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Alternative splicing shapes the transcriptome and contributes to each cell’s unique identity, but single-cell RNA sequencing

(scRNA-seq) has struggled to capture the impact of alternative splicing. We previously showed that low recovery of mRNAs

from single cells led to erroneous conclusions about the cell-to-cell variability of alternative splicing. Here, we present a

method, Psix, to confidently identify splicing that changes across a landscape of single cells, using a probabilistic model

that is robust against the data limitations of scRNA-seq. Its autocorrelation-inspired approach finds patterns of alternative

splicing that correspond to patterns of cell identity, such as cell type or developmental stage, without the need for explicit

cell clustering, labeling, or trajectory inference. Applying Psix to data that follow the trajectory of mouse brain develop-

ment, we identify exons whose alternative splicing patterns cluster into modules of coregulation. We show that the exons

in these modules are enriched for binding by distinct neuronal splicing factors and that their changes in splicing correspond

to changes in expression of these splicing factors. Thus, Psix reveals cell type–dependent splicing patterns and the wiring of

the splicing regulatory networks that control them. Our new method will enable scRNA-seq analysis to go beyond tran-

scription to understand the roles of post-transcriptional regulation in determining cell identity.

[Supplemental material is available for this article.]

Transcriptomeprofiling at a single-cell level has revolutionized our
understanding of the continuous biological variation in gene ex-
pression that determines a cell’s unique identity (Wagner et al.
2016; Tanay and Regev 2017). Alternative mRNA splicing is a ma-
jor source of transcriptome variability that plays an important role
in determining the identity of a cell (Wang et al. 2008; Baralle and
Giudice 2017), but single-cell analyses have not generally dis-
tinguished between different transcript isoforms of a gene. This
misses a major source of biological variation; the fine-tuned regu-
lation of splicing contributes to many continuous biological pro-
cesses such as neurogenesis (Raj and Blencowe 2015; Weyn-
Vanhentenryck et al. 2018), whereas itsmisregulation is associated
with complex diseases (Yoshida et al. 2011; Irimia et al. 2014;
Parikshak et al. 2016; Climente-González et al. 2017). Thus, a
more complete understanding of gene expression variability be-
tween cells and its phenotypic consequence require an evaluation
of changes in splicing and inference of how these changes are
regulated.

Despite the enormous progress in computationalmodeling of
cell identity from single-cell gene expression studies (Lopez et al.
2018; Risso et al. 2018; Eraslan et al. 2019; Stuart et al. 2019;
Welch et al. 2019), formidable challenges remain in capturing
the impact of alternative splicing (Westoby et al. 2020). A major
limitation to this end is the sensitivity with which alternative
splicing events can be read froma single cell. Generally, alternative
isoforms are distinguished by only a few specific regions of the
transcript, which influences accuracy even in bulk-level studies.

This limitation becomesmore acute in single-cell RNA sequencing
(scRNA-seq) data owing to low capture efficiency and extensive
PCR amplification, which add technical variation and bias. As a re-
sult, the observed rates of an exon’s inclusion (described for each
cell as the percent of transcripts from its gene in which the exon
is present, or Ψ) are greatly distorted, with an inflation of spurious
extreme values (Buen Abad Najar et al. 2020; Westoby et al. 2020),
especially in exons from moderately or lowly expressed genes.

The high observed variance in an exon’s inclusion rate be-
tween cells (Shalek et al. 2013; Song et al. 2017), whether owing
to biological stochasticity or to the technical artifacts resulting
from low mRNA capture efficiency (Buen Abad Najar et al. 2020),
can obscure regulated, biologically important splicing changes be-
tween different cell types or states. Computational methods have
endeavored to reveal these examples amid the noise. One method
used spike-in transcripts to measure and model the variance ex-
pected from technical noise and looked for splicing with variance
beyond this (Welch et al. 2016). Several studies have mitigated the
impact of technical variance by looking for differences in themean
inclusion rate of an exon between defined groups of cells, expect-
ing that changes in exon inclusion would be noticeable between
cell groups as a whole even when technical noise is high (Welch
et al. 2016; Buen Abad Najar et al. 2020; Wen et al. 2020). The
problems of low coverage can be further alleviated by incorporat-
ing extra information such as gene sequence and cell type as priors
in estimating rates of exon inclusion (Huang and Sanguinetti
2017, 2021). However, none of these approaches explicitly model
the distortion of splicing observations caused by low capture effi-
ciency. Further, methods that require cells to be clustered by
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condition or sample cannot take full advantage of the insight that
single-cell data provide into continuous biological processes. A
method that analyzes splicing across a continuous cell population,
while considering the impact of lowmRNA capture efficiency, has
yet to be developed.

Results

Conceptual overview and method description

Our goal in this work is to confidently identify alternative splicing
events that vary between cells while accounting for limitations in
sensitivity and not enforcing any a priori stratification of cells into
subpopulations or trajectories. Our approach relies on the notion
of increasing sensitivity by using information beyond the ob-
served splicing of the specific exon of interest in the cell of interest.
To this end, we frame our objective as the detection of alternative
splicing events that reflect changes in cell state, as defined by the

entire transcriptome. For instance, an
alternative exon of interest might be
spliced into mRNAs at low levels in
stem cells and at increasingly high
levels in differentiating cells (Fig. 1A).
Although such an observation may only
be supported by a small number of cap-
tured mRNA molecules, we posit that its
consistency with cell state—as reflected
in the similarity of the exon’s observed
splicing between similar cells—makes it
more likely to represent the underlying
biology. As we show next, this definition
does not require dividing the cells into
groups by clustering or by labeling cell
types, nor does it require an explicit tra-
jectory of cell progression.

We formulate these ideas as Psix, a
probabilistic method inspired by auto-
correlation models that identifies splic-
ing events that are associated with cell
state. Psix estimates the likelihood of an
exon’s observation in each cell, Ĉ, given
twomodels: In the foregroundmodel, we
assume that the exon inclusion should
be similar to that observed in other, tran-
scriptionally similar cells. In the back-
ground model, we assume that the
observed exon inclusion reflects sam-
pling noise around a global average (de-
fined separately for each exon) rather
than the state of any particular cell. If
the exon is associated with cell state,
then the firstmodel would bemore likely
than the second (Fig. 1B). We formalize
this as a score for each exon that consists
of the likelihood ratio between the two
models, and assign it an empirical P-val-
ue through randomizing the location of
each cell in the low-dimensional mani-
fold. The evaluation of the two likeli-
hood models requires two things:
knowledge of which cells are similar (in
transcriptome space) and a model of the

distribution of observed exon inclusion values, Ĉ, given an under-
lying unknown Ψ. For the former, we take the similarity to be the
distance between cells in a low-dimensional projection based on
gene expression profiles (in this study, we use a PCA projection
of the SCONE normalized gene expression [Cole et al. 2019]; other
existing methods can also be used [Lopez et al. 2018; Risso et al.
2018; Eraslan et al. 2019]). For the latter, we adopt a binomialmod-
el of sampling without replacement, reflecting the observation
that if fewmRNAmolecules are captured, the observed exon inclu-
sion rates Ĉwill deviate greatly from the underlyingΨ (Buen Abad
Najar et al. 2020).

