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Background: Radiogenomics of pediatric medulloblastoma (MB) offers an opportunity for MB risk stratification, which may aid 
therapeutic decision making, family counseling, and selection of patient groups suitable for targeted genetic analysis.

Purpose: To develop machine learning strategies that identify the four clinically significant MB molecular subgroups.

Materials and Methods: In this retrospective study, consecutive pediatric patients with newly diagnosed MB at MRI at 12 international 
pediatric sites between July 1997 and May 2020 were identified. There were 1800 features extracted from T2- and contrast-enhanced 
T1-weighted preoperative MRI scans. A two-stage sequential classifier was designed—one that first identifies non-wingless (WNT) and 
non–sonic hedgehog (SHH) MB and then differentiates therapeutically relevant WNT from SHH. Further, a classifier that distinguishes 
high-risk group 3 from group 4 MB was developed. An independent, binary subgroup analysis was conducted to uncover radiomics 
features unique to infantile versus childhood SHH subgroups. The best-performing models from six candidate classifiers were selected, 
and performance was measured on holdout test sets. CIs were obtained by bootstrapping the test sets for 2000 random samples. Model 
accuracy score was compared with the no-information rate using the Wald test.

Results: The study cohort comprised 263 patients (mean age 6 SD at diagnosis, 87 months 6 60; 166 boys). A two-stage classifier 
outperformed a single-stage multiclass classifier. The combined, sequential classifier achieved a microaveraged F1 score of 88% and 
a binary F1 score of 95% specifically for WNT. A group 3 versus group 4 classifier achieved an area under the receiver operating 
characteristic curve of 98%. Of the Image Biomarker Standardization Initiative features, texture and first-order intensity features 
were most contributory across the molecular subgroups.

Conclusion: An MRI-based machine learning decision path allowed identification of the four clinically relevant molecular pediatric 
medulloblastoma subgroups.
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largely due to small sample sizes across a single or a few cen-
ters (4,5). Recently described Image Biomarker Standardization 
Initiative (IBSI)–based radiomics features enable quantitative 
characterization of tumors, for example: shape (tumor size, vol-
ume, surface area, sphericity), first order statistics (distribution 
of voxel intensities), or texture (gray-level distribution within an 
image) in a standardized and replicable manner (16,17).

Herein, we assembled a large pediatric MB cohort across 
12 major centers, including in the United States, Canada, 
and the United Kingdom, to develop IBSI-based radioge-
nomics strategies that identify the four clinically significant 
MB molecular subgroups.

Materials and Methods

Study Population
We conducted a multicenter (Table E1 [online]) retrospective 
study after institutional review board approval (number 51059). 
Our study was compliant with the Health Insurance Portabil-
ity and Accountability Act of 1996. Consent was waived due 
to minimal risk to participants. The inclusion criteria were as 
follows: consecutive patients with pathologically confirmed MB 
from July 1997 to May 2020; age 19 years or less at diagnosis; 
preoperative MRI scans with both axial contrast-enhanced T1-
weighted and T2-weighted sequences; and molecular subgroup 
analysis. Patients with nondiagnostic MRI scans were excluded. 
A subset of the participants was included in prior qualitative and 
non–IBSI-based MRI computational analysis, distinct from the 
present study (4,18,19).

Imaging Techniques
A brain MRI was performed with at 1.5- or 3-T magnet (GE 
Healthcare, Siemens Healthineers, Philips Healthcare, and 
Toshiba Canon Medical Systems USA). The T2-weighted MRI 
parameters were as follows: turbo spin-echo constant level ap-
pearance and sensitivity encoding, fast spin echo, periodically 
rotated overlapping parallel lines with enhanced reconstruc-
tion, syngo BLADE (Siemens Healthineers), driven equilib-
rium radio frequency reset pulse, and a section thickness of 
0.8–5 mm. T1-weighted MRI comprised either three-dimen-
sional isovolumetric or two-dimensional spin-echo imaging, 
with a section thickness of 0.8–5 mm.

