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A Novel Pancreatic
Cancer Mini-tumor
Model to Study
Desmoplasia and
Myofibroblastic
Cancer-Associated
Fibroblast
Differentiation
ancreatic ductal adenocarci-
Pnoma (PDAC) patients often
present with irresectable or metasta-
sized disease, resulting in an overall 5-
year survival rate of 11%.1 To improve
current therapeutic modalities,
modeling the full complexity of PDAC
in a personalized fashion is essential.
Organoid technology enables close-to-
patient models but currently lacks the
typical desmoplastic tumor microenvi-
ronment.2,3 Up to 80% of PDAC con-
sists of stromal cells, predominantly
cancer-associated fibroblasts (CAFs).
CAF populations are heterogenous
and crucially involved in tumor
growth, chemoresistance, immune
evasion, and metastasis.4–6 To provide
basis for improved therapy, it is essen-
tial to integrate CAFs and recapitulate
desmoplasia in organoid-based
models.2,3

In this study, we established a
novel human, multicellular mini-tumor
(MT) model containing both pancreatic
tumor organoids and patient-derived
CAFs from tumor resection material
and fine-needle biopsies. We induced
formation of MTs with heterogenous
desmoplastic PDAC characteristics by
modulating transforming growth factor
b (TGFb) and platelet-derived growth
factor b signaling. MTs contain
different archetypical CAF subsets,
recapitulating patient CAF heteroge-
neity of human PDAC. Therefore, our
model provides an important novel
platform for both basic and preclinical
research in a patient-specific fashion
and can serve as a gateway for
establishment of MTs from other
stroma-dense gastrointestinal tumors.

To ensure pathology resemblance
of close-to-patient models, we
designed a multiplex immunofluores-
cent panel to identify 2 major CAF
subsets.5,6 Myofibroblastic CAFs
(MyCAFs) and inflammatory CAFs
were defined as being platelet-derived
growth factor receptor (PDGFR)-bþ/
a� smooth muscle actin (aSMA)þ/
pSMAD2þ and PDGFRaþ/aSMA�/
pSMAD2�, respectively. The abundant
presence of PDGFRbþ CAFs was
confirmed in all specimens investi-
gated (n ¼ 10), while PDGFRaþ CAFs
were limited (Figure 1A, Supplemental
Methods). To test if desmoplasia with
heterogeneous CAF subsets can be
recapitulated in an MT model, we
cocultured pancreatic tumor-derived
organoids (PDOs) and the pancreatic
stellate cell line hPS17 that expresses
canonical fibroblast and pancreatic
stellate cell markers (Figure A1A–C).
PDOs and hPS1 cells were mixed in a
1:8 ratio, reflecting the in vivo tumor-
stroma ratio and aggregated in 3D
Matrigel domes (Figure A1D and E). To
stimulate CAF proliferation (PDGFRb
signaling) and differentiation (TGFb
signaling, a central driver of MyCAF
differentiation5,6) in MTs, we withdrew
the TGFbR1 inhibitor A83-01 from the
standard organoid growth medium and
added PDGF-BB (MT medium). PDGF-
BB induced hPS1 proliferation and in-
vasion into the Matrigel, causing loss of
cell-cell contacts between PDO and
hPS1 cells (Figure A1E). To avoid this
and resemble the physiological juxta-
posed CAF localization to PDOs, we
induced direct contact through aggre-
gation in ultralow attachment plates.
Direct contact cocultures showed
higher expression of mesenchymal
markers than PDO monoculture and
homogenous coculture in Matrigel
domes (Figure 1B). Moreover, a direct
cell contact in the presence of PDGFRb
and TGFb activity showed strong in-
duction of mesenchymal genes
(N-cadherin, vimentin, aSMA) and
repressed stem-cell-related gene
expression (LGR5, OLFM4) of the MTs,
resembling genetic features of PDAC
(Figure 1B and Figure A1F, Table A1).

Knowing PDGF-BB induces desmo-
plasia and cell contact enhances
mesenchymal gene expression, we
sought to maintain cell contact in the
MT model. Continuous MT suspension
culture in ultralow-attachment plates
prevented loss of cell-cell interaction
in culture between PDO and hPS1 over
time (Figure 1C). Culture conditions
without PDGF-BB led to MTs with no
desmoplasia, indicating that exogenous
addition of PDGF-BB is crucial to
stimulate MT desmoplasia. In accor-
dance, endogenous expression of
PDGF-BB in PDOs was negligible
(Figure A1G). PDGF-BB stimulation
induced desmoplasia but lacked typical
CAF marker expression found in vivo
when A83-01 was present in the me-
dium (Figure 1D). Differentiation into a
pSMAD2þ/aSMAþ MyCAF-like state
was only observed upon A83-01
removal (Figure 1D). In MT medium,
the limited presence of inflammatory
CAF-like cells was also observed by
costaining of PDGFRa and pSTAT3
(Figure A1H), corresponding to the
in vivo prevalence of this cell type
compared to MyCAFs.6

Interestingly, in response to PDGF-
BB, hPS1 can either encapsulate PDOs
(PDO1 & PDO2) or form a desmo-
plastic core (PDO3; Figures 1D and
2A), hinting at differential PDO-CAF
crosstalk in determining spatial self-
organization of MTs. In summary,
direct cell-cell contact and PDGFRb/
TGFb signaling resulted in a pathology
resembling MTs with regard to des-
moplasia and MyCAF differentiation.