Assessment of performance on simulated data

We validated our approach using simulated single-cell splicing
data from amodel of a continuous trajectory of cell states. The sim-
ulation allows us to test Psix’s ability to distinguish between two
classes of simulated cassette exons: those whose inclusion rates
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Figure 1. Conceptual model. (A) Cell state–associated exons change across the phenotypic landscape
of a single-cell population. Cell state–independent exons do not change across the phenotypic land-
scape. Low capture efficiency in scRNA-seq experiments adds additional technical variance depending
on the number of captured mRNA molecules. The probability of capturing each alternative isoform de-
pends on the underlying distribution of exons in the single-cell population. (B) Psix compares the likeli-
hood of each single-cell observation given twomodels: model 1, in which the exon is cell state associated
(probability of the cell’s Ĉ given the average Ĉ of its k nearest neighbors), versus model 0, in which the
exon is cell state independent (probability of the cell’s Ĉ given the average Ψ of all cells in the data set).
Model 1 is more likely for a cell state–associated exon. For a cell state–independent exon, the expected
Ĉ of any cell is the same irrespective of its position in the cell state manifold. As a result, the expected
value of the average �C of a neighborhood of cells is the same as the global average �C. For this reason,
the likelihood of model 1 is similar to the likelihood of model 0 for a cell state–independent exon.
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depend on the cell’s position in the trajectory and those simulated
with no change in splicing across the trajectory (i.e., exons reflect-
ing noise properties of these data) (Buen Abad Najar et al. 2020).
First, we simulated gene expression mRNA counts across a contin-
uous trajectory using SymSim (Zhang et al. 2019). For each gene,
we then fit a continuous function corresponding to the average
underlyingΨ of its cassette exon at a given point of the trajectory:

an impulse function for exons with splic-
ing change and a flat line for exons with-
out splicing change. These classes were
assigned randomly to each exon, inde-
pendent of the simulated mRNA counts
of each cell. This underlying Ψ was then
used to subsample the mRNA counts to
simulate the exon inclusion in a subset
of mRNA molecules. Finally, we simulat-
ed mRNA capture and short-read, full-
coverage sequencing and then subsam-
pled reads to reflect the limited number
that cover the splice junctions. This
resulted in simulated data that show sim-
ilar increases in extreme values as ob-
served in real data (Fig. 2A; Buen Abad
Najar et al. 2020).We tested Psix’s perfor-
mance on correctly classifying exons as
simulated with splicing change (cell state
associated) or as simulated without splic-
ing change (cell state independent).

The key distinguishing features of
Psix are its usage of information on cell
similarity in a continuous phenotype
and its explicit model of the distribution
of observed Ĉ values given an underlying
unknown Ψ. We compared Psix’s ability
to classify simulated exons to that of oth-
er methods without these features. First,
considering the advantage of a cluster-
free approach, we compared Psix’s per-
formance on classifying the simulated
exons against a Kruskal–Wallis test that
detects differences in the median Ψ be-
tween cell clusters after clustering the
cells from the simulated trajectory
(Buen Abad Najar et al. 2020; Wen et al.
2020). Second, we compared the perfor-
mance of Psix against Geary’s C, an auto-
correlation (cluster-free) test statistic that
does not model the number of mRNAs.
We found that Psix outperformed these
alternative approaches in detecting splic-
ing changes in simulated data (Fig. 2B).
Importantly, the simulations included
genes simulated to have differential ex-
pression over the trajectory as well as
genes with no differential expression,
and splicing changes were simulated in-
dependently of expression changes. We
found that Psix performed equally well
at finding splicing changes in genes
with andwithout differential expression,
whereas the other methods were more
prone to false positives in genes with dif-

ferential expression (Fig. 2B; Supplemental Fig. 1A,B). Overall,
modeling the technical distortion owing to low mRNA recovery
enabled Psix to avoid excess false positives, unlike other methods
(Fig. 2C). As expected, sensitivity to detect splicing changes in-
creased with the magnitude of the splicing change (Fig. 2D;
Supplemental Fig. 1C). Sensitivity was also increased for exons
from highly expressed genes (Supplemental Fig. 1D). As discussed
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Figure 2. Psix identifies cell state–associated splicing in simulated and real data. (A) Pipeline for simu-
lation of single-cell splicing. Variance in the observations can come from a change in splicing across the
cell state (positives) or from other sources, for example, technical noise, or true variance that is not asso-
ciated with the primary axes of variation in cell state (here, determined by the simulated trajectory; neg-
atives). (B) Area under the precision-recall curve showing success of Psix and other methods at identifying
exons simulated to have a |ΔΨ|≥0.2 across a single lineage. Performance was assessed separately on ex-
ons in genes simulated as differentially expressed (DE) and not differentially expressed (nonDE). (C) P-val-
ue distributions of the negative exons when tested with Psix, Kruskal–Wallis, and Geary’s C. The P-values
of Psix do not deviate significantly from the uniform distribution. (D) Recall of exons simulated with dif-
ferent magnitudes of ΔΨ. (E) Validation strategy for cell state–associated splicing in single cells based on
comparable bulk RNA-seq data. (F) Area under the precision-recall curve representing the overlap of cell
state–associated exons in scRNA-seq data and differentially spliced exons in bulk RNA-seq data, both
from midbrain neurons. We compared performance on exons in differentially expressed genes (DE)
and non-differentially expressed genes (nonDE).

Alternative splicing in single cells
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in our previouswork, capture efficiency can be quite low in scRNA-
seq, and Psix performed better than these other methods on
data simulated at a range of different capture efficiencies
(Supplemental Fig. 1E). The Psix scores were highly correlated re-
gardless of the capture efficiency used in the model to estimate
the probability of the observations (Supplemental Fig. 1F), which
ensures robust results when the capture efficiency of a data set is
not determined. Overall, we show that Psix performs well at recov-
ering cell state–associated splicing, with high sensitivity and preci-
sion, and that it is robust against distortions arising from low
mRNA counts.

A quintessential use of single-cell data is to explore the differ-
ences between groups of cells that would be difficult to distinguish
in bulk data (Wagner et al. 2016), for instance, cells along a short
developmental trajectory, or a subpopulation of cells with slightly
different patterns of gene regulation. We expect that a common
task for Psix would be to detect cell state–associated exons whose
inclusion differs only in a small subpopulation of cells. To test
Psix’s performance in such situations, we simulated splicing
changes in a three-branched trajectory of single cells, with one
branch smaller than the others (Supplemental Fig. 2A,B). Psix out-
performed other approaches at recovering cell state–associated
exons in this scenario (Supplemental Fig. 2C). Although its sensi-
tivity was higher for splicing changes occurring in the larger
branches, Psix was able to recall the majority of splicing changes
occurring in the smallest branch of single cells while maintaining
a low rate of false positives (Supplemental Fig. 2D). These results
highlight the fact that the ability to recover splicing changes in
single-cell data may depend on the number of cells that present
the change. Given that Psix relies on neighborhood information
in order to counteract the loss of data from low capture efficiency
in single-cell experiments, we reasoned that the results would
potentially be sensitive to the choice of k-nearest neighbors used
in modeling. In both the single-lineage and the three-lineage sim-
ulation (each with 1000 simulated cells), using a k equivalent to
10% resulted in a strong performance (Supplemental Fig. 3A,B).
To further explore the effect of the number of cells, we simulated
a single lineage of 10,000 cells, subsampled this set of cells to create
sets of varying numbers of cells, and then applied Psix to these sets
of different sizes. We found that sensitivity increases along with
the number of cells, whereas precision remains consistently high
(Supplemental Fig. 3C,D). In these simulations, a k-nearest neigh-
borhood of 100 cells results in a strong performance, independent
of the number of subsampled cells (Supplemental Fig. 3E). Based
on these results, we propose a k-nearest neighborhood size of
100 cells for Psix in most cases and 10% of the total population
as an alternative for data sets with fewer than 1000 cells.

