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ABSTRACT  Objective: Pancreatic cancer (PC) is a silent killer, because its detection is difficult and
to date no effective treatment has been developed. In the US, the current 5-year survival rate of 11%.
Therefore, PC has to be detected as early as possible. Methods and procedures: In this work, we have
combined the use of ultrasensitive nanobiosensors for protease/arginase detection with information fusion
based hierarchical decision structure to detect PC at the localized stage by means of a simple Liquid Biopsy.
The problem of early-stage detection of pancreatic cancer is modelled as a multi-class classification problem.
We propose a Hard Hierarchical Decision Structure (HDS) along with appropriate feature engineering steps to
improve the performance of conventional multi-class classification approaches. Further, a Soft Hierarchical
Decision Structure (SDS) is developed to additionally provide confidences of predicted labels in the form
of class probability values. These frameworks overcome the limitations of existing research studies that
employ simple biostatistical tools and do not effectively exploit the information provided by ultrasensitive
protease/arginase analyses. Results: The experimental results demonstrate that an overall mean classification
accuracy of around 92% is obtained using the proposed approach, as opposed to 75% with conventional multi-
class classification approaches. This illustrates that the proposed HDS framework outperforms traditional
classification techniques for early-stage PC detection. Conclusion: Although this study is only based on
31 pancreatic cancer patients and a healthy control group of 48 human subjects, it has enabled combining
Liquid Biopsies and Machine Learning methodologies to reach the goal of earliest PC detection. The
provision of both decision labels (via HDS) as well as class probabilities (via SDS) helps clinicians identify
instances where statistical model-based predictions lack confidence. This further aids in determining if
more tests are required for better diagnosis. Such a strategy makes the output of our decision model more
interpretable and can assist with the diagnostic procedure. Clinical impact: With further validation, the
proposed framework can be employed as a decision support tool for the clinicians to help in detection of
pancreatic cancer at early stages.

INDEX TERMS Pancreatic cancer (PC), early cancer detection, liquid biopsy, information fusion, hierar-
chical decision structure.

I. INTRODUCTION

Pancreatic cancer (PC) is the third leading cause of cancer-
related death in the US with a 5-year survival rate of 11% [1].
PC is characterized by a poor prognosis, invasiveness, rapid
progression, and profound resistance to drug treatment, all
which results in poor outcomes [2], [3]. Because of the
virtual absence of early warning signs, PC is infrequently
diagnosed at an early-stage [4], [5]. Consequently, neither

surgical treatment, nor chemo- and radiotherapy are effective
against PC [2], [3], [6], [7]. Currently, no universal screening
tests for pancreatic cancer exists, and the best techniques
available for pancreatic cancer detection are the commonly
used ones, which include, biopsy and imaging test like endo-
scopic ultrasound, computerized tomography (CT) scans,
magnetic resonance imaging (MRI), and positron emission
tomography (PET) scans [8]. The medium survival rate of
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FIGURE 1. (A): Design principles of a nanobiosensor for protease detection. The OFF mode occurs when distance between fluorophore TCPP
(tetrakis-carboxyphenyl-porphyrin), Fe/Fe; 0, nanoparticle, and FRET-acceptor cyanine (Cy) 5.5C is reduced, upon cleavage of the oligopeptide
tether by a suitable protease present, this distance increases and leads to an increase in fluorescence intensity, which is called the ON mode.
(B): TEM and HRTEM of dopamine-coated Fe/Fe;0, core/shell nanoparticles. (C): Typical emission spectra occurring from a nanosensor for
protease detection after 1h of incubation at 37 oc (rexc = 421 nm). low: buffer; middle: nanosensor; high: nanosensor after incubation with the
respective enzyme; with permission from reference [22], copyright Elsevier, Amsterdam 2021.

PC drops sharply with a later stage of detection. According
to the American Cancer Society, the 5-year relative survival
rate for PC is 39% at the localized state, 13% at the regional
state, and 3% at the distant stage [1]. Therefore, a feasible
and cost-effective Liquid Biopsy [9] for PC detection would
be of great value, if it is capable of detecting PC at the
localized stage, preferentially by means of a simple blood
test. Liquid biopsies are of big interest for diseases like pan-
creatic cancer, where tissue samples are limited. Some liquid
biopsies exploited for PC consist of identifying and quanti-
fying tumor-associated components released from all tumor
sources that can be present in blood, serum, or plasma, such
as circulating tumor DNA (ctDNA), circulating tumor cells
(CTCs), and extracellular vesicles (EVs) [10], [11]. Major
difficulties with these liquid biopsy technologies include the
lack in ability to isolate pure tumor-associated components,
which typically contains a mix of tumor- and non-tumor
associated components, which makes this technology insuf-
ficient to stand alone [11]. However, with the exception of
the protease-activity technology discussed here, none of the
“classic’ approaches to Liquid Biopsies, such as the capture
and detection of circulating tumor cell or circulating tumor
DNA, DNA-methylation studies or the analysis of the content
of extracellular vesicles, are capable of reliable detecting
stage 1 PC [12]-[15], [16].
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The Bossmann group has established a panel of seven pro-
teases (caspases B and E, matrix metalloproteinases (MMPs)
1, 3, and 9, urokinase plasminogen activator (UpA), and
neutrophil elastase) and arginase as suitable panel of enzymes
for early PC detection in 2018 [5]. This selection was based
on Gene expression analysis [17] using data from NCBI
GEOQO, Entrez Gene ID, Unigene ID and Gene Symbol [17].
Protease and Arginase activities in serum were measured with
Fe/Fe304 core/shell nanobiosensors with an average particle
size of 15 nm [5], [18]-[20], [21], [22]. The function principle
is shown in Figure 1 (A). Each protease cleaves its respec-
tive consensus sequence and releases the fluorophore TCPP,
which escapes the Forster quenching sphere of the nanopar-
ticle plus tethered cyanine 5.5 dye (FRET pair) [18]. Upon
escape, TCPP fluorescence increases and can be detected by
aclinical plate reader. The fluorescence signal correlates with
the fluorescence intensity [5]. Note that the nanobiosensor for
arginase activity detection is not cleaved. Arginase performs a
“post-translational” modification converting peptide-bound
arginine into ornithine. The latter changes the dynamic of the
peptide tether, which increases TCPP fluorescence [20].