Having established this model with
hPS1 cells, we investigated whether we
could generate MTs using primary,
patient-derived PDAC fibroblasts. Pri-
mary fibroblasts were mixed with
PDO1 and cultured either in organoid
growth medium (þTGFbi, �PDGF-BB)
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Figure 1. PDGF-BB and TGFb drive pancreatic cancer MT formation including desmoplasia and MyCAF differentiation. (A)
Examples of 3 different PDAC primary tumors (A, B, C) stained for PDGFRb (green) PDGFRa (magenta), aSMA (red), pSMAD2
(white), and pan-cytokeratin (cyan). Scalebar 100 mm. Arrows indicate PDGFRaþ cells. (B) Relative mRNA expression of
HMGA2, E-cadherin N-Cadherin, Vimentin (VIM), aSMA, LGR5 and OLFM4 in PDO1 monocultures, PDO1 þ hPS1 homog-
enous and direct contact MT cocultures grown in organoid growth (OG) medium � TGFb inhibitor (TGFbi) or PDGF-BB for 10
days (n ¼ 3). (C) Schematic overview of suspension MT generation. (D) Representative bright-field images (top panel) of
PDO1 þ hPS1 MTs cultured in OG, OG þ PDGF-BB, OG-TGFb inhibitor, and OG þ PDGF-BB-TGFb inhibitor (MT) medium for
10 days. These were subsequently processed and stained for PDGFRb (green) PDGFRa (magenta), aSMA (red), pSMAD2
(white), and pan-cytokeratin (cyan) (bottom panel). n ¼ 3; Scalebar 100 mm.
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or MT medium (�TGFbi, þPDGF-BB).
In line with our observations, desmo-
plastic MTs only form when grown in
the MT medium (Figure 2B).

As a proof of concept, we generated
fully autologous MTs to study the
feasibility of generating treatment-
naïve models at the time of diagnosis.
PDO (FNADO) and fibroblast (FNA-
CAF) cultures were established from a
single fine-needle biopsy (Figure A2A).
The mutation status of FNADO was
consistent with the majority of human
PDACs, including KRASp.(Gly12Asp) and
TP53p.(Arg196*) mutations and loss of
CDKN2A (Figure A2B). FNADO tumor-
igenicity was confirmed in mouse xe-
nografts. MTs of FNADO and FNA-CAFs
closely resembled a xenografted pri-
mary tumor when cultured in the MT
medium (Figure 2C).

Finally, we aimed to test the appli-
cability of MTs in comparison to PDO
monocultures with regard to drug
sensitivity. Stroma-rich tumors often
are resistant to chemotherapeutics,
including oxaliplatin.8 To this end, we
tested oxaliplatin resistance in a
treatment-naive PDO (PDO4) and MT
model (PD04 þ hPS1). Indeed, oxali-
platin induced significant cell death in
monoculture conditions but not in MTs
(Figure 2D). This indicates that MTs
have a potential to faithfully recapitu-
late drug sensitivity observed in
stroma-rich tumors.

Here we report the creation of a
human, multicellular MT model that in
comparison to earlier efforts9,10 now
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recapitulates both desmoplastic fea-
tures of PDAC and differentiation to-
ward the MyCAF subset. Importantly,
these pathologies resembling MTs can
be generated from both surgical re-
sections as well as endoscopic biopsies,
thus, for the first time, facilitating
modeling the entire patient spectrum.
Especially, endoscopic acquisition of
patient material enables MT genera-
tion of treatment-naïve tumors and
modeling of tumors not amenable to
surgical resection. This model is easy
to integrate into current organoid-
based cell culture models and pro-
vides basis to study a plethora of
fundamental aspects of PDAC,
including the spatial architecture of
PDAC tumor cells and associated
stroma. For preclinical studies, MT
cultures could be implemented in
medium-throughput screening plat-
forms. The next essential step to
further improve this MT model is to
include additional stromal cell types,
for example, immune cells, endothelial
cells, and adipocytes.2,3 Finally, since
the PDGF and TGFb pathways also play
key roles in other stroma-dense
gastrointestinal tumors,4 our model is
expected to be extendable to, for
example, colon, gastric, and esophageal
cancers.
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