Psix identifies alternative splicing associated with neurogenesis

Next, we sought to test Psix’s ability to identify alternatively
spliced exons in real single-cell RNA-seq data. We applied Psix to
three different published neurogenesis scRNA-seq data sets. We
tested Psix’s ability to identify exons that were observed as differ-
entially spliced in bulk RNA-seq time series data sets that closely
matched the scRNA-seq data sets. For instance, a single-cell data
set of embryonic mouse neurons was matched with a bulk RNA-
seq time series data set taken from similar time points, and exons
discovered as differentially spliced between time points in the bulk
data set were considered as positives (Fig. 2E). We used rMATS
(Shen et al. 2014) to compare each time point in the bulk time se-
ries to the first time point and classified the exons with a signifi-

cant change (Q-value≤0.05 and |DĈ| ≥ 0.2) as differentially
spliced. We compared Psix against the Kruskal–Wallis and
Geary’s C tests as described above. We also compared Psix against
an existing approach, BRIE2 (Huang and Sanguinetti 2021), which
identifies splicing differences between predefined groups of single
cells. Psix outperformed all methods in classifying the exons from
all three data sets, and in keeping with the results from our simu-
lations, Psix performed well on exons that fell in differentially
expressed genes (Fig. 2F; Supplemental Fig. 4A). As expected, sen-
sitivity was higher for exons that showed a higher splicing change
in bulk RNA-seq data (Supplemental Fig. 4B). (We did not test
BRIE2 on our simulations as it requires the actual sequencing
data as input, whereas our SymSim-based simulator generates
count matrices directly.)

Psix identifies coregulated groups of exons

Because scRNA-seq reports on the biological state of hundreds or
thousands of single cells, it has great potential for uncovering reg-
ulatory networks that control changes in individual gene expres-
sion. Single-cell data have been used successfully to infer
transcription regulatory networks (Aibar et al. 2017), but inference
of splicing regulation has been very limited and generally involves
pooling predefined clusters of cells (Feng et al. 2021; Huang and
Sanguinetti 2021). Alternative splicing is regulated by a network
of splicing factors, andwe posited that scRNA-seq data could reveal
coordinated changes in coregulated exons as well as the corre-
sponding changes in expression of the splicing factors that regu-
late these exons.

To begin reconstructing splicing regulatory networks, we first
applied Psix to a data set ofmidbrain dopamine neurons across dif-
ferent stages of mouse development (Fig. 3A; Tiklová et al. 2019).
Psix identified 798 cell state–associated exons over the brain devel-
opment landscape, including many exons that have been exten-
sively reported to change in neuronal development (Fig. 3B;
Wang and Burt 1991; Speidel et al. 2003; Smith et al. 2011;
Weyn-Vanhentenryck et al. 2018). A Gene Ontology enrichment
analysis confirmed that the set of genes that harbor the exons
identified by Psix was enriched for genes associated with neuronal
and synaptic development (Supplemental Fig. 5). To further sup-
port the potential functional relevance of these exons, we exam-
ined features associated with regulated alternative splicing,
including preservation of reading frame and sequence conserva-
tion. We found that the cell state–associated cassette exons identi-
fied by Psix were more likely to preserve the reading frame
(hypergeometric test for enrichment against all the exons tested
with Psix, P=1.1 ×10−15). The cell state–associated cassette exons
also had higher sequence conservation near the 5′ and 3′ splice
sites; cell state–associated cassette exons had a median phyloP
score of 2.27 within 30 nucleotides of each splice site, whereas
cell state–independent cassette had a median phyloP score of
1.72 (Wilcoxon rank test P=4.8 ×10−43). These results support
the biological importance of the exons identified by Psix as cell
state associated.

Next, we set out to identify coregulated splicing among the
cell state–associated exons. Tomitigate the effect that the high var-
iance of individual splicing observations may have on our ability
to detect coregulated exons, we used a neighborhood average Ψ
(taking the k most similar cells) instead of the individual Ĉ. We
then clustered these smoothed observations into 10 modules of
cospliced exons (Fig. 3C). The modules of exons showed distinct
patterns of change across midbrain development, suggesting that
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they may reflect elements of coregulation that take place at differ-
ent developmental phases (Fig. 3D). The expression patterns of the
genes that contain the exons of each module do not reflect the
splicing pattern of the modules (Supplemental Fig. 6). In fact,
the majority of the cell state–associated exons found by Psix do
not fall in differentially expressed genes (Supplemental Fig. 7A),

and cell state association occurs in both
differentially expressed and nondifferen-
tially expressed genes (Supplemental Fig.
7B–D). This suggests two important
points: first, that the groups of seemingly
coregulated exons reflect real splicing
regulation rather than an artifact of un-
derlying transcription changes, and sec-
ond, that splicing regulation adds rich
biological variation that is not captured
solely by transcription-level analysis.

To find potential regulators associ-
ated with these modules, we integrated
information on splicing factor binding
from published CLIP-seq experiments
(Supplemental Table 1) and information
on splicing factor expression in single
cells. We identified 10 splicing factors
with enriched binding to the Psix-identi-
fied (cell state–associated) exons (hyper-
geometric test, FDR≤0.05) and whose
expression was correlated with the aver-
age inclusion rate of exons in at least
one of the 10 modules (FDR≤0.05, Pear-
son’s r≥0.25) (Fig. 3E; Supplemental Ta-
ble 1). These splicing factors included
proteins from the NOVA, RBFOX, PTBP,
and MBNL families, all of which have
known roles in regulation of splicing dur-
ing neuronal development (Zhang et al.
2010; Charizanis et al. 2012; Licatalosi
et al. 2012; Li et al. 2014; Weyn-Vanhen-
tenryck et al. 2014, 2018; Raj and Blen-
cowe 2015). Thus, Psix is able to find
exons that are coordinately regulated in
midbrain development, as well as their
potential regulators.

