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ABSTRACT
Introduction  Replication of the nuclear genome is an 
essential step for cell division. Pathogenic variants in 
genes coding for highly conserved components of the 
DNA replication machinery cause Meier-Gorlin syndrome 
(MGORS).
Objective  Identification of novel genes associated with 
MGORS.
Methods  Exome sequencing was performed to 
investigate the genotype of an individual presenting with 
prenatal and postnatal growth restriction, a craniofacial 
gestalt of MGORS and coronal craniosynostosis. The 
analysis of the candidate variants employed bioinformatic 
tools, in silico structural protein analysis and modelling in 
budding yeast.
Results  A novel homozygous missense variant 
NM_016095.2:c.341G>T, p.(Arg114Leu), in GINS2 was 
identified. Both non-consanguineous healthy parents 
carried this variant. Bioinformatic analysis supports its 
classification as pathogenic. Functional analyses using 
yeast showed that this variant increases sensitivity to 
nicotinamide, a compound that interferes with DNA 
replication processes. The phylogenetically highly 
conserved residue p.Arg114 localises at the docking site 
of CDC45 and MCM5 at GINS2. Moreover, the missense 
change possibly disrupts the effective interaction 
between the GINS complex and CDC45, which is 
necessary for the CMG helicase complex (Cdc45/MCM2–
7/GINS) to accurately operate. Interestingly, our patient’s 
phenotype is strikingly similar to the phenotype of 
patients with CDC45-related MGORS, particularly those 
with craniosynostosis, mild short stature and patellar 
hypoplasia.
Conclusion  GINS2 is a new disease-associated gene, 
expanding the genetic aetiology of MGORS.

INTRODUCTION
Meier-Gorlin syndrome (MGORS) is character-
ised by a triad of clinical findings consisting of: 
(1) prenatal and postnatal growth retardation, (2) 
microtia, and (3) absent or hypoplastic patellae.1 
This disorder is caused by pathogenic variants in 
genes coding for evolutionarily conserved compo-
nents of the replication machinery of the nuclear 
genome—ORC1, ORC4, ORC6, CDT1, CDC6, 
GMNN, CDC45, MCM5 and DONSON.2–7 Six ORC 
proteins (ORC1–6), Cdc6, Cdt1 and a heterohex-
amer of MCM proteins (MCM2–7) form a prerep-
lication complex, which is activated by binding of 
Cdc45 and the heterotetramer GINS (GINS1–4) 
to MCM2–7.8 The resultant preinitiation CMG 

complex (Cdc45/MCM2–7/GINS) is a DNA heli-
case that separates the two strands of the DNA 
double helix at replication origins, subsequently 
enabling their replication.8

The genotype of individuals with MGORS 
requires at least one allele of genes encoding essen-
tial DNA replication factors allowing for some 
residual activity (hypomorphic variant).2–6 Further-
more, less severe phenotypes are often associated 
with two hypomorphic variants, while more severe 
phenotypes result from a combination of a hypo-
morphic and a loss-of-function variant.1 Never-
theless, in approximately 20% of individuals no 
pathogenic variants have been detected.1 Here, 
we describe the first patient with a homozygous 
disease-causing variant in GINS2, a subunit of the 
preinitiation CMG helicase, presenting with cranio-
synostosis and fulfilling the clinical diagnosis of 
MGORS.

METHODS
The family was enrolled with informed consent 
into the Genetics Basis of Craniofacial Malforma-
tions study. The individual’s phenotype was longi-
tudinally and systematically evaluated. Exome 
capture, sequencing and analysis of DNA extracted 
from peripheral blood cells of the proband and 
both parents were carried out as described in 
online supplemental methods. We analysed the 
data assuming complete penetrance, allowing for 
the possibility of either a de novo variant (domi-
nant) or biallelic inheritance (recessive). In silico 
protein analysis of CMG structures was performed 
for mutation prediction over stability and interac-
tions, as detailed in online supplemental methods. 
One patient variant was further characterised 
using budding yeast Saccharomyces cerevisiae, as 
described in online supplemental methods, online 
supplemental table 5, online supplemental table 6.

