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A B S T R A C T   

Background and purpose: Central lung tumours can be treated by magnetic resonance (MR)-guided radio
therapy. Complications might be reduced by decreasing the Planning Target Volume (PTV) using mid-position 
(midP)-based planning instead of Internal Target Volume (ITV)-based planning. In this study, we aimed to 
verify a method to automatically derive patient-specific PTV margins for midP-based planning, and show 
dosimetric robustness of midP-based planning for a 1.5T MR-linac. 

Materials and methods: Central(n = 12) and peripheral(n = 4) central lung tumour cases who received 
8x7.5 Gy were included. A midP-image was reconstructed from ten phases of the 4D-Computed Tomography 
using deformable image registration. The Gross Tumor Volume (GTV) was delineated on the midP-image and the 
PTV margin was automatically calculated based on van Herk’s margin recipe, treating the standard deviation of 
all Deformation Vector Fields, within the GTV, as random error component. Dosimetric robustness of midP-based 
planning for MR-linac using automatically derived margins was verified by 4D dose-accumulation. MidP-based 
plans were compared to ITV-based plans. Automatically derived margins were verified with manually derived 
margins. 

Results: The mean D95% target coverage in GTV + 2 mm was 59.9 Gy and 62.0 Gy for midP- and ITV-based 
central lung plans, respectively. The mean lung dose was significantly lower for midP-based treatment plans 
(difference:-0.3 Gy; p < 0.042). Automatically derived margins agreed within one millimeter with manually 
derived margins. 

Conclusions: This retrospective study indicates that mid-position-based treatment plans for central lung 
Stereotactic Body Radiation Therapy yield lower OAR doses compared to ITV-based treatment plans on the MR- 
linac. Patient-specific GTV-to-PTV margins can be derived automatically and result in clinically acceptable target 
coverage.   

1. Introduction 

Stereotactic body radiotherapy (SBRT) is the recommended treat
ment for inoperable patients with early stage non-small cell lung cancer 
(NSCLC). These tumours require a Biologically Effective Dose (BED) of 
⩾100 Gy to achieve local control ([1]), but the proximity of central 
tumours to the mediastinum may prohibit giving such a high dose to the 
tumour with acceptable risk of toxicity to critical mediastinal structures. 
Treatment of (ultra)-central lung tumours is therefore controversial as it 
appears to have a higher rate of complications than treatment of pe
ripheral tumours ([2–5]). 

Thoracic radiotherapy is associated with large and complex 

geometrical uncertainties, such as anatomical changes over the course of 
treatment and respiratory motion, which must be incorporated in the 
treatment plan via margins around the tumour to create the planning 
target volume (PTV) ([6,7]). MR-guided radiotherapy enables on-table 
plan adaptation to the daily anatomy, thereby reducing uncertainties 
associated with inter-fractional anatomical changes ([8,9]). Central lung 
tumours are now routinely treated with MR-guided radiotherapy 
([10,11,8,12]). 

Respiratory motion is one of the largest sources of geometrical un
certainty for lung radiotherapy. The conventional approach, using an 
internal target volume (ITV), is highly conservative and leads to un
necessary exposure of healthy tissue. Gating treatment delivery to a 
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particular respiratory phase significantly reduces the uncertainty asso
ciated with respiratory motion and thus the irradiated volume ([9]). 
Clinically, improved dose conformality through gating must be balanced 
with reductions in duty cycle. Planning on the time-weighted mean 
position of the tumour, known as the mid-position (midP), also enables a 
significant reduction of the PTV compared to ITV-based planning whilst 
maintaining a 100% duty cycle and ensuring dose coverage of the 
tumour ([13]). The 3D tumour motion can then be regarded as a source 
of random error when deriving the PTV margin. This 3D motion is 
generally visually derived from the peak-to-peak (p2p) motion of the 
tumour along the three Cartesian axes, but can in principle be extracted 
from the deformation vector fields (DVFs) generated by the deformable 
image registration (DIR) used to create the mid-position image. Auto
mated derivation of the 3D motion would also be much easier to 
implement in an online adaptive MR-linac workflow. 

