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ABSTRACT

Retail food environments (RFEs) are complex systems with important implications for population health. Studying the complexity within RFEs comes
with challenges. Complex systems models are computational tools that can help. We performed a systematic scoping review of studies that used
complex systems models to study RFEs for population health. We examined the purpose for using the model, RFE features represented, extent to
which the complex systems approach was maximized, and quality and transparency of methods employed. The PRISMA-ScR (Preferred Reporting
Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines were followed. Studies using agent-based modeling,
system dynamics, discrete event simulations, networks, hybrid, or microsimulation models were identified from 7 multidisciplinary databases. Fifty-
six studies met the inclusion criteria, including 23 microsimulation, 13 agent-based, 10 hybrid, 4 system dynamics, 4 network, and 2 discrete event
simulation models. Most studies (n = 45) used models for experimental purposes and evaluated effects of simulated RFE policies and interventions.
RFE characteristics simulated in models were diverse, and included the features (e.g., prices) customers encounter when shopping (n = 55), the
settings (e.g., restaurants, supermarkets) where customers purchase food and beverages (n = 30), and the actors (e.g., store managers, suppliers)
who make decisions that influence RFEs (n = 25). All models incorporated characteristics of complexity (e.g., feedbacks, conceptual representation
of multiple levels), but these were captured to varying degrees across model types. The quality of methods was adequate overall; however, few
studies engaged stakeholders (n = 10) or provided sufficient transparency to verify the model (n = 12). Complex systems models are increasingly
utilized to study RFEs and their contributions to public health. Opportunities to advance the use of these approaches remain, and areas to improve
future research are discussed. This comprehensive review provides the first marker of the utility of leveraging these approaches to address RFEs for
population health. Adv Nutr 2022;13:1028–1043.

Statement of Significance: This is the first review to synthesize and evaluate the use of complex systems models (e.g., agent-based, system
dynamics, network, and discrete event simulation models) to study retail food environments for addressing population health.

Keywords: food environment, healthy retail, nutrition interventions, systematic review, agent-based modeling, system dynamics, simulation,
microsimulation, networks

Introduction
Unhealthy diet is a leading cause of mortality worldwide (1),
and federal and private budgets are burdened by growing
health care expenditures for diet-related chronic disease (2).
Pronounced disparities in access to healthy, affordable foods
have been documented in retail food environments (RFEs)
of economically deprived, Black, indigenous, and people
of color (BIPOC), and other marginalized communities
(3–7). Some evidence also suggests associations between

health behaviors and unhealthy RFE neighborhoods (8–10)
as well as links between consumer-level RFE features, such
as product placement, and the healthfulness of customer
purchases (11–15). However, inconsistent relations between
RFEs and health in the literature exist (16–18), which may
reflect a limited consideration of the complexity of RFEs in
prior research.

Local RFEs and their impact on health have historically
been investigated using observational research designs and
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TABLE 1 Descriptions of the modeling approaches included in the review of studies using complex systems models to study retail food
environments for population health

Model approach Description

System dynamics models An aggregate- (versus individual-) level modeling approach that uses specific techniques (e.g., differential
equations, state variables, stocks and flows) to capture and understand endogenous sources of complex
system behavior. It centers on the principles of feedbacks and accumulation and is well-suited to simulating
and capturing a macroscopic view of system behavior in large populations (24–26, 30, 31)

Discrete event simulations Simulations with individual actors that are passive entities whose behavior is modeled as a sequence of discrete
events in a setting over time. In this approach, events are the priority over the individual entities. Models are
commonly used to examine resources and system constraints in meeting a target, and health sciences often
use these to determine patient flows through clinical care settings (25, 26, 31)

Network analyses Models with individual entities (e.g., people, organizations) that measure and analyze the relations and/or flows
among them. Models can be used to analyze the network structure as well as how the transfer of information,
behaviors, or diseases across connections change as relations for each individual entity change (23–25, 30)

Agent-based models Simulations with individual actors (i.e., agents) that are active entities which make decisions and/or behave based
on a set of rules. Individual actors may interact with each other and their environment and can adapt to these
interactions producing emergent properties of the system that make them effective at capturing complex
social phenomena (22–24, 31)

Microsimulations Simulations with individual actors that are passive entities without interactions. Experiments often modify the
attribute(s) of individual actors to understand the effect the change has on an individual over time. Common
method in the economics field and tends to focus on estimating the detailed predictions of a specific
policy/intervention on a target outcome as well as determining its cost-effectiveness (22, 23)

Hybrid models Combined use of 2 or more model approaches in the same simulation. Offers the advantage of balancing the
strengths and shortfalls of each approach to improve the effectiveness of a model in capturing aspects of a
complex system (26, 31)

analytic methods such as regression modeling. Although
customary, such approaches are limited when examining
both the complexity of RFEs as well as their impacts on
health. In particular, RFEs are multilayered, bridge numerous
disciplines, and span an array of settings (e.g., grocery
stores), modalities (e.g., online ordering), products, and
other characteristics (e.g., prices) (19). Underlying these
complexities are also a multitude of interrelations between
factors, which may be dynamic, reciprocal, and interdepen-
dent, and together may be better understood as a system (20,
21). Although traditional statistical approaches are useful for
many research questions, they often prioritize identifying
average effects of an isolated relation (22–24), making
them ineffective in capturing the holistic interconnectedness
within a system. Further, as complex systems are not easily
explained by studying their individual parts (25), additional
methods are necessary to study the links between RFEs and
health.

