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Abstract
In this review,wediscuss approaches for learning causal structure fromdata, also called
causal discovery. In particular, we focus on approaches for learning directed acyclic
graphs and various generalizations which allow for some variables to be unobserved
in the available data. We devote special attention to two fundamental combinatorial
aspects of causal structure learning. First, we discuss the structure of the search space
over causal graphs. Second, we discuss the structure of equivalence classes over causal
graphs, i.e., sets of graphs which represent what can be learned from observational
data alone, and how these equivalence classes can be refined by adding interventional
data.

Keywords Causal inference · Causal structure discovery · Markov equivalence

Mathematics Subject Classification 62H22 · 68R05 · 05C75

1 Introduction

Many important scientific, sociological, and technological questions are fundamen-
tally causal: “which genes regulate one another?,” “howwould raisingminimumwage
affect unemployment rate?,” “which treatment most effectively prolongs the lifespan
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of breast cancer patients?.” In each case, answering the question requires predicting
how a system, e.g., a cell, economy, or human body,will react to externalmanipulation.
Structural causal models can be used to formalize such questions, to create algorithms
that determine whether such questions can be answered from available data sources,
and to develop general-purpose methods for learning the answers to such questions.
In the framework of structural causal models, a directed graph is used to reflect how
the variables in these models depend causally on one another. Each node i of the
directed graph is associated with a variable Xi , and an edge i → j indicates that the
variable Xi is a direct cause of the variable X j . In some special, well-studied set-
tings, background knowledge and human reasoning can be used to propose plausible
directed graph models. However, in large systems such as gene regulatory networks,
the directed graph is not known a priori, making it necessary to develop methods for
learning the graph from data. Once this graph is learned, it can be used to predict
the effects of interventions or distributional shifts, in contrast to traditional machine
learning methods which can only make predictions on inputs that come from the same
distribution as the training data.

The problem of learning such a causal graph from data, known as causal structure
learning (or causal discovery), has been the focus of much recent work in computer
science, statistics, and bioinformatics , covered in a number of recent reviews [40,
41, 64, 74, 113]. Compared to these reviews, we here emphasize the combinatorial
aspects of causal structure learning, including characterizations of equivalence classes
of graphs, computing the size and number of these equivalence classes, and how the
characterization and properties are influenced by the presence of latent variables or
interventional data. After discussing these topics, we will cover methods for causal
structure learning which are based heavily on the combinatorial structure over the
space of directed graphs. Focusing on this combinatorial structure has three significant
advantages:

1. Causal structure learning can be dramatically simplified when fixing some combi-
natorial aspect of the problem, such as the ordering of the variables.

2. Understanding the combinatorial aspects of structure learning allows a number
of different methods to be synthesized into a single framework and eases future
methodological development.

3. Insights into the combinatorial aspects of structure learning are also useful for other
tasks, such as experimental design.

The framework provided by the combinatorial viewpoint encompasses methods for
learning causal models with unobserved variables, as well as methods for learning
from a combination of observational and interventional data. The second point is
especially important, since interventional data are often crucial for identifying the
true causal model and subsequently using the causal model for predicting the effects
of interventions or distributional shifts.
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2 Structural Causal Models

A structural causal model defines causal relationships over a set of random vari-
ables {Xi }pi=1. These relationships are summarized by a directed acyclic graph (DAG)
G over nodes i = 1, . . . , p, where the node i in G is associated with the vari-
able Xi . Given a DAG G, we let paG(i) denote the parents of the node i , i.e.,
paG(i) = { j | j → i in G}. Then, a (Markovian) structural causal model (SCM)
[124] with causal graph G consists of a set of endogenous variables {Xi }pi=1, a
set of exogenous variables {εi }pi=1, a product distribution Pε over the exogenous
variables, and a set of structural assignments { fi }pi=1. In particular, the structural
assignment fi asserts the relation Xi = fi (XpaG(i), εi ). Via these structural assign-
ments, the distribution Pε over the exogenous variables induces a distribution PX over
the endogenous variables, called the entailed distribution [124]. In particular, we have
PX (Xi | XpaG(i)) = Eεi [1Xi= fi (XpaG (i),εi ) | XpaG(i)] and

PX (X) =
p∏

i=1

PX (Xi | XpaG(i)). (1)

Example 1 (A simple structural causal model of genetic inheritance) As a running
example, we will consider a simplified model of genetic inheritance of weight among
a family of mice. Let X2 and X3 represent the weights, in grams, of an unrelated male
and female mouse, respectively. Let X4 represent the weight of their offspring, and
X5 represent the weight of the offspring’s offspring. Finally, let X1 be a binary vari-
able representing whether the two parent mice are genetically modified for increased
weight. Assume that these variables are related via the following set of assignments:

X1 = ε1 ε1 ∼ Ber(0.5)

X2 = ε2 + 2X1 ε2 ∼ N (25, 1)

X3 = ε3 + 2X1 ε2 ∼ N (20, 1)

X4 = 1

2
(X2 + X3) + ε4 ε4 ∼ N (0, 1)

X5 = X5 + ε5 ε4 ∼ N (0, 2)

where the set of ε aremutually independent. The parent sets are paG(1) = ∅, paG(2) =
{1} paG(3) = {1}, paG(4) = {2, 3}, and paG(5) = {4}. The causal graph is given in
Fig. 1, and

PX (X) = Ber(X1; 0.5) × N (X2; 25 + 2X1, 1) × N (X3; 20 + 2X1, 1)

× N (X4; 1
2
(X2 + X3), 1) × N (X5; X4, 1)

is the entailed distribution. ��
The above definition of structural causal models can be generalized in at least two

ways. First, one may remove the assumption that the distribution over the exogenous
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variables is a product distribution, i.e., one may allow dependence between εi and
ε j for i �= j . Such SCMs are called semi-Markovian and are taken as the basic
definition of SCMs by some authors [122]. Instead of allowing for dependencies
between exogenous variables, we use Markovian SCMs as the basic definition and
assume that any unmodeled dependence between endogenous variables is due to some
other unobserved endogenous variables, which we will cover in 2.3. Second, one may
remove the assumption that G is acyclic. The assumption of acyclicity is natural when
considering endogenous variables which are defined at certain time points, since the
intuitive notion of causality dictates that a cause precedes any of its effects. However,
if the endogenous variables are not well defined in time, e.g., if they represent the
average state of a system in equilibrium, then feedback loops may occur. We will
briefly discuss recent progress on causal structure learning for cyclic causal models
in 5.

2.1 Markov Properties andMarkov Equivalence in DAGs

Given a DAG G, the set of distributions PX that factorize according to 1 are said to
follow theMarkov factorization propertywith respect toG. Depending on assumptions
on the structural equations { fi }pi=1 and the exogenous variables {εi }pi=1, the Markov
factorization property implies many other testable properties of the distribution PX .
For instance, the entire set of conditional independence statements entailed by the
Markov factorization property can be characterized simply in terms of a graphical
criterion, known as d-separation, that can be read off from the DAG G. The definition
of d-separation relies on the notion of a collider along a path from i to j . Given
a path γ = 〈γ1 = i, γ2, . . . , γM = j〉 from i to j , the node γm is a collider if
γm−1 → γm ← γm+1, i.e., two arrowheads “collide” at γm . Then, a path γ d-connects
i and j given the set C ⊆ [p]\{i, j} if:
1. All non-colliders on the path do not belong to C .
2. All colliders on the path either belong to C or have a descendant which belongs to

C .

Finally, i and j are d-connecting given C if there exists any d-connecting path given
C ; otherwise, they are d-separated. We denote that i and j are d-separated in G given
C via i ⊥⊥G j | C . We denote the complete set of d-separation statements in a DAG
G as I⊥⊥(G); i.e.,

I⊥⊥(G) = {(i, j,C) | i, j ∈ [p],C ⊆ [p]\{i, j}, i ⊥⊥G j | C}.

Example 2 (d-connection and d-separation) In G∗ from Fig. 1a, there are two paths
between 2 and 3, the path γ1 = 2 ← 1 → 3, and the path γ2 = 2 → 4 ← 3. For
C = ∅, γ1 is a d-connecting path between 2 and 3, since 1 is a non-collider and does
not belong to C , while γ2 is not a d-connecting path, since 4 is a collider but neither
4 nor 5 is in C . Thus, 2 and 3 are d-connected given C = ∅. For C = {1}, neither γ1
nor γ2 are d-connecting paths, so 2 and 3 are d-separated given C = {1}. Finally, for
any C containing 4 or 5, γ2 is a d-connecting path between 2 and 3. Thus, 2 and 3 are
d-connected given C = {4}, C = {5}, C = {1, 4}, etc. ��
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(a) (b)

Fig. 1 a Causal graph G∗ for the structural causal model in 1. b A minimal I-MAP G2 for G∗, described
in 3

Given a distribution PX , we call Xi and X j conditionally independent given XC if
PX (Xi , X j | XC ) = PX (Xi | XC )PX (X j | XC ).

