 

group (n=541) were selected to undergo a full clinical evaluation, including clinical 

neuropsychological testing and a clinical exam, and clinical diagnosis adjudicated by three 

senior clinicians. A screening algorithm was used to select remaining participants for 

clinical neuropsychological testing if they were classified as high probability of impairment 

based on NIHCTB-CHB measures, and those with abnormal clinical neuropsychological test 

results were referred for a clinical exam. Although KHANDLE exclusion criteria precluded 

prior dementia diagnosis, a small proportion (<1%) of participants with an adjudicated 

diagnosis were diagnosed with dementia; the majority of cognitive impairment was mild 

cognitive impairment (participants with adjudicated cognitive impairment described in 

Supplement 2). Among participants with an adjudicated diagnosis, a model was developed 

to predict cognitive impairment using adjudicated diagnosis as the dependent variable, 

and SENAS and NIHTB-CHB cognitive test scores, age, education, gender, race/ethnicity, 

and race/ethnicity by test score interactions as independent variables. This model was 

used to predict probabilities of cognitive impairment for participants who did not receive 

adjudicated diagnoses. Prevalence of cognitive impairment was taken as the sum of 

individual predicted probabilities (0 or 1 for individuals with adjudicated diagnoses) divided 

by the sample size (n=1,709).

Statistical analysis

Overview—We aimed to generalize estimates of prevalence and inequalities in cognitive 

impairment from KHANDLE to the “target population” of California represented by CA-

BRFSS. The basic idea behind weighting, a multivariable form of standardization that allows 

for continuous variables [18], is to re-weight the study sample to mimic the population of 

interest. Broadly, generalizing from KHANDLE to CA-BRFSS required (a) understanding 

differences in characteristics of KHANDLE versus CA-BRFSS participants, (b) modeling 

probability of participation in KHANDLE based on these characteristics and constructing 

weights such that people underrepresented in KHANDLE compared to CA-BRFSS are 

given greater weight, and (c) applying those weights in KHANDLE to obtain estimates for 

the target population (Figure S1). We conducted each step stratified by race/ethnicity. We 

explain each step below and provide code (github.com/mayeda-research-group/KHANDLE-

weighting) that can be adapted by readers to implement these methods.
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Evaluating differences between KHANDLE and CA-BRFSS—We identified 

harmonized variables for which KHANDLE and CA-BRFSS differed by assessing covariate 

balance between KHANDLE and CA-BRFSS using race/ethnicity-specific standardized 

mean differences, calculated as (mean(KHANDLEk)-mean(CA-BRFSSk))/SD(CA-BRFSSk) 

for each racial/ethnic group and variable k. Differences <0.25 were deemed to represent 

adequate covariate balance [19].

Estimating and evaluating weights—To model the selection process (i.e., differences 

between KHANDLE and CA-BRFSS), we developed participation weights (specifically, 

stabilized inverse odds of selection weights [8]), using an iterative process. First, we 

pooled KHANDLE and CA-BRFSS data and used logistic regression to estimate probability 

(propensity score) that each observation was from KHANDLE versus CA-BRFSS. Second, 

we used the propensity scores to calculate weights for KHANDLE participants, defined 

as inverse of the odds that a participant was included in KHANDLE given their covariate 

profile, multiplied by the unconditional odds of participating in KHANDLE [8]. Third, 

we applied weights to KHANDLE and re-assessed covariate balance. Fourth, we added 

variables to the logistic regression model to improve covariate balance as needed. The first 

logistic regression model adjusted for sociodemographic variables (race/ethnicity, age, sex, 

educational attainment, and interactions between race/ethnicity and all other variables). The 

final logistic regression model also included indicators for greater than median income 

per household member, mobility difficulties, interview language, and self-rated health, as 

well as interactions between race/ethnicity and these variables. Conceptually, observations 

with covariate combinations underrepresented in KHANDLE versus CA-BRFSS received 

relatively large weights and observations with covariate combinations overrepresented in 

KHANDLE versus CA-BRFSS received relatively small weights.

To evaluate final weight performance, we examined covariate balance between weighted 

KHANDLE and CA-BRFSS. We also used density plots to evaluate overlap in propensity 

scores in the two samples to assess whether there were large segments of the CA-BRFSS 

sample that would have little or no chance of being included in KHANDLE. Overlap in 

range of propensity scores indicates that the samples have enough similarity to generalize 

from KHANDLE to CA-BRFSS.

Applying weights to obtain estimates for the target population represented by 
CA-BRFSS—CA-BRFSS data were used to estimate weights in KHANDLE as described 

above; subsequent analyses required only KHANDLE data (weighted and unweighted). 

To generalize results from KHANDLE to CA-BRFSS, we used weighted KHANDLE 

data to estimate overall and race/ethnicity-specific prevalence of cognitive impairment in 

the California population of older adults without diagnosed dementia represented by CA-

BRFSS.