A set of methods that has received growing attention
in this area is complex systems computational modeling.
Complex systems modeling involves a series of diverse

Research reported in this publication was supported by the National Heart, Lung, and Blood
Institute, of the National Institutes of Health under Award Number K99HL144824 (Principal
Investigator: MRW). The content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIH.
Author disclosures: The authors report no conflicts of interest.
Supplemental Methods A, B, and C, Supplemental Tables 1–2, and Supplemental References
are available from the “Supplementary data” link in the online posting of the article and from
the same link in the online table of contents at https://academic.oup.com/advances/.
Address correspondence to MRW (e-mail: megan.winkler@emory.edu).
Abbreviations used: ABM, agent-based model; DES, discrete event simulation; OECD,
Organization for Economic Co-operation and Development; PRISMA, Preferred Reporting Items
for Systematic Reviews and Meta-Analyses; RFE, retail food environment; SD, system dynamics;
SSB, sugar-sweetened beverage.

computational tools that capture the nature of a system,
including its processes, behavior, and evolution (20, 26).
These approaches are well-suited for capturing various di-
mensions of dynamic systems and population-level patterns
that emerge from them (20, 21, 23), and their use is increas-
ingly encouraged by health and scientific authorities (27, 28).
In addition, as many of these approaches involve the use of
simulations, they can be leveraged to estimate future effects
of proposed policies and interventions (29), augmenting the
retrospective (i.e., “has happened”) knowledge gained from
traditional study designs. Examining such “what if” scenarios
and other forms of complexity could help facilitate additional
insights necessary to inform policy and health efforts to
improve RFEs and address diet-related chronic disease.

In this review, we focused on 6 specific approaches
of complex systems computational modeling. Although
variation remains in what is considered the core approaches
(22, 24–26, 29–32), for this review we considered complex
systems approaches to include agent-based models (ABM),
system dynamics (SD), discrete event simulations (DESs),
networks, and any hybrid of the above. We also include the
approach of microsimulation, given its similarities to ABM
(22, 26, 29). Both similarities and differences exist in the ways
each approach handles complex systems, which are described
in Table 1.

Prior reviews have examined the use of complex systems
methods to study noncommunicable chronic disease, obesity,
and health behavior (25, 33–35). Yet, to our knowledge,
no prior review has examined the contributions of these
approaches to understanding the specific role of RFEs in pop-
ulation health. Thus, the purpose of this systematic review
was to examine research to date that used a complex systems
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computational modeling approach to study the RFE for
population health. We focused on addressing the following
questions: why was the model used (i.e., model purpose);
what RFE characteristics were included in the model and to
what breadth; to what extent were use of complex systems
approaches maximized (i.e., models included complexity
characteristics, such as feedback loops, that distinguish
them from statistical models); and what was the quality of
modeling methods employed? We conclude by summarizing
the strengths observed in the use of these approaches and
by identifying areas of improvement for nutrition research to
fully benefit from them when investigating how RFEs could
improve population health.

Methods
We performed a systematic scoping review due to the
multidisciplinary nature of studying RFEs and our broad
research questions. We followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
Guidelines for Scoping Reviews (36) to conduct the review
and analysis. Prior to executing our search strategies, we
developed a review protocol (Supplemental Methods A),
including objectives, inclusion criteria, and methods. Investi-
gators agreed upon iterative changes to the methodology, and
we present the final strategy below.

Search strategy
Guided by the team, a university public health librarian
(SH) created the search strategy for 7 databases: MEDLINE
via Ovid, PsycINFO, AGRICOLA, CAB Abstracts, Business
Source Premier, PAIS Index, and Scopus. These databases
represent literature from multiple relevant disciplines, such
as medicine, public health, psychology, agriculture/food,
business, and public policy. The searches were run from
March to April 2020, and there were no publication date
restrictions used in the search.

Supplemental Methods B details the full electronic search
strategies. The final search strategy was developed based
on results of preliminary searches in MEDLINE via Ovid,
team input, and keywords and phrases from relevant articles
known in the literature (37–47). Terminology focused on
2 concepts: retail food environment and complex systems
approaches. The search was designed to be specific to identify
the 6 complex systems modeling approaches, while more
comprehensive to identifying RFE concepts.