This is denoted by i ⊥⊥PX j | C .
We denote the set of all conditional independence statements in PX as

I⊥⊥(PX ) = {(i, j,C) | i, j ∈ [p],C ⊆ [p]\{i, j}, i ⊥⊥PX j | C}.

If all d-separation statements in the DAG G hold as conditional independence state-
ments in PX , i.e., I⊥⊥(G) ⊆ I⊥⊥(PX ), then PX is said to satisfy the global Markov
propertywith respect to G. Suppose that PX has a density with respect to some product
measure. Then, without any additional assumptions on the structural equations or the
distributions of exogenous variables, the Markov factorization property and the global
Markov property are equivalent [109].

Conversely, a given distribution PX may satisfy the global Markov property with
respect to many different DAGs. These DAGs are called independence maps (I-MAPs)
of the distribution PX . As an extreme example, the complete graph implies no con-
ditional independencies in PX , so it is an I-MAP of all distributions. However, the
complete graph does not capture any of the independence structure in PX . For a vari-
ety of purposes, including computational and statistical efficiency in inference and
estimation, it is preferable to find a DAG G that captures as many of the indepen-
dences of PX as possible. This intuition is captured in the definition of a minimal
I-MAP for PX , which is an I-MAP G of PX , such that the deletion of any edge will
result in a new DAG G′ which is no longer an I-MAP for PX . The following example
shows that a distribution PX can have several minimal I-MAPs.

Example 3 (A distribution PX can have multiple minimal I-MAPs) Let PX be the
distribution in 1. Then the DAG G∗ in Fig. 1a is a minimal I-MAP for PX . To see
this, we consider the deletion of each edge. Deleting 1 → 2 or 1 → 3 implies that
X1 ⊥⊥ X2, or X1 ⊥⊥ X3, respectively, both of which are false. Similarly, deleting
2 → 4 or 3 → 4 implies that X2 ⊥⊥ X4, or X3 ⊥⊥ X4, respectively, but both are false.
Finally, deleting 4 → 5 implies that X4 ⊥⊥ X5, which is again false.
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(a) (b)

(c) (d)

Fig. 2 a–c Three Markov equivalent graphs from 4. d A fourth graph that is not Markov equivalent to the
other three

PX has other minimal I-MAPs, including the DAG G2 in Fig. 1b. Deleting 2 → 1
and 3 → 1 implies X2 ⊥⊥ X1 | X4, X3 and X3 ⊥⊥ X1 | X2, respectively, both of
which are false. Deleting 2 → 3 implies that X2 ⊥⊥ X3 | X4, deleting 4 → 2 implies
X4 ⊥⊥ X2, deleting 4 → 3 implies X4 ⊥⊥ X3 | X2, and deleting 4 → 5 implies
X4 ⊥⊥ X5, showing that G2 is indeed minimal. ��

Suppose PX is entailed by an SCM with causal graph G∗. Since PX may have
multiple minimal I-MAPs, it is natural to ask, under some set of assumptions, whether
G∗ can be distinguished from the other minimal I-MAPs, and if not, whether a small
subset of the minimal I-MAPs can be distinguished as candidates for G∗. As we will
discuss in 4, without assumptions on the functional forms of the structural assignments
fi , one cannot in general distinguish G∗ from all other graphs using only PX . In
particular, two DAGs G and G′ with the same set of d-separation statements (i.e.,
I⊥⊥(G) = I⊥⊥(G′)) are called Markov equivalent, and we denote this by G ≈M G′.
The set of all DAGs that areMarkov equivalent to G∗ is called theMarkov equivalence
class (MEC) of G∗, denoted M(G∗), and PX can in general only identify G∗ up to
M(G∗).

Example 4 (Markov equivalence) The three DAGs in 2a–c are all Markov equivalent
to one another, since for all three graphs, the only d-separation statement is that 1 and
3 are d-separated given 2. However, the DAG in 2d is not a member of the sameMEC,
since in G4, 1 and 3 are (unconditionally) d-separated, but are d-connected given 2. ��

However, under certain assumptions, it is possible to distinguish the set M(G∗)
from all other minimal I-MAPs of PX . This is the case under the sparsest Markov
representation (SMR) assumption [131], which states that, for any minimal I-MAP G′
of PX such that G′ /∈ M(G∗), we have |G′| > |G∗|, where |G| denotes the number
of edges in G. Under this assumption, M(G∗) can be identified by enumerating over
minimal I-MAPs of PX and picking the sparsest minimal I-MAP.

More generally, to identify M(G∗), structure learning algorithms require some
form of faithfulness assumption. The strongest such assumption, referred to simply as
the faithfulness assumption, is exactly the converse to the global Markov property: all
conditional independence statements inPX must hold as d-separation statements inG∗,
i.e., I⊥⊥(PX ) = I⊥⊥(G∗). The faithfulness assumption is a “genericity” assumption
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in the sense that for parametric models, such as linear Gaussian models, the set of
parameters which violate the faithfulness assumption is of Lebesgue measure zero
[149]. This is demonstrated by the following example.

Example 5 Consider the distribution PX entailed by the following SCM:

X1 = ε1 ε1 ∼ N (0, 1)

X2 = ε2 + β12X1 ε2 ∼ N (0, 1)

X3 = ε3 + β13X1 ε2 ∼ N (0, 1)

X4 = β24X2 + β34X3 + ε4 ε4 ∼ N (0, 1)

Denoting the corresponding causal graph by G, then the d-separation statements are
given by I⊥⊥(G) = {(1, 4, {2, 3}), (2, 3, {1})}. However, if β12β24 +β13β34 = 0, then
Cov(X1, X2) = 0, so by Gaussianity, we have that 1 ⊥⊥PX 4, i.e., (1, 4, ∅) ∈ I⊥⊥(PX )

but (1, 4, ∅) /∈ I⊥⊥(G∗). The set of parameters (β12, β13, β24, β34) satisfying this
equality is of Lebesgue measure zero. ��

In this example, the effect of X1 on X4 along the paths 1 → 2 → 4 and 1 → 3 → 4
perfectly “cancels out.” While perfect cancelation may only occur for very specific
parameters, structure learning algorithms do not have direct access to PX , and must
test for conditional independence using samples from PX . Thus, near cancelations,
e.g., ifβ12β24+β13β34 = 0.0015,may be indistinguishable from cancelations at small
sample sizes. To overcome noise and provide finite sample or high-dimensional guar-
antees for structure learning algorithms, it is necessary to make stronger assumption,
such as strong faithfulness [181], which assumes that the (conditional) mutual infor-
mation between d-connected variables is bounded away from zero. However, the set of
parameters which violate the strong faithfulness assumption can have large Lebesgue
measure [168]. This has motivated the development of structure learning algorithms
under assumptions that only require some subset of the missing d-separation state-
ments in I⊥⊥(G) to hold “strongly” in PX , thus reducing the size of the set of violating
parameters. Such assumptions, including a strong version of the SMR assumption, are
reviewed and compared in [131, 183].

Since in generalG∗ can only be identified up to itsMEC, the natural search space for
causal structure learning algorithms is over MECs, rather than DAGs. Consequently,
characterizing the structure within and betweenMECs has been an important problem
for developing structure learning algorithms. We will discuss useful characterizations
of the MEC in 3. One way to overcome the limitations on learning from observational
data is by using data from interventions, which we now formalize.

2.2 Interventions and Interventional Markov Equivalence

To formalize the effect of an intervention I in an SCM, we consider a new interven-
tional SCM where we modify some subset of the structural assignments and/or the
distributions of exogenous noise variables, without introducing new nodes into any of
the parent sets. If a node i has either its structural assignment fi or the distribution
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of its exogenous noise εi modified by intervention I , it is called a target of the inter-
vention, and we write i ∈ I . The new SCM induces a different distribution P

I
X on X ,

called the interventional distribution, which takes the form

P
I
X (X) =

∏

i /∈I
PX (Xi | XpaG(i))

∏

i∈I
P
I
X (Xi | XpaG(i)). (2)

In general, an intervention consists of any modification of the structural assign-
ment or exogenous noise. To distinguish this most general form of intervention from
more stringent definitions of intervention, we will follow [124] and call these soft
interventions (also referred to as mechanism changes in [163]). Particular subclasses
of interventions have generated special interest. Most significantly, a hard interven-
tion, also called a perfect, surgical [26], or structural [44] intervention, is one which
completely removes the dependence of a target Xi on its parents. However, perfect
interventions allow for the target to depend on εi , so that the target’s value may still
be random, i.e., the interventional distribution is

P
I
X (X) =

∏

i /∈I
PX (Xi | XpaG(i))

∏

i∈I
P
I
X (Xi ). (3)

More extremely, if the structural assignment of Xi is changed to a constant ai , then
there is no randomness left in Xi . Such a perfect intervention is called a do-intervention
[113]. In this case, the interventional distribution is

P
I
X (X) =

∏

i /∈I
PX (Xi | XpaG(i))

∏

i∈I
1Xi=ai . (4)

Example 6 (The interventional SCM for mouse genetic modification) Suppose we
implement an intervention on themodel in 1,wherewe edit the genome of the offspring
mouse to reduce its weight. In particular, the effect of this intervention is to change
the distribution of ε4 to N (−10, 0.1). The interventional distribution is

PX (X) = Ber(X1; .5) × N (X2; 25 + 2X1, 1) × N (X3; 20 + 2X1, 1)

× N (X4; 1
2
(X2 + X3) − 10, 1) × N (X5; X4, 1).

