Skip to main content
. 2022 Aug 1;81(29):42649–42690. doi: 10.1007/s11042-022-13486-8

Table 2.

Proposed contributions of related work

Ref. CNN Architecture # Of Classes # Of samples Performance metrics (%) Image Enh. (IE)
COVID Normal Other Acc. Sencov Other
[68] VGG16 2 403 1124 95 90 PPV - 95
[22] DenseNet121, VGG19, InceptionV3 2 25 25 90 F1cov - 91
[73] EfficientNet 2 100 1431 96 Sp - 70
[21] CNN + GWO 3 900 900 900 97.78 98.5 PPV - 92.8 HE
[12] VGG16 3 132 132 132 85 100 F1–85
[27] CNN, LSTM 3 1525 1525 1525 99.3 F1cov - 98.9
[14] Xception 3 127 500 500 97 F1cov - 96.9
[33] Xception (CoroNet) 3 290 310 657 90.21 89 F1–91
[5] MobileNetV2, Inception InceptionResNetV2, VGG19 3 224 504 700 92.85 98.66 Spcov − 96.46
[50] DarkNet 3 127 500 500 87.02 97.9 F1–87.37
[67] CapsNet 3 231 1050 1050 84 94.57 F1–84.21
[40] DenseNet-121, ResNet50, ResNet18, SqueezeNet 3 184 2400 2600 98 Spcov - 93
[52] DenseNet169, Inception ResNet, NASNetLarge 3 108 533 515 94

F1 = 90

Sp - 89

TVF
[1] VGG19, ResNet, AlexNet, GoogLeNet and squeezeNet 3 105 80 11 93.1 100 Sp - 85.1
[15] J48 + 11 CNN models 2 50 50 100 100 F1–100
[37] Restnet18, GoogleNet and AlexNet 4 69 79 158 80.6 100 F1–82.32
[38] CovXNet 4 305 305 610 90.2 95 F1–90.4
[49] ResNet18 4 180 191 131 88.9 92.5 F1–84.4 HE+G
[71] VGG19, ResNet50, COVID-NET 3 268 8066 5538 93.3 91 PPVcov-98.9
[39] DenseNet121(COVID-AID) 4 155 1583 4273 90.5 100 F1–92.30
[53] AlexNet, DenseNet201, InceptionResNetV2, Xception 3 683 2924 4272 98.93 Sp - 98.77
[24] AlexNet 4 371 2017 93.42 89.18 Sp - 98.9
[48] Shallow-CNN 3 321 1583 4273 100 PPVcov - 99.38
[16] ASSOA 4 1227 3445 99.23
[35] MAG-SD, InceptionV3, VGG16, ResNet50 3 462 1602 1567 95.85 95 F1–95.54 CLAHE
4 462 1602 4265 87.12 91 F1–86.98
[8] WideResNet, MinMax UE 4 99 1587 4273
[19] MSRCovXNet 3 386 8066 5551 95 94 F1–95.33
[66] EDL-COVID 3 573 8851 6053 95 94.1

*Bold represents best model; IE – Image enhancement, HE – histogram equalization, TVF - Total variation filter and G – gamma correction, UE- uncertainty estimation