To capture citations missed by electronic searches, we
performed hand searching methods in October–November
2020. We reviewed reference lists (backward search) and
performed citation searches (forward search) of all included
studies, and reviewed reference lists of key literature reviews
(33, 34, 48–53).

Study selection
Studies were included if: 1) published in English; 2) empirical
in nature (i.e., an empirical research study with results); 3)
published in an academic journal; 4) implemented or devel-
oped an SD, DES, network, ABM, hybrid, or microsimulation

model that included an aspect of the local or regional RFE;
5) studied the RFE aspect in a high-income (54) and/or
Organization for Economic Co-operation and Development
(OECD) country (55); and 6) studied a diet-related behavior
or noncommunicable disease (e.g., food purchases, obesity)
or otherwise were explicitly specified as related to population
health. We limited studies to high-income and/or OECD
countries to capture RFEs operating in similar economic
and trade environments. Concepts from the Retail Food
Environment and Customer Interaction framework (19)
were used to guide the RFE aspects that met inclusion
criteria. These included RFE settings where people purchase
food/beverage products (e.g., stores, restaurants); the RFE
features customers experience once at a setting (e.g., price,
product availability, promotion); and/or the people who
make decisions that influence the RFE (e.g., store managers,
distributors) (19).

Studies were excluded if they: 1) only studied food
safety (e.g., acute foodborne illness) or alcohol retail; 2)
did not study the RFE separately from other environments
(e.g., examined an overall built environment); 3) were the
wrong publication type (i.e., literature review); or 4) involved
nonhuman research.

Duplicate studies were removed, and items were up-
loaded to Rayyan (56), a web application for independent
title/abstract screening. Screeners (MW, YM, MT) first tested
screening agreement and then completed independent ti-
tle/abstract screening once adequate agreement was reached
(i.e., 85% on 20 records). Each title/abstract record was
independently screened by 2 reviewers, and disagreements
were resolved through discussion. Two screeners, then,
independently reviewed full texts against eligibility criteria
and resolved discrepancies through discussion. Figure 1
presents the study selection flow and reasons for exclusion.

Data extraction and transparency evaluation
Data were extracted from included articles and their pub-
lished supplemental materials. Data were charted into a
matrix using Microsoft Excel, following a list of definitions
and guidelines for all items (Supplemental Methods C).
Initial documents were informed by prior systems science
literature reviews (23, 34) and then trialed by MW, YM, and
MT on 5 articles that used different modeling approaches.
Documents were refined based on inconsistencies and
additional feedback sought and incorporated from the study
team. Reviewers then assessed independent data extraction
agreement, and once adequate (i.e., 85% across 5 additional
articles), independently extracted the remaining articles with
a second person verifying.

Although assessing study quality is not generally part
of scoping reviews (36), insights from complex systems
computational approaches may be most useful if trustworthy
practices are used in the modeling process and made
transparent in the publication (57–60). Thus, we assessed the
transparency of each study using 10 items inspired by Jalali
et al. (58, 59) (Supplemental Table 1). All included articles
were appraised by one reviewer and verified by a second. We
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FIGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) study selection flow diagram of studies using
complex systems models to study retail food environments for population health.

examined the presence of each item across studies as well as
by a total score; the number of “Yes” answers was divided by
the number of applicable criteria to derive a total percentage
score. As the criteria only examined presence and not quality
or extent, we ran the risk of overestimating the transparency
of studies; thus, we selected a stricter qualitative assessment
of overall transparency with <70% of items present defined
as low, 70–89% as adequate, and ≥90% as high transparency.

Data synthesis
Synthesis included both quantitative and qualitative ap-
proaches, which were finalized once the relevant content
from all included studies was extracted. We used a priori
definitions from our data extraction guide (Supplemen-
tal Methods C) and the Retail Food Environment and
Customer Interaction model (19) to categorize the model
purpose and the RFE characteristics included in models,
and then used a thematic approach to identify inductive
patterns within categories. We also performed simple counts
to summarize information across our areas of interest—
model purpose, RFE characteristics included, complexity
characteristics represented, and model methods employed.
Given the enormous diversity in research questions, we
did not synthesize study findings and instead prioritized

the utilization, benefits, and limitations of employing these
models to study the RFE for population health.

Results
Description of included studies
Our initial database searches identified 5845 records
(Figure 1). We screened 3876 unique records and assessed
111 full-text articles for eligibility. An additional 75 articles
were excluded after full-text review, and we identified 20
additional articles from hand searching. The final 56 articles
that met our review criteria were published between 2010
and 2020 with the number of publications increasing over
time (Figure 2).