RESULTS
A 2-month-old girl was referred for genetic eval-
uation due to intrauterine growth restriction 
(IUGR), short stature, microcephaly and facial 
dysmorphisms. She was the only child of a non-
consanguineous healthy Portuguese couple with 
an unremarkable family history. During pregnancy, 
IUGR was diagnosed at the 29th week of gestation. 
Fetal structural abnormalities, infections and terato-
gens were excluded. She was born at 37+5 gesta-
tional weeks, by eutocic delivery with Apgar scores 
9 and 10, at first and fifth minutes. At birth, her 
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weight was 2260 g (1st centile; −2.2 SD), her length was 47 
cm (~10th centile) and her head circumference (HC) was 30.5 
cm (<1st centile; −3 SD). She had neonatal jaundice and mild 
hypotonia. Poor suction and feeding difficulties were noticed 
and gastro-oesophageal reflux was diagnosed. Newborn meta-
bolic screening was normal. Newborn hearing screening failed, 
but auditory-evoked potentials at age of 10 days were within the 
normal electrophysiological limits.

She presented with craniofacial dysmorphic features, which 
evolved with age (figure  1). Her head was microcephalic and 
brachycephalic and her neck was short. At 6 months, her face 
was round with a narrow forehead and a low hairline, mid-face 
hypoplasia and microretrognathia. Ears were small, low set and 
posteriorly rotated with an atretic external auditory canal. Eyes 
were prominent and palpebral fissures were downslanted. Her 
nose was short with a wide, depressed nasal bridge, a convex 
nasal ridge, hypoplastic nares, low insertion of the columella 
and long philtrum. Her mouth was small with downturned 
corners, full lips and a high narrowed palate. She also had short 

and tapering fingers, short toes, a sacral dimple, an anteriorly 
placed anus and hypopigmented macules on the abdomen and 
upper back. At 6 years of age, hypopigmented macules were also 
observed on the arms and legs.

A bilateral coronal craniosynostosis was confirmed by 
cranial CT performed at 5 months old (figure 1), and surgically 
corrected at 17 months. Delayed teeth eruption was observed, 
with the first tooth erupting after 16 months of age. Her height, 
weight and HC improved with age (online supplemental table 
1). Psychomotor development was adequate. During childhood, 
she had recurrent respiratory infections.

Extensive system-based investigation was performed. Left uret-
eropelvic ectasia was noticed during an abdominal and renoves-
ical ultrasound at 16 days. During the cardiological examination 
at 1 month of age, a patent foramen ovale and an atrial septal 
defect (ASD) of 5 mm with a left-right shunt were diagnosed. 
At 15 months, no ECG abnormalities were observed. Surgical 
closure of the ASD took place at 5 years and 9 months old. Four 
months before this surgery, she had an ostium secundum-type 
ASD of about 10 mm and a sinus venous-type ASD of about 5 
mm, resulting in a left-right shunt and dilated right cavities. A 
mild tricuspid regurgitation with a right ventricle/right auricle 
gradient of about 16 mm Hg had also been detected. A complete 
skeletal X-ray at 21 months did not show skeletal abnormali-
ties. Left wrist X-ray at 22 months demonstrated delayed bone 
age (10–12 months). Ophthalmological evaluation at 22 months 
diagnosed myopia. Lymphocyte immunophenotyping study at 2 
years and 10 months did not show quantitative changes suggestive 
of any immunodeficiency. Finally, knee radiography, performed 
at 7 years of age, showed hypoplastic patellae (figure 1).