Single-cell data often represent col-
lections of different mature cells with
no developmental trajectory. To see if
Psix could capture splicing associated
with differences between groups of cells,
we applied it to the brain neurons subset
of the Tabula Muris Smart-seq2 data set
(The Tabula Muris Consortium 2018).
This data set is composed of multiple
neural and nonneural cell types from the
brain of the adult mouse, with a total of
6146 cells after filtering for quality con-
trol (Supplemental Fig. 8A). Because of
the large number of cells, we performed
dimensionality reduction using scVI
(Lopez et al. 2018) instead of PCA. Out
of 3025 observed alternatively spliced
cassette exons, 1278 were cell state asso-
ciated. Clustering these exons by their

neighborhood average Ψ revealed modules reflecting different
cassette exon usage across the different cell types (Supplemental
Fig. 8B–D). The cell state–associated exons were enriched for mul-
tiple Gene Ontology terms related to metabolic processes, as well
as terms relevant for the cell types present in this data set such as
neuron projection development (Supplemental Fig. 8E). Psix is
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Figure 3. Psix identifies alternative splicing patterns in mouse midbrain development. (A) Mouse mid-
brain dopamine neurons collected at different stages of development (Tiklová et al. 2019), plotted by the
first three principal components of normalized gene expression counts. (B) Psix scores of cassette exons,
compared with the scores of randomized exons. Some exons known to be regulated in neurogenesis are
highlighted. (C) Correlation map of the neighbor average �C of the cell state–associated exons. Modules
were identified with a modification of the UPGMA algorithm. (D) Neighbor average normalized �C of the
exons in each module. (E) Correlation of module splicing with gene expression of splicing factors that
were enriched for binding in the cell state–associated exons identified by Psix. The 10 splicing factors
with significant correlation with at least one module (FDR≤0.05, Pearson’s r≥0.25) are shown.
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therefore able to find splicing associated with disjoint cell states,
using the same approach based on the similarity of cells in a
low-dimensional manifold.

Reconstruction of splicing regulation in late midbrain

development

Several splicingmodules showed variation within the cells collect-
ed at the final time point in themidbrain development time course
(Fig. 3D), and we aimed to leverage the high resolution of single-
cell data in understanding this hidden heterogeneity. The neurons
collected at the final time point, fromadultmidbrains 90 d postna-
tal, formed several subpopulations that were separated primarily
along the third principal component. The subpopulations express
markers of different lineages of midbrain neurons (Supplemental
Fig. 9; Tiklová et al. 2019). To identify cell type–specific exon usage
among these subpopulations, we performed a separate Psix analy-
sis of just the postnatal day 90 cells (whichwe refer to as P90 cells).
Psix identified 78 exons associated with the variation among neu-
rons in the adult midbrain and grouped them in twomodules (Fig.
4A). The twomodules showedopposite patterns of exon inclusion:
module A exons decreased in inclusion along principal compo-
nent 3, and module B exons increased in inclusion. To trace the
emergence of this coordinated pattern during earlier development,
we examined the splicing of the same exons at earlier time points
(Fig. 4A). Similar but weaker correlation patterns were visible in
postnatal day 1 (P1) cells, and these patterns were almost absent
in embryonic day 13.5 (E13.5) cells, suggesting that these exons re-
sponded to differences in splicing factor activity that were present
at intermediate stages and became more pronounced with time.

To uncover the regulatorymechanisms that control the emer-
gence of these splicing patterns, we first identified seven splicing
factors with enriched binding to the Psix-identified, cell state–as-
sociated exons in P90 cells. We then computed the correlation be-
tween the expression of each splicing factor and the inclusion rate
of each exon in modules A and B. Expression of three splicing fac-
tors, Nova1, Rbfox1, and Mbnl2, showed a significant difference in
correlation between module A and B (Wilcoxon rank test, FDR≤
0.5 and mean difference ≥0.1) (Fig. 4B). Extending the analysis
to earlier stages, we found that expression of Nova1 showed a sig-
nificant difference in correlation with the splicing of the two
groups of exons in the P1 cells as well, whereas the other splicing
factors did not show this effect at earlier stages of development.
This suggests that NOVA1 plays an early role in the emergence of
key splicing differences between cell types. We observed that, in
keeping with this role, one of the exons most highly correlated
to Nova1 expression was exon 4 of the Nova1 gene itself, a cassette
exon that encodes a phosphorylation target domain. In an auto-
regulatory process, NOVA1protein binding to this exon suppresses
its inclusion (Dredge et al. 2005). Consistent with this previous
knowledge, we found that expression of Nova1 is strongly anticor-
related with inclusion of exon 4 (Fig. 4B). The strength of this cor-
relation is stronger in later stages of development, as one lineage of
neurons maintains high Nova1 expression and low exon 4 inclu-
sion, whereas the other keeps low Nova1 expression and high
exon 4 inclusion (Fig. 4C). Our results show that the regulatory dy-
namics of splicing factors and their target exons change during the
process of neuron maturation and consolidate as neurons commit
to the distinctmidbrain cell lineages.Our analysis exemplifies how
single-cell data allow us to study alternative splicing patterns in
neurogenesis at high resolution.

Discussion

We have shown that our probabilistic
method, Psix, can find cassette exons
that vary across cell state, without mis-
taking gene expression variance for
changes in splicing. Low sequencing cov-
erage has previously limited the study of
splicing in single cells (Buen Abad Najar
et al. 2020) and hindered the potential
of single-cell sequencing to define the
identity of individual cells. Psix solves
this limitation by combining cell identi-
ty information from the transcriptome
space with probabilistic modeling that
accounts for the distortions of low data
recovery. Like many single-cell methods,
Psix depends on faithful reconstruction
of a biologically meaningful low-dimen-
sional manifold. Noise variation within
and between groups of cells can impact
the selection of nearest neighbors,
emphasizing the importance of proper
normalization and dimensionality re-
duction of gene expression data to define
the low-dimensional manifold. The
method could be generalized to use other
similarity metrics for single cells, such as
spatial positions (to capture spatially-reg-
ulated splicing events) (Valentine et al.

A

B C

Figure 4. Reconstruction of splicing regulation in late midbrain development. (A) Modules of cell
state–associated exons identified in postnatal day 90 (P90) cells, at different stages of development.
Heatmaps show the correlation matrix among the P90 module A and B exons at each time point. As a
measure of structure, for each correlation matrix, we show its first eigenvalue divided by the sum of all
eigenvalues. PCA plots show the splicing patterns of the exons of the module in the cells of each time
point. (B) Correlation of splicing factor expression with the observed �C of exons from P90 modules A
and B at different stages of development. An asterisk indicates significant difference between the exons
of module A and B (Wilcoxon rank test, FDR≤0.05) and a mean difference larger than 0.1 between the
two modules. Exon 4 of Noval (in module B) is highlighted in red in the correlation plot of Noval gene
expression. (C ) Gene expression of Noval and splicing of Noval exon 4 in mouse midbrain neurons.
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2018; DeTomaso and Yosef 2021) or single-cell lineages (to capture
heritable splicing events) (Kester and van Oudenaarden 2018;
Jones et al. 2020). We have also shown that Psix can identify
groups of exons with similar patterns of biological variation, indic-
ative of potential splicing coregulation. Our methods set the
groundwork for further discovery of splicing regulatory networks,
taking full advantage of the resolution of single-cell methods.