Eight OECD countries were represented across studies,
though most studied populations in the USA (n = 46) (37,
40–47, 61–97). All 6 complex systems modeling approaches
were represented with 23 microsimulations (74–91, 98–102),
13 ABMs (37–39, 41, 44, 47, 67–73), 10 hybrid models using
ABM coupled with DES or networks (40, 42, 43, 61–66, 103),
4 SDs (95–97, 104), 4 network models (45, 92, 93, 105), and
2 DESs (46, 94). We also identified 25 studies that used the
same model or a modified version (Supplemental Table 2),
which included 6 microsimulation models used across 17
studies (75–79, 81, 83, 85–90, 99–102), 2 hybrid models used
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FIGURE 2 Publication year of studies (n = 56) using a complex systems model to study retail food environments for population health.

across 6 studies (40, 42, 43, 62–64), and 1 ABM used across
2 studies (47, 68).

Why was the model used?
Across a wide range of research questions (Supplemental
Table 2), studies implemented complex systems models for
3 primary purposes—descriptive (n = 4) (45, 92, 93, 105),
mechanistic (n = 7) (41, 47, 66, 71–73, 97) (i.e., to understand
the system’s etiology), and experimental (n = 45) (37–40,
42–44, 46, 61–65, 67–70, 74–91, 94–96, 98–104). Studies
with descriptive purposes employed network models and
aimed to characterize relations among supply chains (45,
92), product label messages (105), or procurement locations
used by food assistance program participants (93). Seven
studies used models for only mechanistic purposes, including
ABM (n = 5) (41, 47, 71–73), hybrid (n = 1) (66), and
SD (n = 1) (97). The mechanisms of interest ranged widely
and depended on the specific research question [e.g., un-
derstanding the effects of neighborhood income segregation
on healthy food access (72), understanding customer and
producer features that make alternative food hubs sustainable
(41)].

Implementing models for experimental purposes, includ-
ing evaluating potential effects of proposed policies and
interventions, was most common (n = 45), and all types of
complex systems models were used for this purpose except
network models (Supplemental Table 2). Some investigations
only examined interventions or policies specific to the RFE,
such as Wong et al. (46) which only simulated the effects
of cooler and shelf placement on customer purchasing of
nonsugar-sweetened beverages (non-SSBs); whereas, others
examined interventions targeting RFEs as well as individuals
[e.g., modifying resident’s willingness-to-walk (61), product
bans for food assistance benefits (75, 76, 87, 88)] or

other environmental features [e.g., increased transportation
options (44), improved school quality (43)]. Of the 42 studies
(37–40, 43, 44, 46, 61, 64, 65, 67–70, 74–91, 94–96, 98–104)
examining ≥1 proposed RFE policy or intervention, over
half (n = 24) (38–40, 64, 65, 68, 70, 74–76, 78, 81, 84, 85,
87, 88, 90, 91, 94–96, 98, 101, 104) included scenarios that
involved modifying food prices (e.g., SSB taxes, reducing
produce prices); 11 examined scenarios resulting in product
reformulation (67, 77, 79, 80, 83, 86, 89, 99–102); 7 studied
scenarios involving product labels (e.g., SSB health warning)
(37, 81–83, 86, 101, 104); 6 simulated scenarios that added
neighborhood retail sources (e.g., increase supermarket
density) (40, 43, 44, 61, 64, 103); 5 included scenarios that in-
creased healthy food availability within sources (e.g., increase
produce offerings in convenience stores) (44, 69, 81, 95, 104);
1 examined in-store product placement scenarios (46); and 1
examined product marketing scenarios (104). Most studies
examined multiple scenarios to either understand the dose
of a particular intervention [e.g., food industry compliance
with sodium reformulation targets under optimal, modest,
and pessimistic scenarios (89)] or to facilitate comparisons
among different interventions [e.g., compare effects of adding
farmer’s market vendors to mobile markets (44)].

In addition, although all studies explicitly contextualized
their study purpose as relevant to health, there was variation
in the primary outcomes of interest (Figure 3). Forty-five
studies (37–40, 42–44, 46, 47, 62–68, 70, 71, 73–91, 95, 96,
98–102, 104) used models to examine health and/or behavior
outcomes (e.g., obesity, dietary intake) of which 6 (38, 39, 42,
43, 66, 70) were primarily interested in disparities between
population groups. Other outcomes of interest included the
cost-effectiveness of proposed policies (n = 15) (74, 75,
78–81, 83, 85–90, 95, 102), business interests like revenue
and store survivability (n = 5) (41, 72, 94, 103, 104), food
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security and access (n = 4) (61, 69, 72, 75), RFE supply
networks (n = 2) (45, 92), or other factors [n = 3 (93, 97,
105), e.g., implementation and maintenance of a restaurant
intervention (97)]. Seventeen studies (72, 74, 75, 78–81,
83, 85–90, 95, 102, 104) examined more than one of these
outcomes, mostly health and cost-effectiveness.

What RFE characteristics were included in models?
We identified a diverse breadth of RFE characteristics
that were represented and simulated in model scenarios
(Supplemental Table 2). We grouped characteristics using
concepts from the Retail Food Environment and Customer
Interaction model (19), including characteristics related to
the customer retail experience, retail sources (e.g., gro-
cery stores, fast food), and retail actors (e.g., managers)
(Figure 4).