Molecular Analysis
The four MB molecular subgroups (WNT, SHH, group 3, 
group 4) were determined with fluorescence in situ hybrid-
ization, specialized testing (including RNA methylation array 
and DNA methylation array), and next-generation sequencing 
panels (13,20–22).

Immunohistochemistry of Group 3 and Group 4
Given the sparse vascular information on group 3 and group 4 
(14,15,23), and to gain insight into potential correlative image 
phenotypes, we conducted immunohistochemistry on eight ran-
dom formalin-fixed specimens for endothelial cells (ETS-related 
gene antibodies, 1:1000; Abcam; product #ab92513) and tight 
junction proteins (Claudin-5 antibodies, 1:500; Thermo Fisher 

MRI predictors of medulloblastoma (MB) molecular sub-
group offer a noninvasive, presurgical path toward MB risk 

stratification (1–5). Molecular subgroup status confers prognosis 
and potentially a key to more precise, tailored therapy (6). Stud-
ies have also shown incidence of perioperative complications (eg, 
cerebellar mutism), and the value of extent of surgical resection 
is highly subgroup dependent, highlighting a need for reliable, 
presurgical MB-subgroup prediction (7–9). However, molecular 
testing is unavailable outside major cancer centers, which limits 
efficient triage of trial candidates and pursuit of optimal treat-
ment strategies (9–12). Moreover, the upcoming revised World 
Health Organization classification of central nervous system tu-
mors that will mandate robust molecular subgrouping presents 
a considerable challenge in many clinical pathology laboratories, 
particularly those in under-resourced geographic centers.

Although rarest among MB, wingless (WNT) mutations en-
counter the best outcomes and, thus, are most likely to benefit 
from therapy modification, including lower risk surgery or ex-
clusion of cranial irradiation associated with long-term cognitive 
dysfunction. Unfortunately, immunohistochemistry alone may 
be insufficient for WNT characterization, and more advanced 
methods (eg, CTNNB1 exon 3 sequencing, DNA methylation, 
gene profiling) can be costly or unavailable (10,11). Among 
the four sonic hedgehog (SHH) molecular subtypes (SHH-a,  
SHH-b, SHH-g, SHH-d), adult SHH mutations (SHH-d) gen-
erally show favorable outcomes (6). However, among infantile 
SHH (SHH-b/SHH-g), SHH-g might not require intensified 
therapy, compared with an older childhood SHH-a that often 
harbors a high-risk TP53 mutation (6). Finally, group 3 and 
group 4 tumors are often provisionally bundled as non-WNT 
and non-SHH MB due to lack of prevalent identifying driver 
mutations and require advanced processing with clustering, gene 
expression, and DNA methylation profiling (6,13,14). Unfortu-
nately, group 3 tumors confer the worst prognosis and are prime 
targets for clinical trials and alternative therapies (15).

Machine learning offers an opportunity to mine high- 
dimensional image features and uncover quantitative features 
that aid precision analytics. Prior studies that piloted MB radi-
ogenomics approaches found limited success and generalizability 

Abbreviations
AUC = area under the receiver operating characteristic curve, IBSI = Image 
Biomarker Standardization Initiative, MB = medulloblastoma

Summary
MRI-based machine learning designed with sequential decision steps  
reliably differentiated four unique medulloblastoma molecular subgroups.

Key Results
 n A sequential two-stage radiomics classifier trained on MRI scans 

of 263 patients from a multinational cohort of 12 pediatric centers 
achieved an F1 score (a measure of accuracy) of 88% to identify 
the four medulloblastoma (MB) molecular subgroups.

 n An MRI radiogenomics approach reliably identified a therapeuti-
cally relevant, low-risk wingless (WNT) MB molecular subgroup (F1 
score, 95% for WNT MB).

 n Machine learning uncovered quantitative MRI features within the sonic 
hedgehog (SHH) MB subgroup, such as the high-risk, childhood SHH.
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Scientific; product #34–1600). We calculated staining index  
as the product of intensity and fraction of positive tumor cells by 
using Aperio ImageScope (Leica) (24).