In this work, we aimed to verify automatic derivation of margins for 
central lung tumours and to demonstrate the dosimetric robustness of 
mid-position based SBRT to respiratory motion on an MR-linac using 4D 
dose accumulation. Special consideration was given to geometric and 
dosimetric uncertainties associated with the use of DIR for dose 
accumulation. 

2. Materials and methods 

2.1. Patient selection and imaging 

In this retrospective study, 17 patients (median age: 70, range: 
30–86; four female) with NSCLC were included. All patients underwent 
SBRT on a conventional cone-beam CT-guided linac. Thirteen patients 
with central lung tumour were selected in chronological order between 
12–2017 and 11–2019, of which one patient was excluded due to poor 
image quality. Another four patients with peripheral lung tumours 
exhibiting large respiratory motion (> 10 mm) p2p were included to 
investigate robustness of the derived margins for large tumour move
ment. Patient data were collected retrospectively under the FAST-ART 
protocol (IRB reference: 20–519/C). Patients underwent 4D-CT imag
ing with 10 respiratory phases, from which an averaged 3D-CT image 
and a midP image ([13,14]) were reconstructed for ITV-based and midP- 
based dose planning, respectively (Supp. 6.1). 

2.2. Target definition and margin 

For each patient, the ITV was delineated on the averaged 3D-CT 
image taking 4D tumour excursion into account, while the GTV was 
delineated on the midP-CT image. The ITVs, which were taken from the 
clinical plans, were delineated by several radiation oncologists (in 
training) and verified by a second specialized radiation oncologist, 
whereas the GTVs were delineated by a single radiation oncologist (in 
training) focused on lung radiotherapy. For the ITV-based treatment 
plans an isotropic ITV-PTV margin of 3 mm was used following insti
tutional practices. For midP PTV creation, the non-linear van Herk 
margin recipe was used ([15]), 

M = 2.5Σ+ 0.67
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ2
p + σ2 + σ2

b)

√

− 0.67σp (1)  

with M the GTV-PTV margin to get target coverage in 90% of the pop
ulation with the 75% isoline. Furthermore σp (6.4 mm) is the beam 
penumbra in lung tissue, σb the random error component due to 
breathing, Σ and σ the residual systematic and random error compo
nents, respectively ([16]) (Table S2). Note that the 2 mm delineation 
uncertainty ([17]) was accounted for a random error (σ) to better reflect 
the daily target redelineation in MR-linac workflows. A similar delin
eation uncertainty was assumed for the ITV plans which in clinical 
practise is re-delineated on the daily motion-averaged MRI ([12]). The 
other systematic and random interfraction errors taken into account 
were uncertainty in treatment planning and geometric fidelity of MR- 
images and intra-fraction drift of the target based on Takao et al. ([18]). 

In this study, σb was directly calculated per voxel from the ten DVFs 
generated for midP reconstruction (Fig. 1). For each axis, i.e. cranio- 
caudal (CC), anterior-posterior (AP) and left–right (LR)), the standard 
deviation (SD) of the ten DVFs was calculated. The automatically- 
derived median SD of all voxels within the GTV (σSD

auto) was used as 
input for the random error due to tumour motion in the aforementioned 
margin recipe, which yields automatically-derived anisotropic GTV-PTV 
margins (MarginSD

auto) specific to each patient. 

2.3. Treatment planning 

Treatment plans were generated in Monaco v5.40.01 for the Unity 

Fig. 1. Schematic 4D-dose accumulation workflow including dose warping using energy-mass transfer (EMT) and derivation of the GTV-PTV margin including the 
standard deviation (σb) of the deformation vector fields (DVFs). 
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MR-linac. Two plans were created for each patient: one optimized for the 
ITV on the averaged 3D-CT, the other plan optimized for the GTV on the 
midP-CT. Treatment planning was performed using 13–15 intensity- 
modulated beams, which were angled to avoid entering through unin
volved lung or the patients arms, simulated as positioned along the body 
([19]). Further planning details are given in Supp. 6.2. 