Customer retail characteristics.
Customer retail characteristics comprised features customers
encounter when they acquire a product (19), such as price,
product availability, and promotion, and 55 models (37–47,
61–92, 94–105) included ≥1 customer retail characteristic
(Figure 4). Product characteristics were represented in
nearly all models (n = 54) (37–47, 61–64, 66–92, 94–
105), which varied from general characterizations of product
healthfulness [e.g., “healthy” (45, 95)] to specific products
[e.g., SSBs (94), fruits and vegetables (44, 78)] and nutrients
[e.g., added sugars (83)]. Price was also a common feature

represented in models (n = 32) (38–41, 47, 62–65, 68–72,
74–76, 78, 81, 84, 85, 87, 88, 90, 91, 94–96, 98, 101, 103,
104) varying from general classifications [e.g., “inexpensive”
or “expensive” food store prices (39)] to specific values [e.g.,
1-peso-per-liter beverage tax (98)]. Promotion features, like
product labels and in-store marketing, were less common
(n = 7) (37, 81–83, 97, 104, 105), whereas product placement
(n = 1) (46) and other customer features, like service (n = 1)
(103), were rarely represented.

Retail sources.
Retail sources involved the settings where customers pur-
chased food and beverages (e.g., restaurants), which were
included in 30 models (37–46, 61–64, 66, 69, 71–74, 77, 81,
86, 87, 92–94, 96, 97, 103) (Figure 4). Across these studies, the
presence of grocery stores, supermarkets, and discount clubs
were most commonly represented (n = 12) (37, 38, 42–44,
61, 69, 72, 87, 92, 93, 103) followed by convenience or corner
stores (n = 10) (37, 44–46, 61, 69, 87, 93, 94, 103), restaurants
(n = 6) (37, 73, 77, 81, 86, 92), farmers’ markets/produce
vendors (n = 5) (38, 44, 92, 93, 103), fast food/carry-outs
(n = 4) (37, 38, 87, 97), and other sources [e.g., community-
supported agriculture (74, 92), food hubs (41), vending (71,
81)]. Seven models (39, 40, 62–64, 66, 77) included a generic
classification of “food stores,” though additional specification
was provided by assigning customer retail features (e.g., store
prices, products available).
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Retail actors.
Retail actors are individuals (e.g., store managers, suppliers)
that behave and make decisions which create the RFEs
experienced by customers and were included in 25 models
(38–41, 45, 62, 63, 67, 72, 77, 79, 80, 83, 85, 86, 89, 90, 92, 94,
97, 99–102, 104) (Figure 4). The majority (n = 17) (41, 45, 67,
77, 79, 80, 83, 85, 89, 90, 92, 94, 99–102, 104) represented food
producers and/or suppliers, largely by examining scenarios of
product reformulation or supply chain relations. Managers
and owners were less commonly included (n = 10) (38–
40, 45, 62, 63, 72, 86, 94, 97) and typically represented via
decisions to modify prices or products sold at a source or
whether to close a store site. In contrast, nearly all models
(n = 51) (37–44, 46, 47, 61–91, 93, 95, 96, 98–104) included
customers (Figure 4 and see Supplemental Table 2 for study
population details).

Breadth of RFE characteristics.
As RFEs are complex, multilayered entities, we also examined
the breadth of RFE features incorporated into the same model
scenario, which allows the dynamics and interdependencies
between RFE features to be simulated. Overall, 35 studies
(37–41, 44, 45, 47, 61–64, 66–69, 72, 73, 83, 85, 86, 88,
90, 92–97, 99–104) simulated >1 RFE feature in the same
scenario (Figure 5), which was performed among all SD
(n = 4) (95–97, 104) and most ABM (n = 11) (37–39,
41, 44, 47, 67–69, 72, 73) models. For example, Struben
et al. (104) used SD to simulate scenarios that examined
changes in the prices and promotion of both healthy
and unhealthy products; whereas Gouri Suresh et al. (72)
used ABM to simulate multiple retailer behaviors, such as
choosing where to locate a new store and the prices of

store products. In contrast, the majority of microsimula-
tion studies (74–82, 84, 87, 89, 91, 98) only examined a
single RFE feature (Figure 5), such as Pitt et al. (91) that
simulated price changes for a single product category (i.e.,
meat).

To what extent were use of complex systems
approaches maximized?
To understand the extent to which studies maximized their
complex systems modeling approach, we examined the
presence of specific complexity characteristics in models.
Table 2 presents the definition of these characteristics and
their existence across studies. Although complexity was
present in all studies, it was captured to varying degrees.
Variation was driven by investigator modeling decisions
and research questions in addition to the constraints of the
specific modeling approach selected [e.g., microsimulation
does not allow individual actors to interact (22)].