Feature Extraction and Reduction
Tumor volume was delineated on MRI scans with consensus re-
view by board-certified neuroradiologists (K.W.Y. and A.J., with 
.10 years of experience). We extracted 1800 IBSI-based (16,17) 
features using PyRadiomics (2.2.0.post71gac7458e) within the 
quantitative image feature pipeline (Appendices E1, E2 [online]) 
(25). We applied z-score intensity normalization before feature 
extraction, as it improves robustness of MRI-based radiomics 
features and classification (26). Extracted features underwent 
sparse regression analysis by using a least absolute shrinkage and 
selection operator on RStudio software (version 1.2.5033) (Ap-
pendix E2 [online]).

Primary, Two-Stage Multiclass Classifier
We developed a two-stage model, with each step comprising a 
binary classifier for three classes (WNT, SHH, non-WNT and 
non-SHH). Given the molecular overlap, group 3 and group 4 
were combined as non-WNT and non-SHH (hereafter, group 
3/4). The first stage discriminated WNT/SHH from group 3/4. 
We then built a second binary classifier to distinguish WNT 
from SHH. For each stage, we conducted feature reduction for 

each paired subgroup. Using the corresponding reduced-feature 
set, we identified the best-performing algorithm among six can-
didate classifiers (support vector machine, logistic regression,  
k-nearest neighbor, random forest, extreme gradient boosting, 
and neural network) at each stage (Appendix E2 [online]). Train-
ing and test sets were randomly allocated from the total cohort 
in a 75:25 ratio. The training cohort underwent resampling to 
correct for sample imbalance. Optimal classifier parameters were 
estimated with a grid search (Table E2 [online]). Relative influ-
ences of imaging features were calculated with logistic regression 
based on coefficients used in the weighted sum.

In the combined, final model, a holdout test set underwent 
classification in the first stage whereby its outputs were subse-
quently passed onto a second-stage classifier. Figure 1 illustrates 
the staged classifier configuration. Overall performance was as-
sessed for the combined stages. The final radiomics multiclass 
classifier was guided by maximizing the F1 score, measured as 
the weighted average between the precision (positive predictive 
value) and recall (sensitivity). The F1 score is also known as the 
Dice similarity coefficient.

Single-Stage Multiclass Classifier Model
To compare the performance of our primary model to that of a 
simpler single-stage model, we used the same six candidate clas-
sifiers to perform a multiclass classification of WNT, SHH, and 

Figure 1: Flowchart shows workflow for training and testing of a two-stage classifier. Each stage consists of a binary classifier optimized for its own respective reduced-
feature set obtained by sparse regression analyses. The first stage passes the subgroup composed of wingless (WNT) and sonic hedgehog (SHH) to the second stage for 
further separation. CE = contrast enhanced, LASSO = least absolute shrinkage and selection operator, NN = neural network.
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group 3/4 MB. We performed a single feature-reduction step for 
the entire cohort and for model training and testing.

Subgroup Classifier Models
Due to ambiguities in molecular diagnosis, not all non-WNT 
and non-SHH tumors were eligible for group 3 versus group 4 
classifier training. Thus, in the sequential model, we had clas-
sified these observations under the group 3/4 label. To explore 
the possibility of discriminating group 3 from group 4, we con-
structed an independent binary classifier using a methylation-
confirmed reduced cohort (group 3 and group 4, n = 48 and n = 
64, respectively). Furthermore, we conducted an independent 
binary analysis to distinguish infantile (age, 60 months) ver-
sus childhood (age, .60 months) SHH (n = 50 and n = 33, 
respectively).

Statistical Analysis
P , .05 was considered significant. A statistics expert (S.W.W., 
with 2 years of experience) analyzed performance metrics.  
CIs were obtained by bootstrapping the test sets for 2000 
random samples. Model accuracy score was compared with  
no-information rate (prevalence rate) using the Wald test. Clas-
sifier development was performed using Python 3.8.5; feature 
reduction and statistics were calculated with RStudio, version 

1.2.5033. The F1 score was calculated as the weighted average  
between the precision score, positive predictive value, and  
recall score (sensitivity).