2.4. Validation of GTV-PTV margins 

In order to validate the automatically derived GTV-PTV margins for 
the midP planning process, the automatically derived σSD

auto was 
compared to a manually derived σSD

man. The σSD
man was derived by manual 

rigid registration of the tumour region of each 4D-CT phase to the end- 
exhale phase, resulting in ten displacement vectors. The SD of these 
displacement vectors is defined as the σSD

man, and should be approximately 
the same as the σSD

auto. 
In current clinical practice, σb for midP is typically based on the p2p 

amplitude of the tumour. The p2p amplitude is manually measured and 
converted to a random error component by using the rule of thumb that 
σp2p

man can be approximated as one third of the p2p amplitude ([20,21]). 
All σ’s were used as input for the σb in the van Herk recipe. 

Bland–Altman analyses ([22]) were performed to compare the margins 
derived by manual rigid registration (MarginSD

man), and the margins 
determined from the p2p motion (Marginp2p

man), with the automatically- 
derived margins (MarginSD

auto) ([22]). The peripheral lung tumour cases 
were processed in the margin analysis and shown the Bland–Altman plot 
but were excluded from statistical analysis. 

2.5. 4D-dose accumulation 

A 4D-dose accumulation was performed to evaluate the dosimetric 
robustness of each plan under respiratory motion conditions (Fig. 1). For 
each treatment plan, the dose was recalculated on the ten phases of the 
4D-CT using a standalone GPU-Monte-Carlo Dose (GPUMCD) engine 
([23]). The dose was then warped and accumulated to the midP-CT 
using the DVFs generated by the midP reconstruction process. The 
dose accumulation was regularized to keep energy-mass transfer (EMT) 
constant ([24]). 

2.6. Dosimetric evaluation 

Target coverage was evaluated on the GTV expanded with a 2 mm 
margin (GTV + 2 mm) for both the ITV-based and the midP-based plan. 
The evaluation margin was used to incorporate one SD of delineation 
uncertainty ([17]), which is otherwise not accounted for in the 4D-dose 
accumulation workflow. Lung volume for mean lung dose (MLD) 
calculation was defined as lung minus GTV. For the central lung tu
mours, a statistical analysis with a pairwise Wilcoxon-signed rank test 
was performed to compare the metrics determined from the 4D-accumu
lated dose. Given the limited number of patients, the statistical analysis 
of the organ-at-risk (OAR) DVH-parameters was only used for hypoth
esis generation to provide an overview of the differences between both 
planning methods. 

We hypothesized that a larger PTV would correspond to a higher 
MLD, and that a midP-based treatment would be most beneficial in 
terms of reduction of MLD for central lung patients with larger p2p 
tumour motion ([25]). MLD difference between midP- and ITV-based 
plans was therefore compared with the difference in PTV and p2p- 
motion. The four peripheral cases were not analyzed statistically, but 
were included in the figures to show the trend for larger tumour motion. 

2.7. DDM and δ-index 

The distance discordance metric (DDM) ([26,27]) was calculated for 
each patient to assess the precision of the registration used for midP 

image reconstruction and dose accumulation. Registration of the end- 
exhale phase to the end-inhale phase via an intermediate registration 
to each in-between phase of the 4D-CT results in eight DVFs. The SD of 
the eight voxel positions in the end-exhale phase gives the DDM value 
for each voxel, with a lower score indicating higher DIR consistency. The 
resulting DDM map was then warped to the midP image ([27]). 

To determine the uncertainty in the accumulated dose distributions 
the δ-index was calculated for all voxels with a dose difference criterion 
of 3%. The δ-index is a novel metric to evaluate the uncertainty asso
ciated with the dose accumulation process, by incorporating the un
certainty of the registration (i.e, the DDM) and the spatial variation in 
the 4D-accumulated dose distribution in the neighbourhood of each 
voxel ([28]). In analogy to the gamma-index, the uncertainty of the 4D- 
dose accumulation is defined to be acceptable when the δ-index is <1. 