Nearly all models (n = 54) (37–47, 61–93, 95–104)
conceptually represented multiple levels (e.g., RFE features
and individual customers); however, only half (n = 30)
(37–47, 61–64, 66–73, 92, 93, 95–97, 103, 104) explicitly
operationalized those levels in the model and connected
them in some way (Table 2). For example, Blok et al. (38)
studied various neighborhood and RFE interventions on
inequalities in healthy food consumption among residents,
which conceptually represent distinct environmental and
individual levels; authors then explicitly quantified the inter-
actions between levels, as residents were simulated to select
which food stores to shop based on store-to-home distances,
and stores were simulated to respond to residents’ purchasing
(e.g., store closes if insufficient revenue). Alternatively, Lee et
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al. (85) examined the effects of various SSB tax policies on
cardiovascular disease, which also involve concepts that rep-
resent distinct policy and individual levels; however, authors
used individual-level SSB intake to quantify the effects of the
tax policy as opposed to incorporating environmental price
changes of SSBs, for example. A similar pattern was observed
among the incorporation of heterogeneous individual actors
in models (Table 2), which was common (n = 51) (37–47,
61–93, 98–103, 105), but only one-third (n = 18) (38–43,
62–67, 70–72, 92, 103, 105) had connections or interactions
between actors to allow for potential influence [e.g., an in-
dividual’s behaviors are influenced by peers in their network
(40)].

The remaining complexity characteristics demonstrated
distinct patterns by model approach (e.g., lack of explicit
space included in SD) (Table 2), confirming some of the
obvious constraints of certain models. In contrast, ABM and
hybrid models enabled extensive versatility as all complexity
characteristics were commonly included in studies using
these models. Even so, studies using ABM did not universally
incorporate some key characteristics relevant to RFEs and
population health that they can model, like feedbacks (e.g.,
between customers and stores) and interactions among
heterogeneous actors (e.g., customer purchasing behavior
that influences others). In addition, although spatial repre-
sentations were more regularly incorporated in both ABM

and hybrid models, we noted that most representations
were limited to home-to-store distances (38–40, 44, 61–64,
69, 72, 73, 103), neglecting additional nonresidential food
environments (e.g., work) individuals navigate.

We also noted a marked pattern in the complexity of
model construction between microsimulations and other
models, especially ABM, SD, and hybrid models. A key
advantage of microsimulations is their ability to simulate
intervention effects in a heterogeneous population while
incorporating dynamic and probabilistic conditions. Yet,
other models such as ABM and hybrids, possess these and
additional capabilities which can facilitate a richer explo-
ration of the conditions under which interventions may be
effective. For example, Grummon et al. (82) and Lee et al. (37)
both examined the effects of an SSB warning label policy on
individuals’ weight status using microsimulation and ABM,
respectively. Although both examined the simulated effects
of different efficacy rates, Lee et al. (37) also explored these
effects while incorporating customers’ daily travel patterns,
probabilities of purchasing SSBs at different neighborhood
retail sources (e.g., corner stores, supermarkets), and other
conditions that precede SSB purchasing and intake (e.g., store
compliance with the policy, warning label literacy rates).
Alternatively, Grummon et al. (82) only looked at individual
effects downstream of SSB intake (e.g., caloric intake and
weight).

What was the model quality and transparency?
We assessed model quality by examining the rigor and
inclusivity of methods across studies (Table 3). All studies
used empirical information to develop and parameterize
models, with most (n = 53) (37–47, 61–91, 94–104) using
datasets and/or prior literature (e.g., published estimates)
and a few (n = 5) (41, 92, 93, 97, 105) collecting primary
data either to augment other data sources or model alone.
Few studies (n = 10) (61, 81, 84–87, 95, 96, 100, 103)
reported consulting with experts during model development,
and Koh et al. (69) conducted the only study that explicitly
engaged stakeholders in the modeling process via a group
model building approach. Most studies specified additional
methods of rigorous modeling, including sensitivity analyses
to increase confidence in the robustness of their results
(n = 40) (37, 39, 40, 42, 43, 46, 47, 61, 63, 66–72, 74, 75,
77–80, 82–86, 88–91, 94–100, 102, 104) and steps of model
verification or external validation to ensure models ran as
intended and/or accurately captured observed phenomenon
(n = 37) (37–40, 42, 43, 47, 61–64, 67–70, 73, 75–78, 80–
82, 84–86, 88, 90, 92, 96, 97, 99–104). We noted one-third
of studies (n = 20) (38, 39, 42–44, 61, 65, 69, 73, 79, 81, 83,
89, 91, 95, 96, 101–104) used calibration to “tune” unknown
parameters or create a synthetic population. Relatedly, this
meant most studies (n = 40) (37, 38, 40, 45–47, 62–64,
67–69, 73–90, 92–94, 97–102, 105), especially those with
microsimulation, network, and DES models, displayed a high
degree of empirical anchoring (i.e., all model features are
linked to empirical data), which facilitates precise insights
but potentially limits generalizability to the data sources
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used. Only 3 studies (39, 65, 72) developed models that were
simplistic and highly stylized.