This intervention is not a perfect intervention, since X4 still depends on its parent X2
and X3. If instead the genetic modification perfectly ensures that the offspring weights
15 grams, i.e. X4 = 15 always, then the intervention would be a perfect intervention—
in particular, a do-intervention. In this case, the interventional distribution becomes

PX (X) = Ber(X1; .5) × N (X2; 25 + 2X1, 1) × N (X3; 20 + 2X1, 1)

× 1X4=15 × N (X5; X4, 1),

where X4 does not depend on its parents anymore. ��
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(a) (b)

Fig. 3 a I-DAG from 7. b I-DAG from 8.

The causal DAG also implies relationships between the observational and interven-
tional distributions. The simplest approach to deriving these relationships is to extend
the DAG to include variables which represent different interventions, as proposed in
[177] and used by [153]. This approach can be seen as an important special case of
the Joint Causal Inference (JCI) framework [115]. For a single intervention I with
targets T , this can be achieved by adding a node ζ with children T . ζ represents a
binary variable, where ζ = 1 denotes that a sample comes from the intervention I ,
and ζ = 0 denotes otherwise.

Example 7 (Binary encoding of an intervention) Consider the intervention I1 in 6,
where the intervention is applied with probability 0.5. Then the joint distribution over
X and ζ is

PX ,ζ (X , ζ ) = Ber(ζ ; .5) × Ber(X1; .5) × N (X2; 25 + 2X1, 1) × N (X3; 20 + 2X1, 1)

× N (X4; 12 (X2 + X3) − 10ζ, 1) × N (X5; X4, 1).

The causal DAG for ζ, X1, X2, X3, X4, X5 is shown in 3a. The node 5 is d-separated
from ζ given 4. Therefore, P(X5 | X4, ζ = 1) = P(X5 | X4, ζ = 0), i.e., PX (X5 |
X4) = P

I1
X (X5 | X4). ��

To generalize to multiple interventions, we add a node for each intervention. In
particular, consider a set of interventions I = {I1, . . . , IM }. For the intervention Im
with targets Tm , we introduce a node ζm with children Tm . Again, ζm = 1 denotes
that the sample comes from the intervention Im , and ζm = 0 otherwise. However,
each sample can only be generated from a single intervention, i.e., ζm = 1 for at most
one m. To reflect this constraint, we include a final node ζ ∗, which takes values in
0, 1, . . . , M , to indicate which intervention the sample comes from, i.e., ζm = 1 if and
only if ζ ∗ = m. Thus, if ζ ∗ = 0, the sample comes from the observational distribution.
The resulting DAG is called the interventional DAG (I-DAG) [177].
Example 8 (Binary encoding of a set of interventions) Let I1 be the intervention in 6,
and let I2 be an intervention which changes the distribution of ε4 to N (−5, 0.1).
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Suppose each intervention has a 40% chance of being applied. In the remaining 20%
of the time, no intervention takes place. Then the joint distribution over X , ζ1, ζ2, and
ζ ∗ is

PX ,ζ (X , ζ ) =Cat(ζ∗; (0, 1, 2), (0.2, 0.4, 0.4)) × (
1 − 1ζ1=1,ζ ∗ �=1

) × (
1 − 1ζ2=1,ζ ∗ �=2

)

×Ber(X1; .5) × N (X2; 25 + 2X1, 1) × N (X3; 20 + 2X1, 1)

×N (X4; 12 (X2 + X3) − 10ζ1 − 5ζ2, 1) × N (X5; X4, 1).

The causal DAG for ζ1, ζ2, ζ
∗, X1, X2, X3, X4, X5 is shown in 3b. ��

Following [177], we define a conditional invariance statement to be a conditional
independence statement where the conditioning set includes intervention variables,
e.g., PX ,ξ (Xi | XC , ξ∗ = m) = PX ,ξ (Xi | XC , ξ∗ = 0). This statements posits that a
conditional distribution in themth interventional setting is the same as it is in the obser-
vational setting, i.e., the conditional distribution is invariant under the intervention. A
set of observational and interventional distributions satisfies the I-Markov property
with respect to a DAG G and a set of interventions I if it satisfies the global Markov
property with respect to G, and satisfies all conditional invariance statements entailed
by the I-DAG. Similarly to the observational case, given a set I of interventions, if
two DAGs G and G′ entail the same set of conditional independence and conditional
invariance statements, we call them I-Markov equivalent, denoted G ≈MI G′. The
resulting I-Markov equivalence class (I-MEC) is thus a (not necessarily strict) subset
of the MEC, as demonstrated by the following example.

Example 9 (Interventional Markov equivalence) Given the intervention set I = {I1}
for I1 with target 1, the graphs G2 and G3 in 2 are I-Markov equivalent, since they both
entail the invariance statements P

I1(X2) = P(X2) and P
I1(X3) = P(X3). However,

G1 does not entail these invariance statements, so it is not I-Markov equivalent to G2
and G3. ��

2.3 Graphical Representations for Latent Confounding

Thus far, we have discussed how a structural causal model defines a data generat-
ing process for a particular system and interventions on that system. In the simplest
case, called the causally sufficient setting, one directly observes the generated data.
However, it is often the case that observations are subject to additional processing, in
which case we call the setting causally insufficient. Two forms of causal insufficiency
are commonly considered. First, under latent confounding, some of the endogenous
variables are simply unobserved, and we call these variables latent confounders. Thus,
instead of observing samples from the distribution PX , one observes samples from a
marginal distribution PX ′ for X ′ ⊂ X . For instance, suppose that in 1, the experimen-
talist does not record the variable X1 indicating whether the mice were genetically
modified. Then, an observer looking at their data would see samples from the dis-
tribution PX2,X3,X4,X5 . Second, under selection bias, the probability that a sample is
observed may depend on the values of some of the variables in the sample. Thus, if
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we introduce a binary variable S to indicate whether a sample is observed, and we
have P(S = 1 | X) describe the selection process, then one observes samples from
the conditional distribution P(X | S = 1). For instance, suppose that in 1, the experi-
mentalist only records those experiments for which the mouse in the final generation
weighs more than 20 grams. Then, someone looking at their data would see samples
from the distribution PX (· | X5 ≥ 20).

In this section, we will focus on the first type of causal insufficiency, latent con-
founding. We postpone discussion of selection bias to 5. Without causal sufficiency,
one must somehow account for latent confounders to perform accurate causal struc-
ture learning. When the latent confounders have special structure, it may be possible
to explicitly recover the relationship of the latent confounders and the observed vari-
ables. One such case is when each latent confounder is a parent of a large portion of
the observed variables, which is termed pervasive confounding. In such settings, the
observed data may be “deconfounded” by removing its top principal components [51,
141], even when the causal relations are nonlinear [3]. A large range of assumptions
on the structure between the unobserved and observed variables may be suitable for
different applications. A thorough summary of methods using such assumptions is
outside of the scope of the current review. Instead, we focus on a different approach
for accounting for latent confounders, which acknowledges their presence but does
not attempt to explicitly recover their relationships with the observed variables.

Structural assumptions on latent confounders can leave awide rangeof signatures on
the distribution of the observed variables. These signatures include not only conditional
independence constraints, which can be expressed in the form PX (Xi , X j | XC ) =
PX (Xi | XC )PX (X j | XC ), but also more complex constraints. This includes both
equality constraints on the distribution PX , commonly called Verma constraints, as
well as inequality constraints. The full set of constraints is referred to as a marginal
DAG model [46], and can be graphically modeled using a hypergraph. Indeed, [46]
show that ordinary mixed graphs are incapable of representing marginal DAGmodels.
Nevertheless, ordinary mixed graphs are capable of encoding a rich subset of the
constraints implied by a marginal DAGmodel. For example, an acyclic directed mixed
graph (ADMG) encodes a subset of the equality constraints of themarginalDAGmodel
via the associated nested Markov model [133, 145]; in fact, the nested Markov model
is known to encode all equality constraints in the case of discrete variables [47]. It is
outside the scope of this review to provide a full overview of the different types of
graphs used to capture the constraints of marginal DAG models, instead see [46] and
[103] for more thorough overviews.