We estimated population-representative age- and sex-adjusted racial/ethnic inequalities in 

cognitive impairment prevalence by standardizing race/ethnicity-specific prevalences in 

the weighted KHANDLE sample to the marginal age and sex distribution in CA-BRFSS 

and calculating prevalence ratios (PRs) and prevalence differences (PDs). Standardizing 

accounted for differences in age- and sex- distributions across racial/ethnic groups and 
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facilitated estimation of racial/ethnic inequalities that would be observed in CA-BRFSS if all 

racial/ethnic groups had the same age and sex distribution.

Finally, for comparison, we estimated analogous unweighted results in the KHANDLE 

sample, including overall and race/ethnicity-specific prevalence of cognitive impairment and 

age- and sex-adjusted racial/ethnic inequalities standardized to the marginal age and sex 

distribution in KHANDLE.

Missing data—Missing data were multiply imputed with chained equations and predictive 

means matching [20]. Data on income was most frequently missing (12.9% KHANDLE, 

20.1% CA-BRFSS); all other variables were missing ≤2.7% (KHANDLE) or ≤8.5% 

(CA-BRFSS). Details in Supplement 4. Separate imputation models were developed for 

KHANDLE and CA-BRFSS (40 imputed datasets each). Weight creation and estimation 

of cognitive impairment prevalence was conducted for pairs of imputed KHANDLE and 

CA-BRFSS datasets (m=40 pairs). Final estimates of cognitive impairment prevalence were 

calculated by averaging estimates across imputations.

To account for uncertainty due to use of weights and Rubin’s rules for combining variance 

across imputations, confidence intervals were calculated using bootstrapping [21,22]. We 

resampled and estimated overall and race/ethnicity-specific cognitive impairment prevalence 

and age- and sex-standardized prevalence ratios and differences 1,000 times from each of 

the 40 imputed KHANDLE datasets; confidence intervals were defined as the 2.5th and 

97.5th percentiles of bootstrapped estimates [21]. Analyses were conducted in R version 

4.0.2 using Twang and mice packages [23,24].

Results

Compared with CA-BRFSS, KHANDLE participants were slightly older, more racially/

ethnically diverse (e.g., 25.9% vs. 6.0% Black), had higher education and income, and better 

health (Table 1). These differences were generally similar across racial/ethnic groups (Figure 

1A, Table S4), although some larger differences were observed for Latinos (shown in 

blue). Details on final weight evaluation are in Supplement 6; importantly, propensity score 

distributions substantially overlapped between KHANDLE and CA-BRFSS. After applying 

weights, race/ethnicity-specific covariate balance was acceptable for almost all variables, 

including variables not included in the model that produced the weights (Figure 1B). The 

exception was ‘good’ or better self-rated health in Latino participants (Figure 1B), which 

remained slightly higher in KHANDLE than CA-BRFSS even after including that variable 

in the weight model.

After weighting KHANDLE to generalize to CA-BRFSS, overall cognitive impairment 

prevalence was estimated as 20.3% (95% CI 17.8%–23.0%) (Figure 2 and Table S6); the 

unweighted KHANDLE estimate was 24.8% (23.1%–26.6%). Within racial/ethnic groups, 

the generalized (weighted) prevalence estimate was highest among Black participants 

(29.7% [23.6%–35.9%]), followed by Asians (25.0% [18.3%–33.7%]), whites (19.0% 

[15.7%–22.4%]), and Latinos (18.0% [12.9%–23.7%]). The generalized prevalence was 
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substantially lower than the unweighted KHANDLE estimate among Latinos, slightly lower 

among Black and white participants, and slightly higher among Asians.

After generalizing to CA-BRFSS and age- and sex-standardizing, the largest inequalities 

(versus whites) were observed among Black individuals (PR=1.71 [1.35–2.16], and 

PD=13.3% [7.2%–19.7%]), followed by Asians (PR=1.46 [1.11–1.93], and PD=8.6% 

[2.1%–15.8%]) (Figure 3 and Table S7). Small Latino-white inequalities were observed, but 

estimates were imprecise (PR=1.14 [0.85–1.53], and PD=2.7% [−3.1%–9.0%]). Compared 

with inequality estimates in unweighted KHANDLE, the generalized Asian-white inequality 

was larger, and the Latino-white inequalities were slightly smaller. Black-white inequalities 

were similar in the unweighted and generalized estimates.