Last, we assessed the transparency of studies which
facilitates model clarity, reproducibility, and verifiability
(Table 3). Twenty-four studies (47, 62, 68, 69, 71–74, 77–80,
82–86, 88, 89, 97, 98, 101, 102, 104) had a high degree of
transparency; however, transparency criteria only examined
presence and not extent, creating a potential ceiling effect for
overall scores. Individually, the least common transparency
criteria we identified across studies (n = 12 studies) (47, 68,
69, 74, 77, 78, 97, 98, 101–104) was providing a way for repli-
cation (e.g., public access to model code; see Supplemental
Table 1).

Discussion
This systematic scoping review examined studies that used
a complex systems computational modeling approach to
address the RFE for population health. Across the literature,
we examined the purpose for using the model, the RFE
features studied, the extent to which complex systems ap-
proaches were maximized, and the quality and transparency
of model methods employed. Below we summarize what
has been accomplished across these applications of complex
systems models by highlighting key strengths and areas for
improvement.

Strengths
Several strengths were identified in our review. First, we iden-
tified more eligible studies than anticipated, with a total of
56 meeting inclusion criteria. Without imposing publication
date restrictions, the earliest publication year was 2010 (95),
which coincided with public health’s growing interest in the
use of complex systems approaches (24). Our review captures
the early progress in applying complex systems approaches
to study RFEs and demonstrates a clear acceleration in
their utilization over the past decade (Figure 2). Such
progress suggests research teams are finding effective ways to
overcome the challenges inherent in transdisciplinary work
to leverage the benefits of these models, including their use
as policy and intervention laboratories (29), the primary use
identified in this literature.

We also observed key strengths related to the outcomes
studied using these models. Following health as the primary
outcome of interest, the next most common outcomes
were cost-effectiveness and business interests, like store
revenue (Figure 3), which are important for making a
compelling case for policy or intervention implementation.
In addition, multiple outcomes were examined in 17 studies,
reflecting the growing attention in the field to address
multiple societal outcomes of RFEs (19, 106), and were
most typically examined using microsimulation models that
provided precise estimation of costs and health. At the same
time, these microsimulation studies often only simulated a
single RFE feature with few model dynamics, which limited
novel or unexpected insights. In contrast, other approaches
like ABM and hybrid models simulated both individuals and
the systems that surround them. This facilitated a deeper

exploration of the dynamic conditions that may affect policy
and intervention effectiveness and provided a different but
additionally useful strength in facilitating insights into the
strategies that should be prioritized to best address health and
other goals.

Other strengths were related to the extent models maxi-
mized complex systems approaches (Table 2) and the quality
and transparency of methods used (Table 3). As the focus
of this review was on RFEs and population health, it was
unsurprising that nearly all models conceptually represented
multiple levels (e.g., RFEs and individual customers). We
also noted strong maximization among studies specifically
using hybrid models (40, 42, 43, 61–66, 103), as all com-
plexity characteristics were regularly incorporated, reflecting
their strengths in realistically representing multiple levels,
spatial and social features of RFEs, as well as individual
heterogeneity among customers. Across all studies, there
was also consistent use of empirically informed models and
sensitivity analyses, which increased the rigor of both models
and their results. Authors also displayed a consistent priority
of transparency when reporting their investigations, as most
had an overall adequate or high score (though, the criteria
only measured presence not quality).

Areas for improvement
Across this review of literature, we also identified areas for
improvement as these approaches are used in future research.
One of the most concerning limitations we identified was
the infrequency with which collaboration and community
engagement were employed in developing models and
informing investigators’ assumptions (Table 3). Proponents
of systems science models have argued the advantages of
using these tools to improve community health, inform
structural changes, and reduce health disparities (20, 21,
29, 107–109). Yet, without a coproduction of models with
decision-makers, food system players, customers, and other
community members to help ensure sound assumptions and
inform feasible change, it may be difficult to achieve these
goals (107–109). Such limited stakeholder engagement has
been identified in other reviews of systems science models
for health behaviors (34, 35), like physical activity, indicating
a gap that is not unique to the RFE literature. Intentionally
addressing this gap is needed in future work, and although
the tradition of community engagement is better established
among some approaches, like SD, examples of cobuilding
using other complex approaches, like ABM (110, 111), are
increasingly demonstrating what is possible.

Another area for improvement identified was the domi-
nant focus in models on individual customers and relatively
limited focus on more upstream factors of the RFE and larger
food system (Figure 4). Most models (n = 45) examined
health and behavior outcomes, making the incorporation
of customers key. Yet, in several studies using microsim-
ulation models, RFE features (e.g., product label, taxes)
were operationalized at the customer level using change in
dietary intake. In addition, less than half of studies explicitly
included RFE actors like managers and distributors, which
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may be a product both of author decisions and potential
data gaps (112). Expanding models to consider RFE actors in
addition to customers, such as performed by Basu and Lewis
(67) which examined population health effects of the food
industry’s behavior within a cap-and-trade system on sugar,
are important next steps. Similarly, models that focus only
on RFE actors using a public health lens like Mui et al. (45),
where distributor networks of corner stores were examined
by product healthfulness, are critical to comprehensively
understand how RFEs influence health.