3. Results 

3.1. Comparison of margin derivation methods 

Bland–Altman plots showing the comparisons between 
automatically-derived margins (MarginSD

auto) with corresponding manu
ally derived margins based on the p2p motion (Marginp2p

man) or the SD 
(MarginSD

man) are shown in Fig. 2. For the central lung tumours, the PTV 
margins in CC direction for MarginSD

auto,Marginp2p
man and MarginSD

man ranged 
between 4.0–6.1 mm, 4.0–7.1 mm and 4.0–7.1 mm respectively. The 
margins in AP and RL direction were all four and three millimeter when 
rounded. The differences between MarginSD

auto and Marginp2p
man or MarginSD

man 
were mainly along the CC axis, as expected with the motion predomi
nantly in cranio-caudal direction. Differences between MarginSD

auto and 
Marginp2p

man, and between MarginSD
auto and MarginSD

man, ranged between − 1.0 

Fig. 2. (A) Bland–Altman plot of the margin determined from the DVFs 
(MarginSD

auto), versus the margin determined based on displacement of the target 
volume using manual rigid registration (MarginSD

man). (B) Bland–Altman plot of 
the MarginSD

auto versus the margin based on the manually measured p2p tumour 
motion (Marginp2p

man). Central and peripheral tumour cases are represented by a 
dot and triangle, respectively. Bias (dashed line) and median (solid line) are 
shown for central lung cases. (AP: anterior-posterior; CC: cranial-caudal; RL: 
right-left). 
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mm to  + 0.2 mm and − 1.1 mm to  + 0.3 mm respectively for the central 
lung tumour cases, with a trend of larger variation between margin 
derivation methods for larger target motion. For the peripheral lung 
tumours with large motion, a similar larger variation was observed be
tween MarginSD

auto (range margins: 4.7–5.8 mm) and Marginp2p
man or 

MarginSD
man, with differences from − 0.5 to 0.3 mm and − 0.9 to − 0.04 

mm, respectively. 
After rounding the margins to the nearest millimeter, to mimic the 

precision of treatment planning systems, the automatically-derived 
margin was in two instances smaller than the p2p-margin by 1 mm, 

and in one instance larger by 1 mm. All differences were along the CC 
axis. No differences were found between margins determined along the 
AP and RL axes. 

3.2. Plan comparison 

For central lung tumour cases, the mean (SD) PTVs for the ITV-based 
plans was significantly larger (p = 0.0037) than for the midP-based 
plans with 40.0 cm3 (41.4 cm3) and 28.9 cm3 (40.7 cm3), respectively 
(Table S3). The metrics for the target and OAR doses determined for the 
4D-dose accumulations for the midP treatment plans were compared to 

Fig. 3. Example patient with 4D-accumulated midP and ITV doses, dose differences to planned dose, and the midP versus ITV dose difference.  
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the corresponding 4D-dose accumulations for the ITV-based plans. In the 
example patient with respiratory motion of 23 mm along the CC-axis, it 
can be seen that dose was mainly reduced in the CC-direction, by up to 
30 Gy, for midP-based plans compared to ITV-based plans (Fig. 3). The 
mean (SD) D95% coverage of the GTV + 2 mm was 59.9 Gy (4.1 Gy) and 
62.0 Gy (4.7 Gy) for the midP and ITV plans for the central lung tumours 
respectively. The four peripheral lung tumours all got acceptable dose 
coverage with D95% ranging between 60.1–63.1 Gy and 63.7–68.1 Gy 
for midP-based and ITV-based dose distributions, respectively. 

