Skip to main content
. 2022 Jul 18;12:848790. doi: 10.3389/fonc.2022.848790

Table 2.

Diagnostic performance of deep convolutional neural network model for differentiating breast cancer subtypes in the main cohort.

Experiment Model AUC ACC (%) SEN (%) SPC (%) YI (%)
Luminal A vs. non-luminal A EfficientNet-B0 0.686 78.1 86.5 48.9 35.4
DenseNet-121 0.717 80.1 87.8 53.3 41.1
VGGNet-19 0.664 74.6 82.1 48.9 31.0
Luminal vs. non-luminal EfficientNet-B2 0.601 64.2 53.7 68.4 22.1
DenseNet-121 0.587 61.1 64.8 59.6 24.4
VGGNet-19 0.561 64.2 48.1 70.6 18.7
Triple-negative vs. non-triple-negative EfficientNet-B2 0.577 76.9 33.3 86.3 19.6
DenseNet-121 0.565 58.1 60.6 57.5 18.1
VGGNet-19 0.572 50.5 69.7 46.4 16.1

AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPC, specificity; YI, Youden’s index.