Methods

Conceptual overview

To determine if a splicing event is associated with cell identity or
cell state, we observe how its Ψ varies in a low-dimensional mani-
fold. If a splicing event is informative about a cell’s identity, we ex-
pect that similar cells will have closer Ψ than cells with different
identities across the similarity metric.

For a population of n single cells and for m alternatively
spliced exons, Psix uses information from three matrices: one (n,
m)matrix of Ĉij observations for each exon i in each cell j (obtained
from reads covering splice junctions), another (n,m) matrix of the
estimated number of captured mRNA molecules that cover the
splice sites of each exon in each cell, and a low dimensional repre-
sentation of the cells (Fig. 1B). Psix estimates the likelihood of the
Ĉij observation of an exon in each cell given the local averageΨ of
its closest (k = 100) neighbors (based on the low-dimensional rep-
resentation) and the number of capturedmolecules xij. It then con-
trasts this likelihood with the likelihood of the same observations,
given the global average �C of all cells. If the likelihood of the obser-
vations given the local average is significantly higher than the like-
lihood given the global average, the exon is considered to be
informative of the biological state.

Psix obtains Ĉij from splice junction reads of each analyzed
cassette exon. Because Smart-seq2 and similar methods do not
directly report the number of mRNAs recovered per gene, for
Smart-seq2 data, Psix estimates the number of mRNAs, xij, from
transcripts per million (TPM) counts for each gene, with a modifi-
cation of the Census normalization (Qiu et al. 2017) as described
by BuenAbadNajar et al. (2020). The similaritymatrix is estimated
from the Euclidean distance in a manifold that summarizes the
gene expression space of the single-cell populations. Here, we
use the space spanned by the top principal components. Psix
could, in principle, use other similarity metrics for single cells
not based on gene expression, such as spatial positions.

The Psix model

Psix is built over the likelihood of Ĉ observations based on under-
lying Ψ and r captured mRNAmolecules with a capture efficiency,
c, that we developed in a previous study (Buen Abad Najar et al.
2020) and reproduced here.

Consider a single cell that has m mRNA copies of a gene that
eachmay skip or include a cassette exon. The exon in the cell has a
percentage spliced-in of Ψ (Ψ ·m mRNA molecules in the cell con-
tain the exon). In an scRNA-seq experiment, only r out of the orig-
inal m molecules are reverse transcribed and sequenced. We
formalize the probability for observing a splicing ratio Ĉ as follows:

Pr (Ĉ|C, r, m) =
mC
rĈ

( )
m(1−C)
r(1− Ĉ)

( )

m
r

( ) .

Notice that in scRNA-seq, we cannot observe how many mole-
cules m of a gene were present in the cell before sequencing.
Therefore, with an estimated capture efficiency c, we rewrite this

probability as

Pr (Ĉ|C, r, c) =
∑1
m=0

Pr (Ĉ, m|C, r, c)

=
∑1
m=r

Pr (Ĉ|C, r, c, m) · Pr (m|r, c)

=
∑1
m=r

Pr (Ĉ|C, r, m) · Pr (m|r, c).

To estimate Pr (m|r, c) we note the following:

Pr (m|r, c) = Pr (r|c, m) · Pr (m)
∑1
m′=0

Pr (r|c, m′) · Pr (m′)

= Pr (r|c, m)
∑1
m′=0

Pr (r|c, m′)

=
m

r

( )
cr(1− c)m−r

∑1
m′=0

Pr (r|c, m′)
,

where wemodel the probability of capturing rmRNAmolecules as
a binomial sample from m with probability c. Note that the third
transition is performed under the assumption of a uniform prior
on m.

To compute the denominator, we expand

∑1
m′=0

Pr(r|c, m′) =
∑1
m′=r

m′

r

( )
cr(1− c)m

′−r

= cr
∑1
k=0

r + k

r

( )
(1− c)k = cr

∑1
k=0

(r + k)!
k!r!

(1− c)k

= cr
∑1
k=0

(− 1)k

(k!)
(r + 1)(r + 2) . . . (r + 1+ (k− 1))(c − 1)k

= cr
∑1
k=0

1
k!
(− (r + 1))(− r(r + 2)) . . . (− r(r + k))1r+k+1(c − 1)k

byTaylor series centered in 1 = cr
1

cr+1 = 1
c
.

Thus,

Pr (Ĉ|C, r, c) =
∑1
m=r

Pr (Ĉ|C, r, c, m) · Pr (m|r, c)

=
∑1
m=r

mC

rĈ

( )
m(1−C)

r(1− Ĉ)

( )

m

r

( )
m

r

( )
cr(1− c)m−r

1
c

≈
∑10r/c
m=r

mC

rĈ

( )
m(1−C)

r(1− Ĉ)

( )
· cr+1(1− c)m−r .

Using this likelihood equation, we can test the likelihood of an ob-
servation given its underlying splicing context. We compare the
likelihood of the observations given that the exon is cell state asso-
ciated versus the likelihood of the observations given that the exon
is cell state independent.

Model 1: cell state–associated exons

For an exon j and for every cell i, we estimate the likelihood of the
observed exon inclusion Ĉij, under model 1: a model in which
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exon j is cell state associated. First, given a low-dimensional man-
ifold (e.g., the first few principal components of the normalized
gene expression), for each cell i we define

KNN(i) = {k-nearest neighborsof cell i, in Euclideandistance}.

By default, we set k=100 (see “Neighborhood size selection” sub-
section for details). We also define the sets of cells:

X(j) = {cells i such that Ĉij is defined (i.e., not adropout)}

and

N(i, j) = {cells i [ X(j)> KNN(i)}.

We calculate the neighbor average Ψ for exon j in cell i as follows:

�C(i, j) =

∑
k[N(i,j)

(wikĈkj)

∑
k[N(i,j)

wik
,

where Ki is the set of k-nearest neighbors of cell i (not including it-
self), and wik is a similarity score between cells i and k in a cell-cell
metric, defined from the low-dimensional manifold as follows:

∀k [ KNN(i): wik = exp
−d2ik

max
k′[KNN(i)

−d2ik′

⎛
⎜⎝

⎞
⎟⎠,

where dik corresponds to the Euclidean distance between cells i and
k in the low-dimensional manifold.

We estimate the probability of the observation Ĉij givenmod-
el 1 as follows:

Pr (Ĉij|Model 1) = Pr (Ĉij| �C(i, j), ri, c),

where ri is the number of capturedmRNAmolecules that are infor-
mative for exon j in cell i. In rare instances in which a cell’s Ĉij is
zero and the neighbor average �C(i, j) is one (or vice versa),
Pr (Ĉij| �C(i, j)) will be equal to zero. To mitigate the impact of these
edge cases, we cap this probability to a minimum of 0.01.

Model 0: cell state–independent exons

For an exon j and for every cell i, we estimate the likelihood of the
observed exon inclusion Ĉij undermodel 0, amodel inwhich exon
j is cell state independent:

Pr (Ĉij|Model 0) = Pr (Ĉij| �C(j), ri, c),

where �C(j) is the unweighted average Ĉij of all cells i in X( j).