Code Availability
Code for data processing and analysis is provided at https://
github.com/sandymule/tumor-classification/tree/master/MB_Molec/
final_for_submission.

Results

Patient Cohort
A total of 263 patients (mean age at diagnosis, 87 months 6 60 
[SD]; 166 boys) met the inclusion criteria. Twenty-six patients 
(9.9%) had WNT MB, 83 (31.6%) had SHH MB, and 154 
(58.6%) had group 3/4 MB (Table 1); mean ages at diagnosis 
were 121, 75, and 88 months, respectively. Table 1 summarizes 
patient demographics and molecular subgroup distribution.

Model Development
Tables 2 and 3 summarize model performances. Figure 2 illus-
trates sample probability outputs of the holdout test sets on the 
four MB subgroups. Table E2 (online) identifies the top retained 
features that contributed to predictive modeling within each 
classifier, including definitions and qualitative interpretations.

First-Stage Classifier Model: WNT and/or SHH versus 
Group 3/4 MB
In the first stage, least absolute shrinkage and selection opera-
tor regression identified 48 relevant IBSI-based radiomic fea-
tures (Table E3 [online]), with two clinical variables, 15 from 
T1-weighted MRI and 31 from T2-weighted MRI, including 
one shape, seven first-order, and 29 textural (10 gray-level 
co-occurrence matrix, 14 gray-level zone size matrix, and five 
gray-level run length matrix) features. Among the six classifier 
models, neural network exhibited the best performance (F1 
score, 0.90) (Table E4 [online]). Sensitivity, specificity, accu-
racy, and area under the receiver operating characteristic curve 
(AUC) of the neural network were 88% (37 of 42 patients), 
88% (21 of 24 patients), 88% (58 of 66 patients; CI: 79, 95), 
and 96% (range, 89%–99%), respectively.

Second-Stage Classifier Model: WNT versus 
SHH MB
The second least absolute shrinkage and selec-
tion operator regression for WNT versus SHH 
classification identified seven features. These 
features entailed one clinical feature, three 
from T1-weighted MRI and three from T2-
weighted MRI, including two first-order and 
four textural (two gray-level co-occurrence 
matrices and two gray-level run length matri-
ces) features. Among the six classifier models, 
the neural network showed the highest perfor-
mance (F1 score, 0.96 [CI: 86, 100]) (Table E4  
[online]), with sensitivity, specificity, accuracy, 
and AUC of 96% (22 of 23 patients), 80% 

Table 1: Comparison of Clinical Features in Patients with 
WNT, SHH, and Group 3/4 Medulloblastoma

Characteristic WNT SHH Group 3/4 P Value
No. of patients 26 (9.9) 83 (31.6) 154 (58.6)
Age*
 Mean 121 75 88 .002
 Median 110 47 82
 Range 0–401 0–252 3–246
 SD 78 65 51
Male sex 10 (38.5) 42 (50.6) 114 (74.0) ,.001
Female sex 16 (61.5) 41 (49.4) 40 (26.0)

Note.—Data are numbers of patients with percentages in 
parentheses, unless otherwise stated. SHH = sonic hedgehog, 
WNT = wingless.
* Age is in months at diagnosis.