Discussion

We used an approach from the statistical and epidemiologic literature [8] novel in dementia 

research to generalize prevalence of cognitive impairment from KHANDLE, a diverse study 

of cognitive aging, to a target population of California older adults. Because KHANDLE 

excluded those with diagnosed dementia, our research question focused on a target 

population also without a dementia diagnosis (represented by CA-BRFSS, which prohibited 

proxy respondents). After weighting KHANDLE data, we estimated 20.3% prevalence of 

cognitive impairment in Asian, Black, Latino, and white English- and Spanish-speaking 

California adults 65+ without prior dementia diagnosis, with highest burden among Black 

individuals. We also estimated substantial inequalities (elevated prevalence of cognitive 

impairment) compared with whites in Black and Asian older adults, and small differences 

for Latinos.

It is increasingly recognized that dementia research study participants substantially 

differ from the general population [2,3,25], imposing barriers to obtaining population-

representative estimates of dementia-related outcomes and inequalities. For example, 

analyses of National Alzheimer’s Coordinating Center (NACC) data suggest Black-white 

inequalities in diagnostic progression in NACC are not generalizable to the general 

population [25]. Our findings demonstrate that correction for selection processes are 

necessary to generalize from a study sample (here, KHANDLE) to a broader target 

population of interest (here, represented by CA-BRFSS). Selection into studies of cognitive 

aging such as KHANDLE may be driven by factors associated positively or negatively 

with cognitive health (e.g., older age, family history of dementia, comorbidities, concern 

about cognition, race/ethnicity, education, socioeconomic status) [26–29]. The direction 

of the difference between an estimate in a sample and the target population depends 

on the balance of opposing selection factors. In our analysis, although KHANDLE 

participants had higher levels of education and income than CA-BRFSS participants, the 

higher prevalence of cognitive impairment in unweighted KHANDLE versus KHANDLE 

generalized to CA-BRFSS likely reflects KHANDLE’s older age and oversampling of 

Black participants, a group with high cognitive impairment prevalence. Although cognitive 

impairment prevalence estimates depend on diagnostic assessment methods [13,30], the 

direction of change when generalizing from a sample to a target population is driven by the 

selection process into the study.
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Our population-representative estimates of racial/ethnic inequalities in cognitive impairment 

among older adults without prior dementia diagnosis are the first of their kind, and are 

partially consistent with extant literature. Both our weighted (20.3%) and unweighted 

(24.8%) prevalence estimates of cognitive impairment are higher than the estimated 

prevalence of mild cognitive impairment for persons age 65+ from a prior systematic review 

(16.6%) [1]. Several important differences between our study and the meta-analysis that 

could contribute to our higher estimate include that KHANDLE is more racially/ethnically 

diverse than most studies, the meta-analysis did not correct for selection bias, and some 

studies included in the meta-analysis did not exclude people with diagnosed dementia 

from the denominator, as our study does. Our estimates of large Black-white inequalities 

and small Latino-white inequalities is consistent with evidence on dementia incidence and 

prevalence in these groups [29,31]. Our finding of higher cognitive impairment prevalence 

in Asians versus whites was unexpected given prior reports of lower age-adjusted dementia 

incidence rates among Asian versus white KPNC members, although no prior prevalence 

estimates exist [31]. These results could reflect several possibilities. First, racial/ethnic 

patterns in cognitive impairment could differ from dementia. Second, Asians have longer 

survival following dementia diagnosis [32] and may similarly have longer survival with 

cognitive impairment, which would increase prevalence in this group relative to other 

groups, independent of incidence. Finally, language fluency can influence cognitive test 

results: cognitive assessments were offered in English or Spanish; non-native English 

language among Asians may have resulted in higher estimated cognitive impairment in 

this group.

Generalizing estimates to a target population via weighting requires assumptions, most 

importantly that the weights account for the impact of the selection process on the outcome 

of interest [7,8]. However, neither understanding nor modeling the selection process is 

straightforward. One assessment of whether the selection process was adequately modeled is 

evaluating whether variables that affect the outcome have similar distributions (are balanced) 

in the weighted sample and the target population. In our analyses, we achieved good 

covariate balance on almost all available variables, including variables not included in the 

weights. This suggests that we successfully modeled the selection process into KHANDLE 

for measured variables, and likely closely-related unmeasured variables, for all racial/ethnic 

groups. However, it is possible that some important unmeasured variables predictive of 

cognitive impairment differ between weighted KHANDLE and our target population. For 

example, we did not have harmonized measures of nativity, education quality, family history 

of dementia, or comorbidities. The extent to which omission of these variables biases 

results depends on the extent to which weighting on the measured covariates accounts for 

these differences. For example, while comorbidities are not included in our weights, our 

weights include self-rated health and mobility difficulties, which are highly correlated with 

comorbidities [33,34]. Additionally, differences by race/ethnicity in covariate balance before 

weighting indicated that selection processes differed by race/ethnicity. Measures like nativity 

could be more important for Latino and Asian estimates than for Black and white estimates, 

especially because KHANDLE participation required long-term KPNC membership.