In our review, we focus on (directed) ancestral graphs, which encode only condi-
tional independencies, are closed under marginalization, and have at most one edge
between each pair of vertices. Directed ancestral graphs are mixed graphs, consisting
of both directed and bidirected edges. A bidirected edge between two nodes indicates
the possibility that they are both children of the same unobserved variable(s). Similarly
to directed graphs in the causally sufficient setting, the mixed graphs in the causally
insufficient case are required to obey a form of acyclicity condition. In particular, a
mixed graph with directed and bidirected edges is called “ancestral” if there are no
directed cycles, and if any two nodes that are connected by a bidirected edge (called
spouses) are not ancestors of one another [132].
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(a) (b)

Fig. 4 a An ancestral graph that is not maximal; b its maximal completion

Similarly toDAGmodels, there is a notion of separation in directed ancestral graphs
called m-separation. The same definition works as for d-separation: two nodes are m-
connected by a path γ given a set of nodesC if (1) every non-collider on the path is not
inC , and (2) every collider on the path is either inC or has a descendant inC . Unfortu-
nately, this notion of separation has the property that two non-adjacent nodesmay have
no m-separating set. Fortunately, adding a bidirected edge between two such nodes
does not affect the set of m-separation statements which hold in the directed ancestral
graph ( [132], Theorem 5.1). The operation of adding bidirected edges between all
such nodes is called taking the maximal completion of a directed ancestral graph, and
a directed ancestral graph is called maximal if it is its own maximal completion. It is
natural in structure learning to restrict the search space to directed maximal ancestral
graphs (DMAGs), so that each adjacency between nodes corresponds exactly to the
lack of an m-separating set.

Example 10 (Maximal completion) 4 shows a graph (left) which is not maximal, since
1 and 4 are m-connected given any of the sets {∅, {2}, {3}, {2, 3}}, but they are not
adjacent. The graph on the right is its maximal completion. ��

3 Identifiability

As alluded to in the previous section, two Markov equivalent DAGs cannot be dis-
tinguished from observational data alone. In particular, given a DAG G, consider the
collection of distributions M(G) which factorize according to G, i.e., can be written
in the form 1. This collection depends on the allowed set of conditional distribu-
tions PX (Xi | Xpa(i)). If the set of conditional distributions is unrestricted, then we
have that M(G) = M(G′) if and only if I⊥⊥(G) = I⊥⊥(G′), i.e., Markov equivalent
DAGs give rise to the exact same set of distributions. If the conditional distributions
are restricted to specific classes, such as Gaussians or discrete measures, then this
equivalence remains [109, 159].
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Broadly speaking, there are two approaches to distinguishing between Markov
equivalent DAGs. The first approach, which we call the functional form approach,
considers restricting the class of conditional distributions in such a way that identifia-
bility is possible from only observational data. The second approach, whichwe call the
equivalence class approach, does not restrict the class of conditional distributions, but
instead uses interventional data to refine the level of identifiability from the MEC to
the I-MEC. Given enough interventions, the equivalence class approach is sufficient
for completely identifying a DAG or an ADMG [43].

3.1 Functional Form Approaches to Identifiability

Suppose the true causal graph is X1 → X2. The core idea in this class of approaches
is to find asymmetries between models learned in the “causal” (X1 → X2) and “anti-
causal” (X2 → X1) directions. The asymmetries in this bivariate case are often easy
to subsequently extend to the multivariate case.

As a canonical example, assume that noise is additive, i.e., X2 = f2(X1)+ε2, with
ε2 ⊥⊥ X1. By making assumptions about the functional form of f2 and the distribution
of ε2, it is often possible to show that the induced distribution PX cannot be induced
by a model of the form X1 = f1(X2) + ε1, ε1 ⊥⊥ X2, under the same assumptions
on f1 and ε1. For example, [87, 143, 144] assume that each function fi is linear, and
each εi is non-Gaussian. Indeed, [76] shows that in linear models, symmetry is only
possible in the Gaussian case, and gives more general results for the case where fi
is nonlinear, which form the basis for structure learning methods such as the Causal
Additive Model (CAM) algorithm [23]. Even in the linear Gaussian case, it is possible
to achieve identifiability by imposing additional assumptions, such as equal error
variances for each εi [123]. It is also possible to move beyond the additive noise case,
e.g., by allowing for further nonlinearities after the addition of noise [185].

Thus far, we have discussed identification strategies designed for continuous ran-
dom variables. Similar results are achievable in the discrete case, e.g., by assuming
that the exogenous noise terms have low entropy [93] or by assuming the existence of
a (hidden) low cardinality representation of the cause variable that mediates its effects
[24].

3.2 The Equivalence Class Approach to Identifiability

When no assumptions are made on the functional form, and only observational data
is available, the true graph G∗ can only be identified up to the MEC, i.e., the set of
DAGs G′ such that G′ ≈M G∗. Thus, for the purposes of algorithm design, it becomes
interesting to characterize when two DAGs are Markov equivalent.

3.2.1 Characterizations of Markov Equivalence Classes

Characterizations of Markov equivalence in DAGs There are numerous ways
to characterize Markov equivalence in DAGs, and we will cover three main charac-
terizations: a graphical characterization, a transformational characterization, and a
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(a) (b) (c)

Fig. 5 Transformational characterization of equivalence in a DAG. Starting with the DAG on the left, we
proceed to the right by performing covered edge reversals on the red edges (Color figure online)

geometric characterization. The graphical characterization is based on two notions.
The skeleton of aDAGG is defined as the set skel(G) = {(i, j) | i → j or j → i inG}.
The v-structures (also called immoralities) are defined as vstruct(G) = {(i, j, k) | i →
j ← k in G, (i, k) /∈ skel(G)}. Verma and Pearl [170] show that two DAGs G and
G′ are Markov equivalent if and only if they have the same skeleton and v-structures,
i.e., G ≈M G′ if and only if skel(G) = skel(G′) and vstruct(G) = vstruct(G′). Given
this graphical notion, it is natural to represent an MEC via an essential graph, which
is a mixed graph with the same adjacencies as all DAGs in the equivalence class, and
with the edge i → j directed only if i → j in all DAGs in the equivalence class.
Meanwhile, the transformational characterization is based on a single notion: a cov-
ered edge is an edge i → j in G such that paG(i) = paG( j)\{i}. G′ and G are related
by a covered edge flip if G′ has all of the same edges as G, except that the covered
edge i → j in G is oriented as j → i in G′. From the graphical characterization,
one can deduce that if G and G′ are related by a series of covered edge flips, then
G ≈M G′. The transformational characterization states that the converse is also true:
If G ≈M G′, then G can be transformed into G′ by a series of covered edge flips [29].
This transformation is illustrated in 5. Finally, the geometric characterization encodes
each graph as an integer-valued vector in the space Z

2[p]
. First, we introduce a set of

basis vectors δA for all subsets A ⊂ [p]. Then, the standard imset for a DAG G is given
by uG = δ[p] − δ∅ + ∑p

i=1

(
δpaG(i) − δ{i}∪paG(i)

)
. Alternatively, [160] introduces the

characteristic imset cG , with cG(A) = 1 if and only if there exists some i ∈ [p]
such that A\{i} ⊆ paG(i). Two DAGs G and G′ are Markov equivalent if and only if
uG = uG′ , or equivalently, cG = cG′ .

Characterizations of interventionalMarkov equivalence in DAGsAs discussed
in 2.2, the effect of an intervention can be formalized by introducing new binary
variables to represent each intervention [115]. Therefore, the same characterizations
of Markov equivalence that apply in the observational case just discussed also apply
in the interventional case. However, it is still instructive to directly characterize the
interventional Markov equivalence class. Consider a set of interventions I such that
∅ ∈ I (i.e., observational data is available). Extending a result for perfect interventions
[70, 177] shows that two DAGs G and G′ are I-Markov equivalent if and only if they
(1) have the same skeleton and v-structures, as in the case of a DAG and (2) for all
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(a) (b) (c)

Fig. 6 Transformational characterization of equivalence in a DMAG. Starting with the DMAG on the left,
we proceed to the right by performing legitimate mark changes on the red edges (Color figure online)

I ∈ I and i ∈ I , j /∈ I , we have j → i in G if and only if j → i in G′. Note that
this is equivalent to stating that the two I-DAGs do not differ in v-structures of the
form ζI → i ← j , confirming the equivalence with the observational characterization
applied to I-DAGs. As an example, under the set of interventions I = {∅, {1}}, the
graphs G2 and G3 in 2 are I-Markov equivalent, but G1 is not, since its I-DAG would
not have the v-structure ζ{1} → 1 ← 2.