Table 2: Binarized and Summated Performance Metrics of the Final 
Sequential Classifier

Positive Class Cohort Sensitivity Specificity F1 Score Accuracy NIR
Binary
 Group 3/4 88 88 90 (82, 96) 88 (79, 96) 64
 SHH 86 90 77 (56, 91) 89 (80, 97) 21
 WNT 90 100 95 (80, 100) 98 (95, 100) 15
Multiclass
 Micro-average 88 94 88 (76, 96) 92 (80, 97) …

Note.—Data are percentages, and data in parentheses are 95% CIs. The final 
sequential classifier uses a staged neural network binary classifier for wingless 
(WNT) and sonic hedgehog (SHH) versus group 3/4, followed by a neural network 
binary classifier for WNT versus SHH. NIR = no-information rate.
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(four of five patients), 93% (26 of 28 patients; CI: 79, 100), 
95% (CI: 80, 100), respectively. The top three relevant features  
as defined by IBSI included T1-Correlation (gray-level co- 
occurrence matrix), T2-Interquartile Range (first -order intensity),  
and T2-Kurtosis (first-order intensity) (Fig 3, Table E2 [online]) 
(16,17). Figure 4 illustrates MRI examples of qualitative features 
of WNT and SHH tumors.

Combined Sequential Model
Finally, the two classifiers were performed sequentially such that 
the output of the initial neural network classifier containing the 
combined WNT and SHH group was fed to the second neural 
network classifier (Table 3). The metrics for the combined model 
were as follows: sensitivity, 88% (58 of 66 patients); specificity, 
94% (124 of 132 patients); accuracy, 92% (182 of 198 patients; 

Figure 2: Examples of probability output on contrast-enhanced T1-weighted (left) and T2-weighted (right) MRI scans from the medulloblastoma (MB) test 
subset that did not participate in the model development. (A) Results of a staged primary classifier model are shown with probability outputs of non-wingless 
(WNT) and non–sonic hedgehog (SHH) and subsequent outputs of WNT and SHH generated from WNT and SHH (Fig 2 continues).
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80%–97%); and F1 score, 88% (76%–96%). Accuracy for the 
final model was compared with the no-information rate and was 
better than random guessing for all subgroups (P , .001, Wald 
test). The sequential model outperformed a single-stage model 
trained to classify among WNT, SHH, and group 3/4 simultane-
ously (Table E5 [online]).

Subgroup Classifier Models
For infantile versus childhood SHH analysis, 
feature reduction identified 15 features (nine 
from T1-weighted MRI and six from T2-
weighted MRI). The random forest algorithm 
achieved the highest performance, yielding a 
sensitivity of 83% (five of six patients), speci-
ficity of 93% (14 of 15 patients), accuracy of 
90% (19 of 21 patients; CI: 76, 100), and 
AUC of 89% (CI: 47, 99) (Table 3). Predic-
tive features for distinguishing between in-
fantile SHH versus childhood SHH included 
T1-Gray Level Nonuniformity, Normalized; 
T1-Zone Entropy; and T2-Inverse Difference 
Moment, Normalized (Figure E1 [online], 
Table E2 [online]).

For group 3 versus group 4 analysis, feature 
reduction identified 16 features (one clinical 
variable, nine from T1-weighted MRI and six 
from T2-weighted MRI), including one shape, 
seven first order, and seven textural (three gray-
level co-occurrence matrix, three gray-level size 
zone matrix, and one gray-level run length 
matrix) features. An extreme gradient boost-
ing classifier produced the highest metrics, 
with a sensitivity of 93% (14 of 15 patients), 
specificity of 92% (12 of 13 patients), accu-
racy of 93% (26 of 28 patients; CI: 82, 100), 
and AUC of 98% (CI: 85, 100) (Table 3). Im-
portant predictors for distinguishing group 3 
and group 4 included T1- and T2-Mean Voxel 
Intensity, as well as T1-Run Length Nonuni-
formity (Fig 5, Table E2 [online]).

Immunohistochemistry Analysis of Group 3 
and Group 4 MB
The degree of ETS-related gene endothe-
lial staining was greater for group 4 (n = 4) 
than group 3 (n = 4; P = .03, Wilcoxon rank-
sum) (Fig E2 [online]). There was no signifi-
cant difference in the Claudin-5 expression 
between the group 3 and group 4 tumors  
(P = .69). Figure 6 illustrates MRI examples 
of group 3 and 4 tumors and their correlative 
vascular histologic markers.