In addition to a limited incorporation of upstream RFE
factors, we observed a relatively limited incorporation of
complexity into models themselves (Table 2) as well as
the extent of RFE components examined among certain
model types (Figure 5). For example, several studies using
microsimulation only examined a single element of the RFE
(e.g., nutrient reformulation), limiting understanding of the
dynamics between other RFE components (e.g., price) that
are relevant to purchasing as well as supply (e.g., industry
response to reformulation policy). The limited complexity
incorporated among microsimulations highlights some of
their distinct limitations as a tool to study systems and
explore unknown or emergent effects, which have been
previously described (22). Other approaches like ABM and
hybrid models are better equipped to handle this complexity
and are quite versatile in addressing each study’s unique
RFE research question. Yet, which model to select and
the degree of complexity to incorporate must be decisions
guided by the research question and purpose (113). Adding
additional complexity because a team can is not necessarily
useful and might unintentionally obscure answers (113)—
a scenario we did not observe in this literature. At the
same time, drawing boundaries of the model too nar-
rowly and not incorporating important complexity features
can lead to setbacks in understanding (113) that may
reflect similar challenges produced from relying only on
traditional statistical models. Thus, each team is tasked
with identifying the degree of complexity most relevant to
their research problem and their intended purpose of the
model (e.g., produce precise estimates, explore future policy
scenarios).

Despite the greater versatility, ABMs and hybrid models
used in this literature also displayed some limitations in
capturing RFE complexity (Table 2). Some applications in-
consistently incorporated feedbacks (e.g., between customer
purchasing and store behavior) and assumed residential
neighborhoods are the only relevant food environment for
health (50) (i.e., neglecting other food environments at
school and work). Future ABM and hybrid models that
incorporate these key characteristics of RFE complexity will
be able to be more fully utilized to answer RFE-related
questions as well as enhance insight into unintended or
unexpected effects.

Lastly, as noted by other authors (30, 34), issues remain
around the methods employed when applying complex sys-
tems models, especially around validation and certain aspects
of transparency (Table 3). External validation was common

across studies, however, it was not universal; and when em-
ployed, was at times underdeveloped, as similarly identified
in a review by Langellier et al. (34). Finally, although most
studies demonstrated adequate transparency, only 12 studies
(47, 68, 69, 74, 77, 78, 97, 98, 101–104) specified how to
replicate their model (e.g., public access, pseudocode)—a gap
that has been documented among ABMs at large (114). This,
along with a need to make graphic representations of model
relations a universal practice, is critical to help make complex
systems modeling more reproducible, verifiable, and clearer
to a wider audience. Setting author expectations to publish
studies using existing model-specific reporting guidelines,
such as the ODD (Overview, Design concepts, and Details)
protocol (115, 116) and the PARTE (Properties, Actions,
Rules, Time, and Environment) framework (117) for ABMs,
and expanding these to include additional elements (e.g.,
graphical representations) that enhance transparency may be
important future approaches.

Strengths and limitations of this review
This review has strengths and limitations. This review is
the first of its kind to evaluate the utility, benefits, and
limitations of using complex systems science approaches to
examine RFEs for population health. Strengths included the
extensive database search led by a public health librarian,
and the implementation of PRISMA guidelines to select
studies and extract data. We limited study inclusion to 6
specific complex systems computational approaches, which
excluded other simulation and stochastic analytic methods,
such as Markov models, and we omitted gray literature and
studies that were not in English. Thus, results may have
failed to provide a full synthesis of research to date that has
used a complex systems computational modeling approach
to study the RFE for population health. In addition, given
the vast diversity of research questions and experiments
simulated, we were limited in our ability to synthesize results
across studies (e.g., which policies consistently demonstrated
positive effects on nutrition-related health), and the lenient
criteria of our transparency score may have overestimated the
overall transparency among studies.

Conclusion
Tackling complexity within RFEs can be challenging if done
unaided. Complex systems computational models are a use-
ful tool to study this complexity and understand its potential
solutions for health. The 6 approaches reviewed here all
demonstrate potential in unraveling complexity, understand-
ing RFEs as systems, and providing insights into future RFE
policy and intervention effects. As these approaches become
more common, it will be important for investigators to select
the approach that best addresses their specific RFE research
question, design models that adequately capture real-world
complexity, better engage stakeholders, and provide greater
transparency. Although room for improvement remains,
this review helps demonstrate the utility of using these
approaches to understand complex relations between RFEs
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and population health and inform future decision-making
that improves RFEs.
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