Characterizations of Markov equivalence in DMAGs As in the case of DAGs,
equivalence between DMAG models can be characterized in multiple ways, and we
will cover the graphical and transformational characterizations. For both character-
izations, we must define the notion of a discriminating path for a vertex k. A path
γ = 〈i, . . . , k, j〉 is a discriminating path for k if (i) there is at least one node on the
path between i and k, (ii) every node between i and k is a collider on the path, and (iii)
every node between i and k is a parent of j . We denote the set of discriminating paths
for node k in G as discrk(G). A fundamental result [151] states that two DMAGs G and
G′ areMarkov equivalent if and only if (i) they have the same skeleton and v-structures,
and (ii) for all k, for all γ ∈ discrk(G)∩discrk(G′), k is a collider on γ in G if and only
if k is a collider on γ in G′. Checking this graphical condition for Markov equivalence
can be computationally expensive, motivating recent work [77] which provides a new
graphical characterization of Markov equivalence in DMAGs that can be checked
more efficiently. We next describe the transformational characterization of Markov
equivalence in DMAGs. As in the case of DAGs, the transformational characteriza-
tion requires us to define a local structural modification. In particular, the modification
of the edge i → j in G to the edge i ↔ j in G′, or vice versa, is called a legitimate
mark change [182] if (i) paG(i) ⊆ paG( j), (ii) spG(i)\{ j} ⊆ spG( j) ∪ paG( j), and
(iii) there is no γ ∈ discri (G) for which j is the endpoint adjacent to i . The authors
in [182] show that G ≈M G′ if and only if G and G′ are connected by a series of
legitimate mark changes. This transformation is illustrated in 6.

3.2.2 Combinatorial Aspects of Markov Equivalence

Since DAGs in general can only be identified up to (I-)Markov equivalence, it has
been of significant interest to study the size of a given MEC, the number of MECs
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Table 1 Number of MECs (first row), the ratio of the number of MECs to the number of DAGs (second
row), and the ratio of the number of MECs of size 1 compared to the total number of MECs (third row), up
to 10 nodes

p 3 4 5 6 7 8 9 10

# MEC 11 185 8.78e4 1.06e6 3.13e8 2.12e11 3.26e14 1.12e18
#MEC
#DAG 0.44 0.34 0.30 0.28 0.27 0.27 0.27 0.27
#MEC−1
#MEC 0.36 0.32 0.30 0.29 0.28 0.28 0.28 0.28

over a given number of variables, and the minimum number of interventions required
to identify a DAG (i.e., obtain a I-MEC of size 1).

The first problem—computing the number ofDAGswithin a givenMEC, or compu-
tationally equivalently, sampling uniformly from theMEC—is important for a number
of experimental design algorithms [56], which use Monte Carlo approximations to
compute expectations over the MEC and pick interventions with good average-case
behavior. A recent advance [175] provides a polynomial-time algorithm for this task
based on a representation of the equivalence class via clique trees, improving over
previous algorithms with exponential worst-case runtime [6, 14, 52, 57, 72, 162].

To address the second problem, [61] develops a program for enumerating all MECs
on graphs with a given number of nodes, and obtained results for graphs of up to
10 nodes, shown in 1. Further theoretical works [126, 127] study the problem of
enumerating all MECs for a fixed skeleton using the idea of generating functions
from combinatorics. The computational results in [61] suggest that, asymptotically,
the average MEC contains approximately 4 DAGs, and that roughly one quarter of
all MECs are comprised of only a single DAG, in which case no interventional data
is needed to identify the causal DAG. However, proving these conjectured limits, as
well as efficiently enumerating the number of MECs on a given number of nodes,
remain open combinatorial and computational problems. Less work has been done
to characterize the average number of interventions required to identify a DAG. For
a given DAG, [152] characterizes the minimum-size set of single-node interventions
needed to identify the underlying causal DAG, using a representation based on clique
trees. However, this work does not address the average of this quantity over all DAGs
on a given number of nodes. Meanwhile, [88] conducts a computational study of
the average number of greedily selected interventions to identify a graph, where the
average iswith respect to a directedErdös-Rényi graphmodel. In thismodel, the results
suggest that the number of interventions necessary is typically less than 4, but further
work is necessary to characterize the average with respect to the uniform distribution
over graphs and to address the case where interventions are picked optimally.

4 Methods for Causal Structure Learning

Thus far, we have discussed what is in principle identifiable about the underlying
causal DAG with observational and interventional data. Now, we present algorithms
which carry these principles of identifiability into practice. In particular, we will dis-
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cuss a number of algorithms which are consistent, i.e., in the limit of infinite data, they
provably learn all identifiable causal structures. We will also highlight some heuristic
algorithms, which do not have consistency guarantees but often perform well in prac-
tice. We begin with a broad overview of the different paradigms for causal structure
learning, before diving intomethodswhich explicitly leverage the combinatorial struc-
tures already discussed. At the highest level, methods for estimating causal models
from data fall into two broad categories: constraint-based methods and score-based
methods. Constraint-based methods are natural when viewing causal structure learn-
ing as a constraint satisfaction problem, where conditional independences or other
constraints that can be inferred from data are used to iteratively prune the space of
possible graphs. In contrast, score-based methods arise from viewing causal structure
learning as a combinatorial optimization problem. These methods assign a score to
each graph (or equivalence class) which quantifies howwell it fits the data, then search
the space of graphs (or equivalence classes) to find a model which optimizes the score.
To highlight the general principles of these two paradigms, we will first concentrate
on the causally sufficient case with only observational data. Then, in 4.3, we discuss
algorithms that can make use of interventional data, and in 4.4, we briefly discuss
algorithms for learning in the presence of latent confounding.

Constraint-based approaches The most prominent constraint-based approach to
causal structure learning is the PC algorithm [86, 149]. The PC algorithm begins
with a complete undirected graph and iteratively deletes edges by testing conditional
independences involving conditioning sets of increasing cardinality. Then, the second
phase of the PC algorithm orients v-structures by reusing the conditional indepen-
dences found in the first phase. Additional orientations can be inferred via the Meek
orientation rules [111].

The method for testing conditional independence (CI) depends on modeling
assumptions as well as practical considerations such as computational complexity.
For example, in a multivariate Gaussian distribution, two variables Xi and X j are
conditionally independent given the variables XC if and only if the partial correlation
ρi j |C is zero. Since the distribution of sample partial correlation coefficients is well
known (see, e.g., [86]), hypothesis testing for CI in the Gaussian setting is straight-
forward and computationally efficient. On the other hand, in nonparametric settings,
hypothesis tests for conditional independence can often be performed based on more
complicated test statistics [75, 158, 186]. Unfortunately, impossibility results [142]
state that any uniformly valid conditional independence test (i.e., one whose false
positive rate tends to at most the significance level α, over all possible distributions
P where X ⊥⊥P Y | Z ) will have no statistical power (i.e., the probability of a true
positive will also be at most α). Thus, testing conditional independence requires addi-
tional assumptions on the set of possible distributions, such as complexity restrictions
on the function space of EP[X | Z ].

Under such complexity assumptions, conditional independence tests allowconstraint-
based approaches to directly be applied to nonparametric settings, even permitting
high-dimensional consistency bounds in these settings [69]. Furthermore, because con-
ditional independences also characterize DMAGmodels, constraint-based approaches
can be easily extended to settings with latent variables [35]. Pushing further, one may
encode conditional independences as logical constraints, allowing them to be used
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in answer set programming (ASP) solvers. These solvers can search over more gen-
eral model classes and easily incorporate background knowledge [80, 180]. However,
ASP-based causal structure learning methods are widely viewed as being difficult to
scale for many practical applications.

Score-based approaches Score-based methods for causal structure learning orig-
inated in parametric settings, such as in discrete or linear Gaussian models. In
parametric settings, the score S(G) of a graph G is often based on the marginal like-
lihood P(X | G) of the data X given the graph G, with respect to some prior P(θ)

over the parameters θ . In some cases, e.g., when choosing a conjugate prior for the
likelihood function, P(X | G) can be computed in closed form [55]. Alternatively, it is
common to use a consistent approximation of the marginal likelihood, in the form of
the Bayesian information criterion (BIC) score [31, 32]. Such likelihood-based scores
can be extended to nonparametric settings, e.g., by using Gaussian process priors [50]
or non-paranormal distributions [117]. The BIC score and related scores are also a
natural starting point from which to develop more sophisticated scores with better
statistical and computational properties, see, e.g., [21].