The Psix score

To determine if an exon is cell state associated, we compare the
likelihood of model 1 versus model 0. We define the Psix score as

score(j) = 1
|X(j)|

∑
i[X(j)

[log Pr (Ĉij|Model 1)− log Pr (Ĉij|Model 0)].

The probability of deviation of these scores fromanull distribution
is derived empirically, as described below.

Identifying modules of cospliced exons

We are interested in identifying exons with similar patterns of cell
state association because they could potentially share regulatory
splicing factors. Because of the high technical noise in single-cell
splicing observations, clustering of exons is difficult in the raw
data. Instead, for each pair of exons, we obtain the Pearson’s corre-

lations of the k-nearest neighbors averages.We cluster the exons in
a bottom-up procedure similar to that described by DeTomaso and
Yosef (2021): We merge iteratively the two exons or modules that
have the highest Pearson’s correlation. Then we update the corre-
lation score of the module with all other exons andmodules using
the UPGMA approach. When a module hits a minimum of 30 ex-
ons, we assign a label to it. We stop clustering when the maximal
correlation score is lower than 0.3 and return the labeledmodules.
Exons that do not belong to a labeled module are returned as “un-
assigned.” The minimum number of exons per module and the
minimum correlation score can be defined by the user.

Practical considerations for the application of the Psix model

Estimating captured mRNA molecules in Smart-seq2 data sets

In practical usage, non-UMI based scRNA-seq methods such as
Smart-seq2 do not directly quantify the number of captured
mRNA molecules of a gene per cell. As a result, it is difficult to es-
timate the parameter ri. To approximate r, we use amodification of
the Census normalization (Qiu et al. 2017) as reported previously:

Mi = ni

FXi (x
∗
i )− FXi (0.1)

,

where x∗i is the mode of the distribution of log-transformed gene
TPM counts in cell i, x∗i is the argmax of a Gaussian kernel density
fit to the log TPM distribution, ni is the number of genes in cell i
with a TPM between 0.1 and x∗i , and FXi is the cumulative distribu-
tion of TPM counts in cell i. As in the work by Qiu et al. (2017), we
assume that genes with TPM below 0.1 are not represented by any
mRNA molecules.

Low-dimensional manifold

To determine if an exon is informative of a cell’s identity, we need
a low-dimensional manifold metric that describes the similarity
between individual cells. Because of hurdles such as noise, sparsity,
and the curse of dimensionality, it is common practice to define
this metric as a Euclidean distance in an interpretable low-dimen-
sional manifold representation of the normalized gene expression
profiles. In general, the approach to normalization and dimen-
sionality reduction would depend on the size of the data set ana-
lyzed. For the Tiklova (Tiklová et al. 2019), Chen (Chen et al.
2016), and Song (Song et al. 2017) data sets, we normalized the
TPM counts per gene using SCONE (Cole et al. 2019) owing to
the relatively small number of cells and performed dimensionality
reduction with PCA over the top 1000 variable (using the fano fac-
tor) genes. In the Chen and Song data sets, the first two principal
components captured most of the variance, and thus, we used
these components as the low-dimensional manifold. For the larger
Tiklova data set, we used the first three principal components.

Neighborhood size selection

Our simulation analysis showed that Psix performance was opti-
mal when the size of the neighborhood used for estimating neigh-
bor average Ĉ is around 100 cells or ∼10% of the total number of
cells in the data set (Supplemental Fig. 3).

Capture efficiency in single-cell data sets

We set a capture efficiency of 0.1, as supported by single-cell stud-
ies (Grün et al. 2014; Marinov et al. 2014; Qiu et al. 2017;
Ziegenhain et al. 2017).
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Empirical P-value estimation

Psix compares the probability of two models. However, the null
model (model 0) is not embedded into the alternativemodel (mod-
el 1). For this reason, for each exon j, we obtained an empirical P-
value by randomizing the Ĉij observations of all cells i and their re-
spective mRNA counts and obtaining a random distribution of
Psix scores.We observed that themeanmRNAcounts and the total
Ĉ variance had a slight effect on the random distribution of the
Psix scores. For this reason, we divided the exons into bins accord-
ing to their ranks inmRNA counts and Ĉ variance (by default, five
bins for each parameter, totaling 25 bins). For each bin, we ran-
domized the exons of the bin, and for each exon, we estimated
an empirical P-value as follows:

p(j) = x(j)+ 1
n+ 1

,

where x( j) is the number of random exons in the bin to which the
exon j belongs that have a higher Psix score than the nonrandom-
ized exon, and n is the total number of randomized exons in the
bin (2000 by default). By default, Psix uses the Benjamini–
Hochberg procedure to correct for multiple tests.

Processing of Smart-seq2 data sets

The FASTQ files from the Tiklova (Tiklová et al. 2019) data set were
downloaded from the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE116138. We aligned the reads using STAR two-pass mode
(Dobin et al. 2013) to the mouse genome (annotation mm10)
with added sequences for the Illumina ERCC spike-ins and the en-
hanced green fluorescent protein (eGFP) gene sequence. TPM was
estimated for all data sets using RSEM (Li and Dewey 2011). After
quality control and removing a substantial number of outlier cells
expressing glial ormicroglial genemarkers, wewere leftwith a total
of 1067 cells that we used for downstream analysis. For dimension-
ality reduction, we first selected genes that are expressed in the
data set (average normalized counts≥0.1), and selected the top
1000 genes with high Fano factor. We then applied PCA on the re-
sulting genes, which revealed a clear trajectory of neuron differen-
tiation. This PCAwas used as the low-dimensional manifold input
for Psix.

The FASTQ files from the brain neurons subset of the Tabula
Muris Smart-seq2 data set were downloaded from GEO accession
number GSM2967047, whereas metadata were downloaded from
https://tabula-muris.ds.czbiohub.org/.

We aligned the reads using STAR two-pass mode (Dobin et al.
2013) to the mouse genome (annotation mm10). TPM was esti-
mated for all data sets using RSEM (Li andDewey 2011). After qual-
ity control, wewere left with a total of 6146 cells that were used for
downstream analysis. For dimensionality reduction, we applied
scVI (Lopez et al. 2018) on the gene read counts and obtained a
low-dimensional manifold with 10 dimensions. This low-dimen-
sional manifold was used as input for Psix. For visualization pur-
poses we applied UMAP on the 10 dimensions obtained by scVI.

Cassette exons were identified from the mm10 mouse geno-
mic annotation. We estimated the observed Ĉ for each cassette
exon j in each cell i as

Ĉij =
SJAij

SJAij
+ 2SJBij

,

where SJAij
are the total RNA-seq reads that cover the two splice

junctions that support exon inclusion of the exon. In turn, SJBij

are the total RNA-seq reads that cover the splice junction that sup-
port exon exclusion.

For the Tiklova and Tabula Muris data sets, we selected 2087
and 3025 cassette exons, respectively, that had observations (i.e.,
any splice junction reads, showing either skipping or inclusion)
in at least 25% of cells (i.e., a maximum dropout rate of 75%).
We applied Psix over these exons using a neighborhood size of
100 cells and a capture efficiency rate of 0.1.We used the previous-
ly described PCA and scVI manifold, respectively, as the low-di-
mensional manifold input. After scoring these exons with Psix,
Gene Ontology analysis was performed using the Panther enrich-
ment test (Mi et al. 2012) on the Psix score of the exon. For genes
with more than one exon, we used the highest scoring exon’s Psix
score.