Variables measured with error, especially differential error across the sample and target 

population, could result in appearance of a well-modeled selection process without fully 
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correcting for selection bias. In our analysis, most items were straightforward to harmonize 

between KHANDLE and CA-BRFSS, but measurement error in these variables, or imperfect 

harmonization for more complex variables like income, could leave residual differences 

between weighted KHANDLE and CA-BRFSS. Missing selection factors or imperfect 

harmonization may have larger consequences for inequality estimates (i.e. prevalence ratios 

and differences) if bias in generalized prevalence estimates occurs in opposite directions for 

racial/ethnic groups being compared (e.g. if generalized prevalence is overestimated among 

Asians and underestimated among whites).

The main limitations of our study relate to the challenges of understanding and modeling 

the selection process, including harmonization of measures. A key strength of our 

work is that KHANDLE is an unusually racially/ethnically diverse sample with robust 

cognitive assessments. This enabled precise estimation and generalization of cognitive 

impairment prevalence within racial/ethnic groups. Even with statistical tools, samples 

without representation of all groups in the target population cannot be generalized [7,8]. 

Additionally, our weighting approach is novel in dementia research. We anticipate that these 

methods will be useful for dementia researchers interested in drawing inferences about 

broader populations from study samples.

In conclusion, population-representative estimates in dementia research are important for 

understanding public health burden and disparities, but efforts are stymied by the non-

representative nature of most samples [2,3]. We employed statistical tools to correct for 

such selection factors and allow estimation of prevalence of and inequalities in cognitive 

impairment in the population of California older adults without prior dementia diagnosis. 

Our results indicated that cognitive impairment is common for older adults and that there 

are substantial racial/ethnic inequalities in cognitive impairment. Even in KHANDLE, an 

unusually diverse study of cognitive aging, there were important differences between the 

sample and the general population of older adults. Establishment of cohorts that include 

diverse participants is an ongoing and critical step for the field, but statistical tools may 

still be required to generalize results. These tools are only as good as the data underlying 

the models [7,8]. In addition to greater diversity within cohorts, measuring factors that 

affect outcomes of interest and selection into studies will improve the ability to obtain 

population-representative estimates in dementia research, which in turn inform efforts to 

reduce disparities.
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Figure 1. 
Covariate balance (race/ethnicity-specific standardized mean differences) between Kaiser 

Healthy Aging and Diverse Life Experiences (KHANDLE) and California Behavioral Risk 

Factor Surveillance System (CA-BRFSS) shown for (A) KHANDLE unweighted, and (B) 

after applying weights to KHANDLE. Standardized mean differences shown are averages 

across 40 multiply imputed datasets
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Figure 2. 
Estimates of prevalence of cognitive impairment in Kaiser Healthy Aging and Diverse Life 

Experiences (KHANDLE) generalized to California Behavioral Risk Factor Surveillance 

System (CA-BRFSS) and unweighted KHANDLE, overall and by race/ethnicity
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Figure 3. 
Estimates of population-representative age- and sex-adjusted* racial/ethnic inequalities in 

cognitive impairment in KHANDLE generalized to CA-BRFSS: Panel A) prevalence ratios, 

and Panel B) prevalence differences

*Unweighted KHANDLE standardized to marginal age/sex distribution in KHANDLE; 

KHANDLE generalized to CA-BRFSS standardized to marginal age/sex distribution in 

CA-BRFSS
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Table 1.

Characteristics of Black, Latino, Asian, and white KHANDLE and CA-BRFSS (2014–2018) participants

Characteristic
KHANDLE

N=1709
CA-BRFSS
N=12,399

Race/ethnicity

 Asian 24.3% 14.0%

 Black 25.9% 6.0%

 Latino 20.4% 18.6%

 White 29.4% 61.4%

Age, mean (SD) 76.0 (6.8) 73.9 (6.9)

Male 40.6% 44.1%

Educational attainment

 Less than high school 7.0% 16.1%

 High school diploma/GED 9.8% 18.0%

 Trade school/technical school/some college 35.0% 34.9%

 College graduate or higher 48.2% 30.9%

Per capita income above BRFSS median 70.6% 49.8%

Interviewed in English 97.1% 89.4%

Married/living with partner 56.4% 54.0%

Military service 18.0% 19.8%

Health-related variables

 Self-rated health “good” or better 81.2% 75.3%

 Difficulty walking/climbing stairs 13.7% 26.7%

 Blind or serious vision impairment 4.1% 6.8%

 Difficulty dressing 2.0% 6.5%

 Current smoker 3.0% 4.2%

 Exercised in the last month 84.8% 75.8%

Note:Characteristics are averaged across 40 multiply imputed samples, and CA-BRFSS percentages are shown weighted to be representative of the 
CA population of adults 65+.

Abbreviations: BRFSS, Behavioral Risk Factor Surveillance System; KHANDLE, Kaiser Healthy Aging and Diverse Life Experiences; SD, 
standard deviation.
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