Finding the highest scoring DAG model is generally NP-hard [30], imposing a
trade-off between computational efficiency and algorithmic consistency guarantees.
Score-based methods can generally be subdivided into three categories based on
how they address this trade-off. On the one end of the spectrum, exact score-based
approaches find some Ĝ that exactly optimizes the score S. Exact approaches address
computational issues using a variety of combinatorial optimization techniques and
heuristics, e.g., dynamic programming [95, 121], A*-style state-space search [179], or
methods from integer linear programming [11, 38, 39, 82]. For example, theGOBNILP
algorithm [39] uses the geometric characterization of Markov equivalence classes to
reduce structure learning to an integer linear programming problem. This reduction
allows the use of techniques such as cutting planes and pricing to handle the exponen-
tial number of decision variables and constraints.

Greedy score-based approaches trade off to achieve better computational efficiency
over exact approaches by relaxing the requirement that Ĝ optimizes S. Most promi-
nently, greedy equivalence search (GES) [31] and its variants [32] perform a search
over equivalence classes of graphs that greedily optimizes S. While greedy algo-
rithms are not exact, they are still consistent, placing them in a middle ground on the
computational–statistical trade-off. Notably, [106] shows that GES and a number of
other greedy approaches can also be viewed geometrically. In particular, these meth-
ods can be seen as edge walks between vertices of the characteristic imset polytope,
i.e., the convex hull of all characteristic imsets on p variables. Finally, at the other
extreme of this trade-off, gradient-based methods [101, 178, 187, 190] relax the dis-
crete search space over DAGs to a continuous search space, allowing gradient descent
and other techniques from continuous optimization to be applied to causal structure
learning. However, the search space of these problems is highly non-convex, so that the
optimization procedure may become stuck in a local minima. Thus, consistency guar-
antees for these methods will depend on theoretical advances in global minimization
of such non-convex optimization problems.
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(a) (b) (c)

Fig. 7 A greedy step over minimal I-MAPs performed by GSP. a True graph G∗, to which the distribution
P(X) is faithful. bMinimal I-MAP associated with the permutation π(0) = [2, 4, 1, 3], with covered edges
shown in red. cMinimal I-MAP associated with the permutation π(1) = [2, 4, 3, 1], obtained after flipping
the covered edge 1 → 3 (Color figure online)

4.1 Learning DAGs Using Permutation-Based Algorithms

Beyond the constraint-based and score-based paradigms for causal structure learning
already discussed, there are a variety of hybrid methods [7, 117, 138, 140, 166], which
generally use constraints to reduce the search space, and scores to optimize over this
reduced search space. In this section,wediscuss thegreedy sparsest permutation (GSP)
algorithm, a hybrid method that constrains the search space to the set of (estimated)
minimal I-MAPs of PX . By focusing on this method, we highlight the combinatorial
nature of the problem of causal structure learning.

As discussed in 2, a distribution PX may permit several different minimal I-MAPs.
Since the minimal I-MAPs of PX are the (locally) sparsest DAGs which can correctly
model PX , they form a natural space over which to search for the true DAG G∗.
Furthermore, the space of minimal I-MAPs of PX can be described as the image of a
PX -dependent map, with the PX -independent domain of Sp of permutations of [p].
We denote by i <π j that i is earlier in the permutation π than j , and we call a graph
G consistent with a permutation π if and only if i <π j implies that j �→ i in G.
The following result establishes the existence of a unique map from permutations to
minimal I-MAPs.

Theorem 1 (from [169]) Given a permutation π and a distribution PX , there exists a
unique graph GPX (π) that is consistent with π and is a minimal I-MAP for PX . This
graph has edges

{i → j | Xi �⊥⊥ X j | Xpreπ ( j)\{i}} where preπ ( j) = {k | k <π j}.

Given a graph G, let |G| be the number of edges in the graph. The sparsest I-MAP
theorem [131] establishes that, under a mild condition, the sparsest minimal I-MAPs
of PX—i.e, those such that |GPX (π)| is minimized—are Markov equivalent to the
underlying causal graph G∗. In particular, the required condition for this result is
strictly weaker than the restricted faithfulness assumption [129], which only requires
that I⊥⊥(PX ) and I⊥⊥(G∗) agree on conditional independences/d-separations involving
nodes connected by paths of lengths one or two. The sparsest I-MAP theorem directly
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suggests the sparsest permutation (SP) algorithm: enumerate over all permutations
π ∈ Sp, estimating the minimal I-MAP GPX (π) for each of these permutations using
conditional independence testing, and return the sparsest graphs.

However, the SP algorithm is clearly computationally prohibitive, since the size of
Sp is super-exponential in p. To address this issue, [148] proposed the greedy sparsest
permutation (GSP) algorithm. GSP searches greedily over the space of permutations,
and hence, minimal I-MAPs. In particular, at each step i of the algorithm, GSP main-
tains a permutation π(i) and its corresponding minimal I-MAP GPX (π(i)). At this step,
GSP searches over theMarkov equivalence class of GPX (π(i)) for someDAG G′ which
is not a minimal I-MAP of PX . This search can be executed by repeatedly flipping
covered edges to generate new permutations. Upon finding G′ which is not a minimal
I-MAP of PX , there must be some strict sub-DAG G′′ of G′ which is a minimal I-MAP
of PX . GSP then takes the topological ordering of this sub-DAG as the new permu-
tation π(i+1), with G′′ as its corresponding minimal I-MAP GPX (π(i+1)). One greedy
step of GSP is demonstrated in 7.

As in the case for other greedy approaches, GSP has an interpretation as an edge
walk over a convex polytope. In particular, starting from the permutahedron, i.e., the
convex hull of all permutations on p nodes, we may define the DAG associahedron
by contracting all edges π(i) − π( j) of the permutahedron for which GPX (π(i)) =
GPX (π( j)). As shown in [148], this contraction results in a convex polytope, GSP
is equivalent to an edge walk along this polytope, and, under conditions that are
strictly weaker than the faithfulness assumption, this edge walk terminates in the
Markov equivalence class of the causal graph G∗ underlying PX . The central technical
ingredient in this proof is the existence of Chickering sequences. In particular, [31]
proves the Meek conjecture for DAGs [112]: if GM is an I-MAP of G0 = G∗, then
there exists a sequence (G0,G1, . . . ,GM ) composed only of edge additions and covered
edge reversals. This sequence is called a Chickering sequence [148] and its existence
guarantees the consistency of GSP.

In addition to the consistency of GSP and the algorithms discussed previously,
which provides guarantees as the sample size goes to infinity, it is important to under-
stand the performance of different algorithms for finite sample size. Simulation results
suggest that score-based and hybrid approaches perform better for fixed sample sizes
[8, 74, 117]. However, a theoretical characterization of the trade-offs between these
algorithms on finite samples is not well understood and is an important area for future
research, as also briefly described in 5.

4.2 BayesianMethods for Causal Structure Learning

Thus far,we have only discussed causal structure learningmethodswhich return a point
estimate—i.e., a single DAG that (approximately or locally) maximizes a score, and/or
satisfies inferred conditional independences. However, when the amount of data is
small, there may be substantial uncertainty about the underlying graph (or equivalence
class). A common framework for quantifying this uncertainty is Bayesian inference.
Given some dataset D, instead of returning a point estimate, Bayesian methods return
(an approximation to) the posterior P(G | D) over graphs. This posterior allows one
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to compute marginal probabilities of any feature of interest, such as the posterior
probability of some edge i → j .

Bayesian methods for causal structure learning can be divided into three
types of approaches: exact approaches (e.g., [42]) and two types of approximate
approaches: variational and sampling-based approaches. Similarly to the gradient-
based approaches discussed before, variational approaches do not necessarily return a
consistent estimate of the posterior; rather, they project the posterior onto a variational
family {Q(· | θ)}θ∈�, which ismore computationally convenient. However, traditional
variational families, such as multivariate Gaussians, are continuous and thus do not
apply to the discrete setting of DAGs. Thus, until recently, variational methods for
Bayesian causal structure learning have not been widely studied. For a recent work in
this space, see [107], which uses relaxations of DAGs to a continuous search space
and neural networks to parameterize a flexible variational family.

On the other hand, sampling-based approaches toBayesian causal structure learning
have been much more widely studied. Markov chain Monte Carlo (MCMC) methods
have been especially popular, beginning with the structure MCMC algorithm [110],
which runs a Metropolis–Hastings algorithm over the space of DAG models, using
edge additions and deletions tomove in this space.However, this approach suffers from
slow mixing times due to regions of high-probability DAG models being separated by
large regions of low-probabilityDAGmodels, i.e., if structureMCMCfinds somehigh-
probabilityDAGG0, someother high-probabilityDAGGM mayonly be reachable from
G0 by a sequence of DAGs G1, . . .GM−1 which have very low probability. Thus, the
probability that structure MCMC traverses this path becomes incredibly low, so that
GM will not be sampled without running the algorithm for many steps.