The Chen (Chen et al. 2016) and Song (Song et al. 2017) data
sets were downloaded from GEO accession numbers GSE74155
andGSE85908, respectively.We processed these data sets as we de-
scribed in our previous work (Buen Abad Najar et al. 2020), and we
used the first two principal components of the PCA of the normal-
ized expression as the low-dimensional manifold input for Psix.
These data sets are smaller than the 1000 cells. A neighborhood
of size 30 was used in both cases, which approximates 10% of their
total number of cells.

Differentially expressed genes in single-cell trajectories

Differentially expressed genes from both simulated and real
scRNA-seq were obtained by fitting a generalized additive model
(GAM) with tradeSeq (Van den Berge et al. 2020) over lineage tra-
jectories obtained with Slingshot (Street et al. 2018). Genes with a
mean log fold change larger to or equal to 0.25 and a FDR smaller
than 0.05 in the GAM were classified as differentially expressed.

Comparison of Psix with other single-cell splicing methods

We compared the performance of Psix against several approaches
that have been proposed for addressing single-cell splicing.

Kruskal–Wallis test

The Kruskal–Wallis test is a nonparametric version of ANOVA. It
has been previously used to identify if the median Ĉ of an exon
is different between predefined clusters of cells (Buen Abad Najar
et al. 2020; Wen et al. 2020). We applied this test for all the exons
we evaluated with Psix in all data sets. We clustered the cells ac-
cording to the labels provided by the investigators of each data set.

Geary’s C

Geary’s C is a statistic thatmeasures the spatial autocorrelation of a
variable. It has been used for computing the autocorrelation of
gene signatures with cell identity (DeTomaso et al. 2019), and
we previously used an adaptation of this test for finding autocorre-
lation of exon observations (Buen Abad Najar et al. 2020).

For each exon, we normalize the observed Ĉ as follows:

Ĉ′
ij =

Ĉij − �Ci

Var(Ĉi)
,

where Ĉij is the observed splicing of exon j in cell i, �Ci is the mean
Ĉ of all the observed exons in cell i, and Var(Ĉi) is the variance of
the observed Ĉ of all exons in cell i.

We calculate a variant of the Geary’s C statistic of each
exon j as

C(j) =
(N − 1)

∑
i

∑
k
wik(Ĉ

′
ij − Ĉ′

kj)
2

2W
∑
i
(Ĉ′

ij − �C
′
j)
2 ,
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where N is the number of cells in the data set, �C
′
j is the average Ĉ

′
ij

of exon j across all cells,wi,k is theweight between cell i and cell k in
the cell–cell metric, and W is the sum of all wi,k. We use the same
similarity metric that we used in Psix.

Tomake the statistic more intuitive, in which a positive score
close to one indicates high autocorrelation, we transform our sta-
tistic as

C′ = 1− C.

BRIE2

BRIE2 is a computational tool that regresses single-cell splicing
data against cell-level features and can detect differential splicing
between groups of cells.

We applied BRIE2 directly to the STAR-aligned BAM files
(Dobin et al. 2013) of the Tiklova, Chen, and Song data sets. We
used the investigator-provided labels for each data set.

Alternative splicing in bulk RNA-seq data

We compared each method’s ability to detect alternative splicing
events identified in bulk RNA-seq data sets using rMATS 3.2.5
(Shen et al. 2014). We compared the Tiklova data set with a bulk
mouse brain development data set (Weyn-Vanhentenryck et al.
2018), the Chen data set with a bulk data set of mouse embryonic
stem cells induced to neurogenesis (Hubbard et al. 2013), and the
Song data set with the bulk RNA-seq data included in the same
study (Song et al. 2017).

RNA-binding protein analysis

CLIP-seq data were obtained from multiple public sources
(Supplemental Table 1). Some data sets were downloaded from
the CLIPdb data set (Yang et al. 2015), whereas others were ob-
tained from their respective studies depending on availability.
For the SR protein iCLIP-seq data that were not already prepro-
cessed by CLIPdb, we used Piranha version 1.2.1 (Uren et al.
2012) to call peaks from CLIP-tags. Peaks from different data sets
of the same RNA-binding protein (RBP) were combined into a sin-
gle file per RBP.We next reported the overlap of the RBPs into four
regions per cassette exon:

• E1 region—100 nt upstream of and i1 nt downstream from the
splice junction of the upstream flanking exon, where i1 is the
minimum of 100 and half the distance between the upstream
flanking exon and the cassette exon;

• S1 region—i1 nt upstream of and e nt downstream from the 5′

splice junction of the cassette exon, where e is the minimum
of 100 and half the distance between the two splice junctions
of the cassette exon;

• S2 region—e nt upstream of and i2 nt downstream from the 3′

splice junction of the cassette exon, where i2 is the minimum
of 100 and half the distance between the cassette exon and the
downstream flanking exon; and

• E2 region—i2 nt upstream of and 100 nt downstream from the
splice junction of the downstream flanking exon.

We consider that a splicing factor binds to the exon if it binds to
any of the four regions. For the Tiklova data set, we tested the bind-
ing enrichment of each RBP independently in the 798 cell state–as-
sociated exons identified by Psix, using the hypergeometric test,
with the 2087 tested exons as the background. We applied the
Benjamini–Hochberg procedure to correct for multiple testing
for all the RBPs.We used the same approach to test for enrichment
in the 78 cell state–associated exons in the P90 cells versus the
background of 2115 tested exons.

Analysis of P90 modules

We implemented Psix on the 290 cells collected from the P90mid-
brain cells, using the transcriptomic space in Figure 3A. Because of
the smaller sample size (compared with the entire data set), we
used a neighborhood of 30 cells (�10% of the total number of
cells) and a minimum correlation for neighbor joining of 0.1.
This resulted in 78 cell state–associated exons and two modules.

To find the potential regulators that control the formation of
these patterns during neurogenesis, we identified the RBPs that are
significantly enriched in binding to the 78 exons in thesemodules
using CLIP-seq data (hypergeometric test, FDR≤0.05). We tested
for enrichment of binding to any of the four regions of the exon
previously described.

We ran a Pearson’s correlation test between the normalized
expression (SCONE normalized TPM counts) of the enriched splic-
ing factors and the observed Ĉ of the exons in eachmodule in P90
cells. We tested for significance in the difference in distribution of
Pearson’s correlation scores using the Wilcoxon rank test and cor-
recting for multiple testing with the Benjamini–Hochberg correc-
tion. We repeated these observations with cells from the P1 and
E13.5 stages of development.