The dose delivered to the target for central lung tumours in midP 
plans was significantly lower for D95% (-2.9 Gy, p = 0.032) compared to 
the ITV plan, but not for D98% (-2.3 Gy, p = 0.057) and D0.1 cm3 (+1.3 
Gy, p = 0.73) (Fig. 4). The midP-based accumulated doses showed a 
D95% and D98% closer to the prescribed dose (60 Gy), with the spread 
(SD) in dose two-third of the ITV-based accumulated plans. Several DVH 
parameters for OARs were significantly lower, including the MLD, which 
showed a small yet significant reduction for midP-based versus ITV- 
based treatment planning of median − 0.3 Gy (range:-3.0 Gy  + 0.4 
Gy; p = 0.042). The aorta DVH parameters show that in two cases the 
dose was above the planning constraints for the ITV dose distributions 
whereas the midP dose distribution was below the planning constraint. 

For central and peripheral lung tumour cases, we observed moderate 
correlations between the difference in MLD and PTV volume (r = 0.84, p 
= 0.0005) and between the difference in MLD and the p2p-motion of the 
tumour (r=-0.50, p = 0.093) (Fig. 5). 

3.3. midP-image reconstruction and dose accumulation accuracy 

The precision of the registration of the midP image reconstruction 
and the dose accumulation is shown in Fig. 6, which shows, in this case, 
high DDM scores corresponding with failing the δ-index criterion. The 
mean DDM for all patients was 0.3 mm (range: 0.1–0.9 mm) within the 
90% prescribed dose isocontour based on the ITV plan. The δ-index 
showed a median pass-rate in the 90% dose region of 99.8% (range: 
91.9%-100%) and 100% (range: 92.7% - 100%) for the midP and ITV 
4D-dose accumulations of the central lung tumours respectively. 

4. Discussion 

In this retrospective study, we provided the first successful demon
stration of the dosimetric suitability of mid-position-based treatments 
for central lung SBRT on an MR-linac. Using 4D dose calculation on CT, 
and EMT mapping, we showed that mid-position-based treatment plans 
maintain target coverage with slightly reduced dose compared to ITV- 
based reference plans, while achieving a variable amount of OAR 
sparing depending mostly on respiratory amplitude and target volume. 
The four peripheral cases with large tumour motion indicate that with 
larger motion amplitudes, the target is still covered using midP based 
treatment planning. Importantly, our dosimetric analysis supported the 
automatic derivation of patient-specific GTV-to-PTV margins based on 
the DVFs inherent to the generation of the mid-position CT image. By 
directly inserting the SD of motion into the margin equation, motion 
data from multiple deformable registration is evaluated, which increases 
the robustness against registration outliers. In addition, the simplifica
tion that the SD of motion typically corresponds to one-third of the p2p 
motion is retired. Automating margin calculations in this way speeds up 

Fig. 4. (A) DVH metrics for OARs and GTV + 2 mm for midP-based (black) and 
ITV-based (red) plans. The horizontal lines show the planning constraint for 
OARs and target prescriptions when applicable. Central cases and peripheral 
tumour cases are represented by a dot and a triangle, respectively. (B) Differ
ence between planning metrics for OARs and GTV + 2 mm between 4D-accu
mulated dose distribution of midP-based treatment plan and ITV-based 
treatment plans only for central lung tumour cases. (*: significant (α = 0.05) 
with Wilcoxon signed-rank test). 

Fig. 5. The difference in MLD between the midP-based and ITV-based treat
ment plans versus A) the difference in PTV volume and B) the amplitude of the 
p2p motion of the tumour. 
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margin creation, and thus opens opportunities for daily margin adaption 
for MR-linac systems. 