This difficulty has motivated a search for “smoother” sampling spaces, either by
adding moves to structure MCMC [62, 67], or by changing the search space, as was
done in order MCMC [45, 49], partial order MCMC [118], and partition MCMC
[99]. These methods run a Markov chain over some “coarser” space (permutations,
partial orders, or ordered partitions), then sample DAGs conditionally based on their
consistency with the coarser structure. Theminimal I-MAPMCMC algorithm [5] also
runs a Markov chain over the coarser space of permutations. However, instead of
conditionally sampling a DAG based on each permutation, it estimates the minimal
I-MAP associated to each sampled permutation.

Since the space of permutations is much smaller than the space of DAGs or MECs,
theminimal I-MAPMCMCalgorithm canmixmore quickly than previous algorithms.
But this comes at a price: Minimal I-MAP MCMC does not sample over the entire
posterior distribution of DAG models, but only a restricted subset. Luckily, this price
is small: intuitively, conditional on an order, the minimal I-MAP asymptotically has
the highest posterior probability, so a point mass on the minimal I-MAP is a good
approximation of the true conditional distribution. Indeed, [5] shows that the posterior
approximation error for any bounded function of the graph decreases exponentially
with the number of samples. By highlighting this algorithm, we once again see the
computational benefits that are possible when considering the combinatorial nature of
the causal structure learning problem.
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4.3 Causal Structure Learning Using Interventional Data

As discussed in 3, interventional data can significantly improve the identifiability of
causal models. Several approaches have been proposed for learning from a combi-
nation of observational and experimental data, going back at least to the Bayesian
approaches of [36] and [42]. As in the case of learning from purely observational data,
these approaches can be divided into constraint-based approaches, such as the COm-
bINE [165] algorithm, and score-based approaches. Score-based approaches include
greedy algorithms, such as Greedy Interventional Equivalence Search (GIES) [70],
and gradient-based algorithms, such as meta-learning approaches [89] and DCDI [22].
Note that, unlike in the case of GES for observational data, GIES is known to not be
consistent for interventional data [171].

The Joint Causal Inference framework [115] discussed in 2.2 suggests a natural way
to extend causal structure learning algorithms for observational data to settings with
interventional data. In particular, an algorithm for the observational setting can be used
to learn the I-DAG by appending indicator variables to the dataset for each interven-
tion I ∈ I, as long as the algorithm can incorporate appropriate forms of background
knowledge. This background knowledge includes exogeneity—i.e., intervention vari-
ables are not caused by the original “system” variables, randomized context—i.e.,
lack of confounding between the intervention and system variables, and generic con-
text—i.e., that the intervention variables are deterministically related to one another.
As an example, [153] shows that the GSP algorithm can be adapted to include these
assumptions, along with any assumptions about known targets of each intervention,
while maintaining consistency of the algorithm. They call the resulting algorithm the
Unknown Target Intervention GSP (UT-IGSP) algorithm to emphasize its ability to
handle interventions with unknown targets, extending previous works where targets
were assumed to be known [171, 177]. Finally, it is also natural to develop Bayesian
variants of causal structure learning algorithms for interventional data, e.g., [27] shows
how to compute posteriors over DAGs in the setting when the data is multivariate
Gaussian.

4.4 Causal Structure Learning in the Presence of Latent Confounding

The approaches to causal structure learning in the causally insufficient setting fol-
low the same broad categorization as approaches in the causally sufficient setting. In
particular, the Fast Causal Inference (FCI) algorithm [150] is a constraint-based algo-
rithm for learning DMAGs, similar in spirit to the PC algorithm. The FCI algorithm
has inspired several variants, including Really Fast Causal Inference (RFCI) [35], and
FCI+ [34]. Score-basedmethods include both greedy search strategies, such asGreedy
FCI (GFCI) [119], MAG Max–Min Hill Climbing (M3HC) [167], and Conservative
rule and Causal effect Hill Climbing (CCHM) [33], exact score-based approaches,
such as AGIP [28], and gradient-based approaches [16].

As in the case of learning DAGs, we will discuss a hybrid method for learn-
ing DMAGs, which combines elements of both score-based and constraint-based
approaches, and elucidates the combinatorial aspects of learning DMAGs. This
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method, called the Greedy Sparsest Poset (GSPo) method, restricts the search space
of DMAGs to minimal I-MAPs of the distribution PX . This space can be realized as
the image of a map GPX from partially ordered sets (posets) to graphs. A partially
ordered set π defines a relation �π that captures the notion of an ordering via three
requirements: reflexivity (i �π i for all i), antisymmetry (i �π j and j �π i implies
i = j), and transitivity (i �π j and j � k implies i �π k). Because of the definition
of the ancestrality condition, the set of complete DMAGs can be put in bijection to
the set of posets, so that posets form a natural domain for the map GPX .

The authors in [13] show that GPX (π) can be constructed using a procedure sim-
ilar to the procedure defined for DAGs in 1, although the construction requires two
iterations of conditional independence testing between pairs of variables instead of
one. They also provided a version of the sparsest I-MAP theorem for DMAGs, i.e.,
under a restricted faithfulness assumption, the sparsest minimal I-MAPs of PX are all
Markov equivalent to the underlying DMAG G∗. Motivated by the GSP algorithm for
learningDAGs, [13] introduce the greedy sparsest poset (GSPo) algorithm for learning
DMAGs, which uses legitimate mark changes to search over posets and iteratively find
sparser I-MAPs. Over 100,000 synthetic examples suggest that the GSPo algorithm
is consistent, but proof of its consistency is an important open problem, and closely
tied to the open problem of generalizing Meek’s conjecture [31, 112] to DMAGs.

5 Discussion and Open Problems

In this review article, we sought to cover both classical and recent approaches to causal
structure learning, emphasizing the combinatorial nature of this problem. We end by
discussing several related areas of work that were not covered in depth and remain
under active development.

Learningwith both interventions and latent confoundingWhilewe separately dis-
cussed learningwith interventional data and learning under confounding, it is natural to
combine these two settings. Recent work [83] considers this combination for DMAGs,
introducing the new notion of -Markov equivalence to capture pairs of graphs and
interventions which induce the same set of conditional independencies and conditional
invariances. This work allows for both soft and unknown-target interventions. Fur-
thermore, [83] provides a graphical characterization of -Markov equivalence, and
introduces a constraint-based algorithm, called -FCI, for learning the -Markov
equivalence class from data. As a next step it is natural to consider score-based algo-
rithms, both exact and greedy, for learning DMAGs, ADMGs, and other subclasses of
marginal DAG models, using a combination of observational and interventional data.

Learning with assumptions on the latent structure As indicated in 2.3, in some
cases with unobserved confounding, it is desirable to recover the unobserved variables
and their relationship to the observed variables. Naturally, recovery of these details
requires assumptions on their structure. A common assumption, called the exogene-
ity or measurement assumption, is that all unobserved variables are upstream of the
observed variables, i.e., none of the unobserved variables are caused by any of the
observed variables.
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With the exogeneity assumption as a starting point, additional assumptions may
be made to (approximately) recover the latent variables, and possibly, the structure
between them. For example, several works [51, 141] consider recovering the unob-
served variables in settings with pervasive confounding, i.e., when each unobserved
variable has a direct effect on a large number of observed variables. As an important
special case of this setting, some works have considered recovering amixture of DAG
models [65, 137, 156, 157], where there is a single unobserved variable that is a parent
of all variables in the graph. Alternatively, many works [25, 68, 84, 91, 100, 136, 176,
184] consider recovering unobserved variables under the measurement assumption
and a form of purity or anchor assumption, where each unobserved variable must
have some number of observed variables which are only their children. Few works
consider recovering unobserved variables without the assumption of exogeneity, with
[154] being a recent exception.

Learning in the presence of selection biasAs suggested in 2.3, considerable effort
has gone into characterizing the distributional constraints imposed by marginalization
of DAGmodels. However, in many applications, the observed distribution is the result
of both marginalization and conditioning of an underlying distribution. In particular,
such observed distributions are induced by selection bias, where the probability that
a sample is observed is dependent on the value of some of the variables in the sample.
General maximal ancestral graphs (see 2.3), which allow for undirected edges in
addition to directed and bidirected edges, are conditional independence models which
are closed under marginalization and conditioning. As in the case of marginalization,
several graphical representations, including MC graphs [96] and summary graphs
[174], have been introduced to capture constraints induced by such conditionalmodels.
However, to the best of our knowledge, there is no graphical representation which
exactly captures all equality and inequality constraints induced by conditioning a
DAG model, in contrast to the case for marginal models [46]. Thus, important next
steps include (1) developing a graphical representation which fully captures both
marginalization and conditioning, (2) developing notions of Markov equivalence in
this setting, including with interventional data, and (3) developing structure learning
algorithms in this general setting.