Given prenatal and postnatal growth delay, bilateral coronal 
craniosynostosis, cardiac defects and craniofacial dysmorphic 
features, standard diagnostic genetic investigation was performed. 
Karyotype, chromosomal microarray and direct sequencing of 
the FGFR2, FGFR3 (exons 7 and 10) and TWIST did not identify 
pathogenic variants. Through exome sequencing, a homozygous 
missense variant NM_016095.2:c.341G>T, p.(Arg114Leu), was 
identified in the GINS2 gene (MIM*610609) as the most likely 
candidate genetic cause of the observed primordial dwarfism and 
craniosynostosis phenotype. Other variants in candidate genes 
(online supplemental table 2) were excluded from further exper-
imental studies. The single heterozygous variant in UBQLN3 
gene was reported in gnomAD at a low frequency (two heterozy-
gotes listed in this database). As for the compound heterozygous 
variants identified in four different genes, they were also under-
rated considering: (1) the lower deleterious score or inconsis-
tency between bioinformatic predictors (ANKRD11, RIF1 and 
SYNJ2); and (2) the protein’s known biological function did not 
correlate with the patient’s phenotype (AHNAK). The cumula-
tive size of all runs of homozygosity (ROH) was estimated at 
18.6 Mb, representing <1% of the genome and excluding any 
close consanguineous relationship between the parents. The 
inspection of ROH showed that the GINS2 candidate variant 
was located in the patient’s largest ROH (2.04 Mb) detected 
through exome sequencing data; only four other smaller ROHs 
(varying between 1.17 and 1.66 Mb) were detected. Populational 
data (gnomAD9) demonstrated that this variant has an extremely 
low frequency (0.020%; 7/34 498 in the ‘Latino’ population), 
which can be extrapolated using the Hardy-Weinberg equi-
librium to a frequency of homozygotes of about 1/9.72×107. 
Interestingly, the presence of homozygous variants in GINS2 
is extremely rare in gnomAD9: so far, only two missense (and 
no loss-of-function) homozygous variants have been listed. Of 
note, this is a small gene with an open reading frame of 555 bp. 

Figure 1  Clinical findings of an individual with a homozygous missense 
GINS2 variant. (A) Craniofacial features of Meier-Gorlin syndrome at 6 
years of age, including microtia, thin eyebrows, a narrow nose with a 
convex nasal ridge, microstomia, full lips and microretrognathia. (B) Lateral 
radiographic view of both knees at 7 years of age, showing hypoplastic 
patellae. (C) 3D reconstruction of cranial CT scans at 5 months old, 
demonstrating an incomplete premature fusion of coronal sutures. L, left 
knee; R, right knee.
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Finally, the substitution of the highly conserved arginine (down 
to yeast, considering 11 species; online supplemental figure 
1) by a leucine, corresponding to a moderate physicochemical 
difference (Grantham dist: 102 (0–215)), is classified by bioin-
formatic analysis as likely pathogenic (PolyPhen-2, SIFT, Muta-
tionTaster). The Combined Annotation Dependent Depletion 
(CADD) score was 28.3.10

Protein structural analysis shows that this missense variant 
affects one residue (p.Arg114) located in an alpha helix domain 
and in close proximity to CDC45, MCM5 and GINS3 polypep-
tides (online supplemental figure 2A). Given the availability of 
its three-dimensional structure, both from humans and S. cerevi-
siae, we analysed the variant’s impact on protein interaction and 
stability. In different protein structures (or conformations) from 
S. cerevisiae, the corresponding residue—p.Arg142—establishes 
several hydrogen bonds with other neighbouring amino acids 
from Psf2 (GINS2) itself but also with Cdc45 (one conserved 
residue in both species) and Mcm5 (an isofunctionally substituted 
residue) (online supplemental figure 2B–D). Structure prediction 
by comparative modelling of protein three-dimensional struc-
tures suggested that the arginine to leucine substitution disrupts 
all of these interactions (online supplemental figure 2E–G).