Discussion
Molecular subgroup information is a key to 
tailored therapy for pediatric medulloblas-
toma (MB) (12,27). Although molecular 
testing currently serves as the only validated 
means of attributing risk, it is not uniformly 

accessible. A validated image-based option could offer a cost- 
effective alternative or an orthogonal path to subgroup predic-
tion (12,27). Herein, we applied machine learning on presurgical  
MRI scans from 12 pediatric centers to construct decision  
algorithms predictive of the four MB molecular subgroups.

Figure 2: (continued) (B) Examples of tumors from an independent binary classifier model that differenti-
ates between group 3 and group 4 are shown.
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On the basis of human visual inspection, studies have sug-
gested tumor location and enhancement patterns might infer 
the MB subgroup, albeit with mixed performances (18,19,28). 
Since then, a small cohort study by Iv et al (4) described potential  
for machine learning, despite limited predictability (AUCs, 
70%–83%) on a subset of MB subgroups (2,5). Because their 
pilot work preceded radiomics standardization, the computed 
features are nonreplicable and incongruous with the current 
IBSI standards (16,17). More recently, Yan et  al (5) proposed 
a classification scheme better predictive of WNT (AUC, 83%) 
but less robust on other subgroups (AUCs, ,70%), while deep-
learning approaches suggested by Chen et al (2) lacked feature 
interpretability and had a lower predictive performance than the 
present study (4).

Herein, we describe a staged approach that outperforms all 
earlier approaches, with high predictive performance across all 
subgroups (2,4,5). Using the largest MB cohort to date, we 
combined multiple radiomic models in a clinically rational 
design that optimizes the classification performance at a level 
consistent with modern advanced genomic testing (13). We 

achieved this by prioritizing the less aggressive WNT identi-
fication, as this group could benefit most from less aggressive 
surgery or reduced neurotoxic therapies. We also distinguished 
high-risk group 3 from group 4 and identified potential fea-
tures that underlie a high-risk, childhood SHH subgroup, that 
is, the a-SHH group.

We found that intensity-based IBSI features contributed to 
the differentiation between WNT and SHH. For example, T1-
Correlation, a global measure of homogeneity, is greater for 
SHH but lower for WNT. Similarly, Patay et al (29) described 
more heterogeneous contrast enhancement of WNT compared 
with SHH (19). WNT tumors often manifest vascular fragility 
with blood-brain barrier breakdown, which might also render 
tumor intensities more heterogeneous (14,15,23). Prior stud-
ies have suggested that group 4 tumors enhance less in volume 
than group 3, regardless of degree of T1-shortening (18,19,28). 
Counterintuitively, the average gray values (T1- and T2-Mean) 
were higher for group 4 than group 3. Higher vascular density, 
as suggested by ETS-related gene staining, of group 4 might cre-
ate a tumor environment with higher T1-Mean Voxel Intensity, 

Figure 3: (A) Bar plot shows the relative influence as calculated with logistic regression of the seven reduced features for the second stage, a binary classifier trained  
to distinguish wingless (WNT) from sonic hedgehog (SHH) medulloblastoma. (B–D) Density plots of the top three Image Biomarker Standardization Initiative features, 
including (B) T1-Correlation, (C) T2-Kurtosis, and (D) T2-Interquartile Range.
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possibly from paramagnetic iron within densely packed blood 
volume. In our proxy classifier of infantile versus childhood 
SHH, infantile SHH showed global heterogeneity (T1-Zone 
Entropy), particularly with clusters of related voxels (T1-Size 
Zone Nonuniformity, Normalized) that might reflect nodular 
architecture known to occur with SHH-g (6).