Learning cyclic causalmodelsAs indicated in 2, awidespread assumption in causal
modeling and causal structure learning is that the structural causal model (SCM)
induces an acyclic graph. However, this may not be the case if the SCM models a
system that involves feedback loops. While the underlying dynamics of the system are
necessarily acyclic over time, feedback loops can arise whenmodeling the equilibrium
states of such systems [19]. For example, in gene regulatory networks, we may have
that gene A regulates gene B, and gene B also regulates gene A, so that intervening on
either genewill affect the value of the other gene. Recentwork [20] has investigated the
semantics of cyclic causal models, showing thatMarkov properties and other desirable
properties hold in the case of certain solvability conditions. Despite the technical
difficulties associated with cyclic models, several approaches have been proposed
for learning their structure from data. These approaches include many algorithms
designed for the linear case, including LLC [78], score-based approaches [58], and
BackShift [134]. Algorithms for the general case include SAT-based approaches [81],
exact score-based approaches [130], and constraint-based approaches [48, 114, 155].
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Statistical and computational complexity of causal structure learning In conjunc-
tion with methodological developments for settings with cycles, latent confounding,
selection bias, and interventional data, it is important to understand the fundamental
statistical and computational limits of causal structure learning, and any trade-offs
between these. The analysis of existing causal structure learning algorithms gives
upper bounds on what is statistically and computationally achievable. Recent work
derives upper bounds for a wide range of settings, including the linear equal-variance
setting [60], the linear non-Gaussian setting [173], other parametric settings [120,
128], as well as nonparametric settings [53]. On the other hand, it is important to
understand the fundamental lower bounds on the sample complexity needed by any
causal structure learning algorithm. Such lower bounds have been established for the
exponential family setting [59] and the linear equal-variance setting [54], but the lower
bounds for a wide range of settings and assumptions remain uncharacterized.

Furthermore, since consistency of causal structure learning algorithms always
requires some form of “faithfulness” or genericity assumption (see 2), there are likely
trade-offs between the strength of faithfulness assumption imposed and computational
and statistical complexity. Indeed, an interesting open question is to characterize the
weakest assumption needed for causal structure learning, with the sparsest Markov
representation assumption [131] being one candidate. Finally, the works discussed
above are all in causally sufficient settings with only observational data. Incorporat-
ing interventional data into these analyses would open the possibility for a reduction
in overall sample complexity, and may introduce a landscape of trade-offs between
interventional and observational sample complexities. Indeed, interventional data has
been considered in recent works [1, 17] on the statistical and computational complex-
ity of causal inference tasks, where the causal graph is assumed to be known and the
task is to estimate interventional distributions. An interesting future direction is to also
explore the effect of interventional data on the complexity of causal structure learning.

Experimental design for causal structure learning In this review article, we have
focused on causal structure learning in a passive setting, where we are given a dataset,
or possibly several datasets from different interventions or contexts. However, in many
scientific settings, such as biology, where interventions such as genetic or chemical
perturbations can readily be performed, an important component of causal discovery
is the choice of what data to gather [63]. This leads us to consider experimental design
approaches for causal structure learning, where an experimenter may pick interven-
tions (and their values) in an effort to identify the underlying causal structure. Several
approaches have been proposed for a variety of settings. In the non-adaptive setting,
the experimenter picks all interventions at once. In [43] it is shown that, in the absence
of any preexisting observational data, p − 1 interventions are sufficient and in the
worst-case necessary for identifying the underlying causal structure over p variables.
Other work in the non-adaptive setting considers the presence of background knowl-
edge (e.g., from observational data) [79], differences in costs between interventions
[92, 105], and a fixed-budget setting [56].

Alternatively, the adaptive setting allows the experimenter to observe the outcome
of each intervention before picking the next intervention. He andGeng [73] andHauser
and Bühlmann [71] propose greedy approaches for the adaptive setting, picking new
interventions based on some measure of either expected or worst-case information
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gain. While these approaches are designed for the noiseless setting, in which an infi-
nite amount of data is gathered from each intervention, more recent works [98, 164]
explore greedy approaches in the noisy setting. [66] shows that strategies which max-
imize expected information gain can be exponentially suboptimal in the number of
interventions that they use, and propose theCentral Node algorithm for settings where
the essential graph is a tree. They show that this algorithm is a 2-approximation to
the optimal adaptive strategy. Follow-up work [152] adapts this algorithm to a more
general class of essential graphs, provides a characterization of the number of single-
node interventions needed by an oracle to identify a causal graph, and shows that their
algorithm uses within a logarithmic factor of this number of interventions.

In between the non-adaptive and adaptive settings, [4] considers the active batched
setting, in which the experimenter observes the outcome of a batch of interventions
before picking the next batch of interventions. Recent work [161] establishes novel
submodularity properties for greedy objectives in this settings, allowing for efficient
optimization over the choice of interventions in each batch. Taken together, these
recent advances suggest several future directions, including (1) characterizing the
number of multi-target interventions needed by an oracle in the adaptive case [125],
(2) approximation guarantees for experimental design, compared to either oracles or
optimal strategies, and (3) experimental design in settings with latent confounding [2,
94], selection bias, and cycles.

Targeted causal structure learning Thus far, we have focused on the problem of
causal structure learning as an end in itself; i.e., in both the passive and active settings
discussed, the desired output was a causal graph (or equivalence class). However, ulti-
mately, a major motivation for causal structure learning is to use the causal model in
downstream tasks. A task of considerable importance is policy evaluation, i.e., pre-
dicting the effect of an action. The overall goal of task can be phrased as estimating
a specific functional of an interventional distribution defined by a structural causal
model M . Then two principal subtasks are (1) determining whether this functional
is identifiable by transforming it into a functional of the available distributions and
(2) estimating the resulting functional from samples. When the only available distri-
bution is the observational distribution defined by M , possibly with some variables
unobserved, the first subtask is covered by the ID algorithm [146] and its variants
[147].

More generally, datamight be available fromsome set of interventional distributions
definedbyM , or fromobservational and interventional distributions associated to some
related structural causal model M ′

1, . . . , M
′
K . The relation between these structural

causal models is encoded using a selection diagram, and the task of using the selection
diagram to identify the functional is covered by a rich literature on transportability [9,
10, 37, 104]. Once the target functional is transformed into a functional of the available
distributions, it becomes essential to estimate the functional in a sample-efficient way.
This has been extensively studied in the literature on semiparametric efficiency [15,
135], double machine learning [85], and targetedmachine learning [139], also covered
in a recent review [90]. Thus far, causal structure learning and policy evaluation have
been studied as separate tasks: The output of causal structure learning is a causal
graph, while the input to policy evaluation is a causal graph or selection diagram.
Therefore, the current approach to using policy evaluation tasks when the graph is
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unknown would be to first perform causal structure learning, then to use the methods
discussed for policy evaluation. It is likely that this approach is not optimally sample-
efficient—the two steps should be “aware” of each other, i.e., causal structure learning
should be performed in a way that is targeted toward the downstream task.

The problem of targeted causal structure learning remains mostly unexplored, with
a few notable exceptions. In the adaptive experimental design setting, [4] considers
targeted learning of any property of the underlying graph, and [188] considers targeted
learning of a “matching” intervention, which affects the system in some desired way.
In the batched data setting, [12, 172, 189] consider targeted learning of the difference
between two DAGmodels, instead of the DAGmodels themselves. All of these works
demonstrate computational and statistical benefits to targeted learning over untargeted
structure learning, indicating that this is an important and promising direction.

Causal structure in reinforcement learning Policy evaluation is also an important
task in reinforcement learning, where the policy is a sequence of actions that can
depend on the state of the environment. The overlap between reinforcement learning
and causality has been recently explored in the simple setting of multi-armed bandits,
where an agent’s actions do not affect the state of the environment. By assuming that
actions correspond to interventions in a known causal graph, the effects of different
actions become related, allowing for better regret bounds [102, 116]. If the causal
graph is not assumed to be known, there is an additional exploration–exploitation
trade-off that needs to be taken into account, which has been considered in recent
work [18, 97, 108]. Since certain parts of the causal graph might not be relevant to
predicting the effect of an action on some reward, the reinforcement learning setting
is another case in which targeted structure learning may be more efficient.
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