To evaluate the functional impact of the GINS2 p.(Ar-
g114Leu) substitution, S. cerevisiae strains expressing Psf2 p.(Ar-
g142Leu) (Psf2-R142L) were generated. No obvious differences 
in cell doubling time or cell cycle distribution were observed 
between strains expressing wild-type Psf2 (Psf2-WT) and those 
expressing Psf2-R142L on unperturbed growth (figure  2A,B). 
However, testing the effects of a series of compounds that induce 
DNA replication stress revealed that nicotinamide (NAM), 
a compound that causes DNA damage through inhibition of 

histone deacetylases of the sirtuin family, impaired the growth 
of Psf2-R142L-expressing cells (figure  2C,D). NAM-induced 
inhibition of the sirtuins Hst3 and Hst4 causes DNA damage in 
yeast. Moreover, hst3∆ hst4∆ double mutation causes synthetic 
lethality when combined with epitope-tagged versions of DNA 
replication factors, indicating that subtle defects in DNA repli-
cation protein function can be detected using elevated NAM 
sensitivity as a read-out. While exposure to NAM resulted in the 
accumulation of cells in late S and G2 phases of the cell cycle 
for both Psf2-WT and Psf2-R142L-expressing cells (figure 2B), 
Psf2-R142L-expressing cells accumulated earlier in S phase than 
those expressing Psf2-WT, indicative of impaired DNA replica-
tion. Together, these observations indicate that the GINS2 p.(Ar-
g113Leu) substitution negatively impacts the function of the 
corresponding protein.

So far, no other patient with GINS2-related MGORS has 
been identified, specifically using GeneMatcher or by contacting 
experts in this syndrome (see the Acknowledgements section for 
further details), corroborating the rarity of MGORS caused by 
pathogenic GINS2 variants.

DISCUSSION
We describe a patient with growth delay, craniofacial dysmor-
phisms and craniosynostosis, and in whom a homozygous 
missense variant in the GINS2 gene was identified. Although it 
is classified as of unknown clinical significance using the guide-
lines proposed by the American College of Medical Genetics and 
Genomics (ACMG), several lines of evidence support that this 
variant in GINS2 is an additional cause of MGORS.

First, the homozygous p.(Arg114Leu) variant in GINS2 is likely 
deleterious. This variant was identified in both healthy parents 
in heterozygosity. Since they are not consanguineous, they may 
share a very distant common ancestor, which is consistent with 
the homozygosity data. The high degree of intolerance of GINS2 
to homozygous variants (even of missense type) is suggestive of 
high selective pressure, thus supporting the possibility of GINS2 
being a disease-causing gene. Additionally, the in silico analysis 
also supported the pathogenicity of the p.(Arg114Leu) substi-
tution, which occurred in a highly conserved residue in GINS2. 
Finally, modelling of the p.(Arg114Leu) substitution in the 
budding yeast S. cerevisiae showed that in yeast this substitu-
tion does not affect growth either under normal conditions or 
in the presence of hydroxyurea or methyl methanesulfonate, 
but confers sensitivity to DNA replication stress caused by the 
histone deacetylase inhibitor NAM, consistent with partially 
defective functions of Psf2 (yeast GINS2).

Second, this novel GINS2 variant was identified in an indi-
vidual with clinical features reminiscent of MGORS (online 
supplemental tables 3 and 4). She has the cardinal features of 
this syndrome, such as prenatal and postnatal growth restric-
tion, patellar hypoplasia, microtia and coronal craniosynostosis. 
Additionally, she has overlapping skeletal, cardiac, gastrointes-
tinal and anal abnormalities, and normal intelligence.

Third, the functional interactions of GINS2 and its role in 
DNA replication strengthen its causality in MGORS. GINS2 
(OMIM*610609; GINS complex subunit 2) is part of the 
tetrameric GINS complex—composed of GINS1/GINS2/GINS3/
GINS4—which is conserved in eukaryotes, from S. cerevisiae to 
Homo sapiens.11–13 This complex was shown to play an essen-
tial role in the initiation of DNA replication and progression 
of DNA replication forks,11 12 unwinding DNA for polymerase 
epsilon and binding preferentially to single-stranded DNA in 
the replicative helicase complex.14 The GINS tetramer interacts 

