Skip to main content
. 2022 Jun 21;14(2):95–100. doi: 10.34172/jcvtr.2022.12

Table 4. Effect of demographic variables, cardiovascular risk factors and tea intake on calcium scores .

Variables Calcium score Univariate logistic regression* Multivariate logistic regression**
Normal Abnormal OR(95 % CI) P OR(95 % CI) P
Tea consumption Yes 102(91.9) 77(86.5) 4.65(1.66-13.06 0.004 4.36(1.84-10.36) 0.001
no 9(8.1) 12(13.5)
Amount of tea consumption No 9(8.1) 12(13.5) 1.11(0.63-1.95) 0.7 - -
1-3 glasses 45(40.5) 39(43.8)
≥ 3 glasses 57(51.4) 38(42.7)
Age <50 39(35.1) 10(11.2) 3.73(1.62-8.61) 0.002 3.57(1.62-7.87) 0.002
≥ 50 72(64.9) 79(88.8)
Sex Female 52(46.8) 40(44.9) 1.25(0.58-2.65 0.57 - -
Male 59(53.2) 49(55.1)
Occupation Worker 9(8.1) 4(4.5) 0.98(0.71-1.36 0.91 - -
Employer 19(17.1) 12(13.5)
Free job 23(20.7) 26(29.2)
Household 47(42.3) 34(38.2)
Retired 13(11.7) 13(14.6)
Family history No 61(55) 51(57.3) 1.04(0.55-1.98) 0.90 - -
yes 50(45) 38(42.7)
Hypertension No 69(62.2) 43(48.3) 1.84(0.93-3.62) 0.079 1.79(0.97-3.33) 0.064
Yes 42(37.8) 46(51.7)
Smoking No 101(91) 72(80.9) 2.04(0.79-5.3) 0.14 2.26(0.9-5.67) 0.082
Yes 10(9) 17(19.1)
Hyperlipidemia No 74(66.7) 48(53.9) 1.26(0.65-2.43) 0.5 - -
Yes 37(33.3) 41(46.1)
Diabetes No 93(82.8) 72(80.9) 0.86(0.37-2) 0.72 - -
Yes 18(16.2) 17(19.1)

*Using Logistic regression by Inter method. ** Using Logistic regression by backward conditional method