Skip to main content
. 2022 Jul 18;10:938113. doi: 10.3389/fpubh.2022.938113

Table 3.

Selected characteristics of included studies.

References Country Year Study design Patients
(% female patients)
Sample size for diagnostic accuracy Mean or median age (SD; range), years Imaging modality Type of malignancy AI model (Per-patient/per-node diagnostic output) Reference standard Classification criteria
Coroller et al. (13) USA 2016 Retrospective single-center 85 (65%) 60.3 CT NSCLC Radiomics (per-patient) Radiology B D
Parmar et al. (14) USA 2018 Retrospective single-center 1,194 68.3 (32–93) CT NSCLC Deep learning (per-patient) Pathology A B C
Sun et al. (15) China 2019 Retrospective single-center 385 (68%) 201 53.1 (±12.2) CT Lung Cancer Radiomics (per-patient) Radiology A C
Ling et al. (16) China 2019 Retrospective multi-center 229 (31.5%) 74 64 (59–81) CT Lung Cancer Radiomics (per-patient) Radiology A
Coudray et al. (17) USA 2018 Retrospective single-center 1,176 459 61 (51.3–72.8) CT NSCLC Deep learning (per-patient) Radiology B C
Xu et al. (18) China 2019 Retrospective single-center 179 (52.8%) 63 (32–93) CT NSCLC Deep learning (per-patient) Pathology B D
Baldwin et al. (19) UK 2020 Retrospective single-center 1,337 328 CT Lung Cancer Deep learning (per-patient) A
Schroers et al. (20) Germany 2019 Retrospective single-center 82 (38%) 50 61.5 (±5.0) MRI Lung Cancer Radiomics (per-patient) Pathology A C
Wang et al. (21) China 2019 Retrospective single-center 249 (39.8%) 61.4 (±8.96) CT Lung Cancer Deep learning (per-patient) Radiology D
Leleu et al. (22) France 2020 Retrospective single-center 215 (39%) 72 58.6 (±10.3) CT Lung Cancer Radiomics (per-patient) Pathology A
Ann et al. (23) USA 2019 Prospective multi-center 262 48 CT NSCLC Radiomics (per-patient) Pathology A B C
Cong et al. (24) China 2020 Retrospective single-center 411 (50.4%) 141 59.62 (24–84) CT NSCLC Radiomics (per-patient) Radiology B C D
Botta et al. (25) Italy 2020 Retrospective single-center 270 (38%) 67.4 (61.0–72.6) CT NSCLC Radiomics (per-patient) Radiology A B D
Wei et al. (26) USA 2020 Retrospective multi-center 146 (39.7%) 65.72 (± 12.88) PET/CT NSCLC Radiomics (per-node) Radiology A B C
Khorrami et al. (27) USA 2019 Retrospective single-center 112 CT NSCLC Radiomics (per-patient) Pathology B D
Kirienko et al. (28) Italy 2021 Retrospective single-center 149 (37.6%) 73 70 (41–84) PET/CT Lung Cancer Radiomics (per-node) Radiology B C
Rossi et al. (29) Italy 2020 Retrospective single-center 109 CT NSCLC Radiomics (per-patient) Radiology A B
Chai et al. (30) China 2021 Retrospective single-center 198 (54%) 402 58.1 (± 8.5) CT NSCLC Radiomics (per-node) Pathology A B D
Wang et al. (31) China 2019 Retrospective single-center 717 386 CT NSCLC Radiomics (per-node) Radiology B D

A, Determine whether the patient has lung cancer; B, Determine whether the patient has non-small cell lung cancer; C, Determine whether the patient has malignant lung nodule; D, Determine whether the patient has lymph node metastasis.