It should be noted that clinical experience with stereotactic lung 
treatments on MR-linac devices is still limited ([9,29,11]). Intra- 
fractional motion management based on MRI guidance holds great 
promise ([30,31]) but has not yet achieved its full potential. Currently, 
ITV-based lung treatments are still the only vendor-supported motion 
management strategy on the Unity MR-linac. For MRIdian MR-linacs, 
respiratory gating ensures tight PTV margins to reduce dose to organs- 
at-risk, with a trade-off on treatment efficiency, which might lead to 
longer treatment times ([32]). In future, dynamic multi-leaf collimator 
(MLC) tracking is expected to combine the dosimetric advantages of 
gating with the 100% duty cycle of ITV/midP deliveries ([33]). In the 
meantime, this study demonstrates that mid-position-based treatments 
offer a viable dosimetric improvement over ITV-based deliveries while 
maintaining a 100% duty cycle. For liver SBRT, it was previously shown 
that a mid-position-based treatment strategy is feasible on the Unity MR- 
linac ([34]). 

Given the small sample size in this study, the statistical analysis on 
OAR dose should be considered as exploratory and hypothesis gener
ating. Multiple testing was not performed, given the sample size 
constraint, and the explorative nature of the study. Validation of these 
data is needed in a larger cohort. This study is limited to analysing 4D- 
accumulated dose based on the pre-treatment 4D-CT. ’Snap-shot’ 4D- 
CTs poorly correlate with motion during treatment ([35–37]). This 
limitation can be overcome by creating a mid-position MRI based on 4D- 
MRI for daily plan adaption ([27]), especially when combined with 
(automatically) extracted daily GTV-to-PTV margins from the 4D-MRI. 
MidP MR-image reconstruction was shown to be feasible for daily plan 
adaptation on an MR-linac ([38]). Underprediction of peak-to-peak 

target motion during treatment on pre-treatment 4D-CTs is known 
issue([36,37]), which will affect the ITV-based more than the midP- 
based treatment plans as the midP-margin only weakly depends on 
peak-to-peak motion. 4D-CTs are also prone to image artefacts induced 
by irregular or slow breathing ([39]). As our mid-position CTs were 
derived from 4D-CT data, any such artefact could propagate to the mid- 
position CT, thus causing dose calculation and warping errors. Artefacts 
outside the beam path were deemed acceptable. In addition, the DDM, a 
quantitative metric for DIR uncertainty, was calculated. The deformable 
registration algorithm used in this study does not explicitly account for 
sliding motion, therefore registration accuracy is limited near those re
gions. The novel δ-index generally yielded very high pass rates in the 
high dose region, indicating a high level of confidence in our 4D-accu
mulated dose distributions. For one (excluded) patient, the δ-index 
showed a very low passing rate, in agreement with the visually assessed 
low image quality of the underlying 4D-CT. Interestingly, the DDM and 
δ-index were able to detect this case with suboptimal midP-image 
quality, which might in future help to automatilly identify patients 
that could benefit from a new 4D-CT planning scan. In our margin 
calculation, delineation uncertainty was assumed to be a random error 
as the target is re-delineated during each treatment fraction. Further 
investigation of inter- and intra-observer delineation uncertainty during 
treatment on an MRI-linac is needed to confirm this assumption. Similar 
interobserver variation error was assumed for ITV and GTV delineation, 
as the difference for this error is within one mm between different types 
of CT reconstructions ([40]). Importantly, adapting plans on daily MRI 
and accumulating dose across fractions was considered outside the scope 
of this study. While an in-depth analysis of inter-fractional anatomical 
changes and plan adaptation is valuable, it is not expected to undermine 
our findings relating to target coverage under periodic intra-fractional 

Fig. 6. Central lung tumour case with 4D-accumulated dose for a midP-based plan, and corresponding δ-index pass-fail map for the >= 10%-prescribed dose region, 
and the DDM map. 
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motion conditions. In this study, non-periodic intra-fractional motion, 
namely baseline drifts or shifts, was accounted for in the margin recipe. 
In future, baseline motion could be actively mitigated using tumour 
trailing ([41]), potentially resulting in further margin reductions. In two 
cases, mid-position based treatment planning resulted in an OAR dose 
below the dose limit, in contrast to the ITV based treatment plan. 
Although on average a small dose reduction for the OARs was achieved, 
for individual patients a large effect on OAR dose can be achieved with 
mid-position based treatment planning. 
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