There are many clinical implications. Lesions that lateralize to 
cerebellar peduncle, and, thus, are at higher risk of mutism, may 
benefit from biopsy as WNT tumors may respond to chemo-
radiation alone (9,18). The availability of preoperative image 
phenotypes predictive of WNT could potentially offer a surgeon 
the option of less invasive or lower risk surgery. Preoperative 

Figure 4: Examples of axial contrast-enhanced T1 MRI scans of wingless (WNT) and sonic hedgehog (SHH) medulloblastoma. T1-Correlation, 
a global measure of homogeneity, was greater for SHH on contrast-enhanced T1-weighted MRI scans. At a macroscopic level, SHH tumors ap-
pear to have more homogeneous distribution of high signal intensity across pixels on T1-weighted MRI scans compared with more heterogeneous 
enhancement of WNT tumors, which might relate to higher vascular fragility and associated hemorrhagic components. Note that hemorrhagic fluid-
level (*) and stippled and curvilinear foci of enhancement (arrows) are seen in the patient with WNT tumor.

Table 3: Binarized and Summated Performance Metrics of the Six Classifiers for Group 3 versus Group 4 and Infantile versus 
Childhood SHH Classifiers

Independent Binary Task and Classifier Sensitivity Specificity Accuracy F1 Score AUC
Group 3 versus group 4 
 Support vector machine 73 92 82 82 95
 Logistic regression 93 92 93 93 93
 K-nearest neighbor 73 77 75 76 87
 Random forest 73 85 79 79 91
 eXtreme gradient boost 93 92 93 93 98
 Neural network 80 85 82 83 92
SHH infantile versus childhood 
 Support vector machine 33 100 81 50 77
 Logistic regression 50 93 81 60 90
 K-nearest neighbor 50 93 81 60 89
 Random forest 83 93 91 83 89
 eXtreme gradient boost 17 87 67 22 68
 Neural network 50 100 86 67 89

Note.—Data are percentages. Performance metrics for these binary classifiers are based on the holdout test. AUC = area under the receiver 
operating curve, SHH = sonic hedgehog.
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differentiation of group 3 versus group 4 might also assist therapy 
planning. For example, group 4 tumors, typically more prone to 
cerebellar mutism, might qualify for neoadjuvant chemotherapy 
that first aims to decrease tumor size before safer, delayed surgi-
cal resection (7,8,30). Infantile SHH subgroup may also qual-
ify for bypassing radiation therapy compared with higher risk  
SHH-a (31–33). Thus, at ages where there is considerable over-
lap between these groups, a radiomic classifier might serve as an 
adjunct to methylation arrays.

We report several limitations. First, a larger sample size 
would be desirable. Given the lack of public MB image data 
sets, we compiled the largest MB cohort from 12 pediatric in-
stitutions to conduct machine learning on real-world images, 
thereby extending model generalizability. Also, MRI scans were 
obtained from heterogeneous protocols and scanners without 
phantom use. To mitigate variability in signal intensities across 
acquisition parameters, we performed z-score normalization 
before feature extraction. While we report results of presurgi-
cal imaging, future iterations that incorporate diffusion, MRI 

fingerprinting, or perfusion might bolster model performance 
(18,19). We extracted radiomics features from isolated tumor 
volume and, thus, did not incorporate tumor-brain spatial rela-
tionships. Future studies should consider combining radiomics 
and deep learning to assimilate both tumor and global brain 
spatial features.

In conclusion, we present an MRI-based machine learning 
decision path predictive of the four clinically relevant molecu-
lar pediatric medulloblastoma subgroups. We describe con-
tributory Image Biomarker Standardization Initiative–based 
radiomics signatures across the subgroups for artificial intel-
ligence transparency and to gain insight into tumor pheno-
types. While tumor diagnosis will continue to rely on tissue 
specimens, a validated machine learning option, including 
future imaging genomics investigations that combine pro-
spective model developments and deployment, could offer a 
global, cost-effective alternative or adjunct to molecular-based 
risk assessment and widen future opportunities for risk-tailored 
therapies and trial design.

Figure 5: (A) Bar plot shows the relative influence as calculated by logistic regression of the top 10 reduced features for the follow-up binary classifier trained to dis-
tinguish group 3 from group 4. (B–D) Density plots of the top three Image Biomarker Standardization Initiative features, including (B) T2-Mean, (C) T1-Mean, and (D) 
T1-Run Length Nonuniformity.
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