Figure 2  Strains of yeast expressing Psf2-R142L show reduced growth 
and altered cell cycle progression in the presence of nicotinamide (NAM). 
(A) OD630 of yeast cultures was monitored for 48 hours and doubling time 
was derived from exponential regression of the resulting growth curve 
(n=3). (B) Cell cycle profiles of actively replicating yeast cultures were 
assessed by flow cytometry after 8 hours of growth in the presence or 
absence of 20 mM NAM. (C) Serial fivefold dilutions of yeast were grown 
on solid media in the presence or absence of 100 mM NAM, 100 mM 
hydroxyurea (HU) or 0.01% methyl methanesulfonate (MMS) at 30°C 
for 72 hours (n=3). (D) Yeasts were cultured for 48 hours in the presence 
of a range of concentrations of NAM. Growth in the presence of NAM is 
presented as a fraction of growth in the absence of NAM (n=3). WT, wild 
type.
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with CDC45 and MCM proteins to form the CMG helicase. 
The p.(Arg114Leu) substitution is located at the docking site of 
MCM5 and CDC45 at GINS2, which involves its N-terminal 
B-domain and its helical domain.15 The analysis of protein struc-
tural data suggested that this novel variant might compromise 
the interaction between GINS2 and both CDC45 and MCM5. 
Considering these subtle changes, we anticipated that the p.(Ar-
g114Leu) missense variant might be hypomorphic, thus main-
taining the partial function of GINS2. This is supported by the 
analysis of the equivalent Psf2-R142L substitution in yeast, 
which exhibited normal growth in several experimental condi-
tions but a specific defect when exposed to NAM (figure 2).

Indeed, deletion of Psf1 in mice (GINS1 in humans) results in 
early embryonic lethality.12 Of note, Psf1 is largely expressed in 
active stem cell systems in mice, including adult bone marrow, 
thymus, testis and ovary, but not the remaining adult tissues.12 
Interestingly, five patients with compound heterozygous variants 
in GINS1 were reported with neutropenia, natural killer cell 
deficiency and growth delay.16 Missense variants and variants 
located in the 5′ untranslated region resulted in lower GINS1 
levels in patients’ cells, which showed impaired GINS complex 
assembly, basal replication stress, impaired checkpoint signalling, 
defective cell cycle control and genomic instability, which could 
be rescued by wild-type GINS1.16 Although our patient did not 
present immunodeficiency, growth retardation was evident, in 
particular in utero and during early infancy.

Our patient’s phenotype is strikingly similar to the pheno-
type of individuals with CDC45 variants, particularly those 
who presented with craniosynostosis and mild MGORS 
features. Interestingly, pathogenic homozygous or compound 
heterozygous variants in the CDC45 gene result in the distinc-
tive MGORS clinical triad and frequently in craniosynostosis 
(OMIM#617063; MGORS7).5 Noteworthy, our patient had 
both patellae, though hypoplastic, and short stature was mild. 
Additionally, she developed cardiac and anal abnormalities. 
Also, pathogenic variants in MCM5 and MCM4, other genes of 
the CMG helicase complex, were respectively associated with 
MGORS6 and a distinct growth delay phenotype.17–20 Based on 
the functional interaction between the CMG complex and DNA 
polymerases, we propose that changes in this complex would 
affect DNA replication as a possible pathophysiological mech-
anism for GINS2-related MGORS. In line with this assump-
tion, biallelic hypomorphic missense variants in GINS3 have 
been reported just recently, as an additional molecular cause of 
MGORS, suggesting defects in GINS genes as a cause of this clin-
ical entity (Kannu et al, personal communication, 2020).

In summary, we report an individual with a homozygous 
likely disease-causing variant in GINS2 and with clinical features 
overlapping those of MGORS, including prenatal and post-
natal growth delay, hypoplastic patellae and typical craniofa-
cial dysmorphisms, such as microtia and craniosynostosis. The 
recognition of the GINS2 gene as a novel causative gene of 
MGORS is crucial for the anticipatory multidisciplinary care of 
affected individuals, as well as for genetic counselling, enabling 
parents the possibility of prenatal or preimplantation diagnosis. 
The apparent rarity of GINS2 variants associated with MGORS 
may be explained because the phenotype arises only in a narrow 
window of disturbed GINS2 function, intermediate between 
lethal and normal outcomes.
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