Simulations of alternative splicing in single cells

We simulate alternative splicing of exons in single cells. This con-
sists of threemain steps: First, we simulate gene expression profiles
in a population of single-cells sampled from a continuous trajecto-
ry; with either a single branch (Fig. 2A) or multiple (Supplemental
Fig. 1A,B). Second, we simulate alternative splicing in the exons of
this population (accounting for one exon per gene), in which in
some exons the inclusion rates are associated with the trajectory
and in some the rates are random. These first two parts serve to
simulate the truemolecular content of the cells. Third, we simulate
the measurement process (e.g., mRNA capture, amplification, se-
quencing), which results in noisy and sparse data, such as limited
availability of splice junction reads.

Step 1: simulating gene expression in a single-cell population

We used SymSim (Zhang et al. 2019) to simulate the expression of
5000 genes in a continuous population of 1000 single cells with
default parameters. To simulate a single developmental trajectory,
we simulated single cells across a phylogenetic tree with two
branches with SymSim and then set the endpoint of one branch
as the starting point of the lineage and the endpoint of the second
branch as the end of the lineage. Each cell’s relative position in the
tree corresponded to its position in the developmental trajectory,
starting from the tip of one branch to the other. We normalized
the relative positions of the lineage to span from zero (first cell)
to 100 (last cell).

Step 2: simulating splicing in single cells

We simulate splicing in the single cells as three substeps. First, we
model the expected Ψ as an impulse function, which was shown
by us and others to fit well with empirical time course data
(Fischer et al. 2018). For each exon, we simulate a “platonic” Ψ
that will be dependent on the cell’s position in the lineage:

z(ti) = 1
h1

h0 + h1 − h0

1+ e−b(ti−t1)

( )
h2 + h1 − h2

1+ eb(ti−t2)

( )
,

where z(ti) = logit(Ψ(ti)). ti∈ [0, 100] is the position of a given cell in
the simulated lineage; h0, h1, and h2 are amplitude parameters of
the curve (first, second, and third plateau); and t1 and t2 are the
state transition times; that is, when the inflection points of the
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impulse happen. β is a slope parameter that determines how steep
the impulse is.

We sample the impulse parameters from the following prob-
abilistic distributions:

t1 �Uniform(1, 70)

t2 �Uniform(t1 + 20, 99)

b �Uniform(0.05, 0.25)

hx �Uniform(−3, logit(0.7))

hy �Uniform(logit(expit(hx)+ 0.2), 3)

hz �Uniform(hx, hy).

To simulate different impulse shapes, we set [h0, h1, h2] as a permu-
tation of [hx, hy, hz]. To simulate exons that do not change across
the lineage, we randomly select a value c from [hx, hy, hz] and set
h0 =h1 =h2 = c to specify a horizontal line.

We add noise to simulate the biological variability that affects
the underlying splicing profile of a cell in a manner independent
of the lineage:

zi(ti) � N (z(ti), s2),

where zi(ti) is the logit transformation of the underlyingΨ of cell i;
ti is the temporal stage of cell i, that is, its position in the continu-
ous trajectory (lineage); and σ2 is a variance parameter that is spe-
cific of each exon. For each exon, we randomly sample
s � Uniform(0.5, 1). Finally, we simulate splicing of the mRNA
molecules of each gene as a stochastic process as follows:

Ii � Binomial(Xi, expit(zi(ti)))

Ei = Xi − Ii
,

where Ii is the number of mRNAmolecules of the gene in cell i that
include the alternatively spliced exon, Ei is the number of mRNA
molecules that exclude the exon, and Xi is the total number of
mRNAmolecules of the gene in cell i. We merge E and I into a sin-
gle matrix of mRNA molecules M, in which each isoform corre-
sponds to an independent row.

Step 3: sequencing and splice junction coverage

Once we have simulated the expression and splicing of each gene,
we simulate the sequencing of the mRNA molecules. For this, we
first assign a transcript length to each molecule as follows: For
each gene g with isoforms gE (excludes the exon) and gI (includes
the exon), we randomly sample without replacement lgE as the
length of gE from SymSim’s transcript length database. We then
sample without replacement lgi , the length of the alternative
exon of g, from a database of lengths of cassette exons in the hu-
man genome. Finally, we set the length of gI as lgI = lgE + lgi .

We use SymSim’s True2ObservedCounts function to simulate
non-UMI sequencing of the mRNAmolecules inM and lengths lgE
and lgI . We used the following parameters: mean capture efficien-
cy, 0.1; capture efficiency standard deviation, 0.05; depth sequenc-
ing mean, 1e5; and depth sequencing standard deviation, 1e4. To
simulate a data set with bad capture efficiency, we set mean cap-
ture efficiency to 0.05 and capture efficiency standard deviation
to 0.02, and for a data set with very poor capture efficiency, we
setmean capture efficiency to 0.01 and capture efficiency standard
deviation to 0.01.

Finally, we simulate the splice junction coverage of isoforms
as follows:

lr = read length (constant)

jgI =
4(lr − 1)

lgI

jgE =
2(lr − 1)

lgE

SJgI �Binomial(RgI , jgI )

SJgE �Binomial(RgE , jgE ),

where lr corresponds to the constant read length from the sequenc-
ing process (set as default to 50); SJgI and SJgE are the number of
reads that cover informative splice junctions for isoforms gI and
gE respectively; and RgI and RgE are the total number of reads simu-
lated to map to isoforms gI and gE respectively.

For each cell, the observed Ĉ of each exon is calculated as

Ĉ = SJgI
SJgI + 2 · SJgE

.

Simulation of a branching lineage of single cells

We simulated a diverging lineage of single cells, using SymSim
with the following three-branched phylogenetic tree
(Supplemental Fig. 2):

(A:1, (B:0.5, C:0.5):0.5).

We divided the single-cell population into three lineages: lineage
1, root to A; lineage 2, root to B; and lineage 3, B–C splitting point
to C.

We simulated the “platonic” Ψ of each lineage as follows:

1. For lineage 1, sample h0, h1, t1, and β as shown for the single-lin-
eage impulse parameters. With a probability of 0.25, simulate
differential splicing with a sigmoid function as follows:

z1(ti) = h0 + (h1 − h0)
1

1+ e−b(ti−t1)

( )
.

Elsewhere, we fit a flat line z1(ti) =h0.
2. For Lineage 2, we use the same h0 as in lineage 1 and randomly

sample the other parameters. We simulate differential splicing
with a sigmoid z2 with a probability of 0.25, or fit a flat line
z2(ti) =h0 otherwise.

3. For lineage 3, we set h0 = z2(tBC), where z2 is the function (sig-
moid or flat line) used for lineage 2, and tBC is the timepoint
at which lineage 2 and lineage 3 split. We sample the other pa-
rameters randomly.We simulate splicingwith a sigmoid z3with
a probability of 0.25, or fit a flat line z3(ti) =h0 otherwise.

Each simulated gene is marked as differentially spliced if the
splicing of at least one lineage was simulated with a sigmoid.
Otherwise, the gene is marked as nondifferentially spliced. Once
we have simulated the “platonic” Ψ of each gene, we repeat the
simulation steps for the single lineage simulations.

Software availability

Psix is available as a Python module at GitHub (https://github
.com/lareaulab/Psix). The analysis of simulations and publicly
available data is documented at GitHub (https://github.com/
lareaulab/analysis_psix). Psix source code and analysis are ar-
chived as Supplemental Code.
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