Although statistically significant differences of the pro-
tease/arginase activity pattern of the group of all pancreatic
cancer patients (n = 31) and the group of healthy, age- and
gender-matched volunteers (n = 48) could be established
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utilizing these Fe/FezOg4-based nanobiosensors, the overall
sizes of the investigated groups was too small to establish
the feasibility of early PC detection beyond reasonable doubt.
Furthermore, simple biostatistics (e.g. performing Welch
tests [23] and calculating p-values between data groups [23],
[24]) do not provide the maximal extractable information
from ultra-sensitive protease/arginase analyses. Therefore,
we have employed information fusion based hierarchical
decision structures for early-stage detection of pancreatic
cancer. The classification models based on hierarchical deci-
sion structures are attracting significant research attention
in the recent years. This is because they have demonstrated
an appreciable predictive performance on a wide variety
of interesting engineering applications like text classifica-
tion [25], intrusion detection [26], manufacturing [27] and
credit scoring prediction [28]. Biomedical applications like
generation of molecular graphs [29], lung nodule malignancy
classification [30], COVID-19 detection [31], skin lesion
classification [32] and detection of Alzheimer’s disease [33]
have also incorporated the use of hierarchical learning meth-
ods to build efficient classifiers. However, such hierarchical
decision models have not been proposed for the early-stage
detection of PC. Given the limited sample size in such stud-
ies, exploiting a hierarchical classification structure helps
to reduce the complexity of model at each step, thereby
opening the possibilities to improve the performance of tra-
ditional multi-class classification approaches. In this work,
we propose a novel hierarchical framework for early-stage
detection of pancreatic cancer. Firstly, a hard hierarchical
decision structure (HDS) coupled with feature engineering at
each step provides a better performance as compared to tradi-
tional multi-class classification approaches. Secondly, a soft
hierarchical decision structure (SDS) additionally provides
confidence associated with predicted labels in the form of
probability values for each class.

The major purpose of using computational methods for
early pancreatic cancer detection is detecting the onset of
pancreatic cancer in the group of chronic pancreatitis patients,
which would permit a maximal time for successful treatment
with emerging methods, such as immunotherapy [34]. The
key contributions of this work are as follows:

o This work, for the first time, proposes the use of ultra-
sensitive nanobiosensors for protease/arginase detection
and integrates it with an information fusion based hierar-
chical decision structure to detect pancreatic cancer (PC)
at the localized stage by means of a simple Liquid
Biopsy.

o HDS, coupled with appropriate feature engineering
steps is proposed to improve the performance of tra-
ditional multi-class classification approaches. Results
illustrate up to 17% improvement in performance with
the proposed HDS scheme relative to conventional
multi-class classification approaches.

« To better assist the clinician’s decision-making and pro-
vide insights into the decision criteria driving the statisti-
cal methods, an SDS is developed to provide confidence
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scores associated with predicted labels, in the form of
class probability values.

The decision labels and values of class probabilities
obtained from HDS and SDS respectively support clinicians
in recognizing situation where predictions of the computa-
tional models are uncertain. It helps them determine whether
more tests are necessary for a more accurate diagnosis. In this
manner, the proposed framework possesses the potential to
serve as an effective decision support tool for early-stage
PC detection. The remainder of this article is organized
as follows: details pertaining to the dataset are presented
in Section II, the proposed methodology is elucidated in
Section III. The results are discussed in Section IV, followed
by concluding remarks in Section V.

Il. DESCRIPTION OF THE DATASET

The dataset resulting from protease/arginase activity quan-
tified using ultrasensitive nanobiosensors consists of a set
of eight biomarkers. Identified biomarkers were obtained
from the NCBI Gene expression omnibus (GEO) database,
which is public accessible. Biomarkers were proteases with
significant differences in expression levels between two sam-
ples, a primary tumor sample and a healthy tissue sample,
which both had to be in Homo sapiens. The features for each
sample comprise of values corresponding to a panel of seven
proteases and arginase, selected based on gene expression
analysis using data from Unigene ID, Gene Symbol, NCBI
GEO and Entrez Gene ID [17]. Protease/arginase activity for
each identified biomarker was quantified in human serum
samples obtained from the Biospecimen Repository Facility
in the Cancer Center of the University of Kansas Medical
Center [35]. The group size was as follows: “Healthy” vol-
unteers (n = 48) and pancreatic cancer patients (n = 31),
which was further divided into “Localized” (earlier stage)
and “Metastatic” (later stage) pancreatic cancer. Localized
pancreatic cancer samples signify the absence of any indica-
tion that the cancer has spread outside the pancreas, while
metastatic pancreatic cancer indicates that it has spread to
other parts of the body as well. Quantified protease/arginase
activity was quantified in serum samples after 60 min incuba-
tion, and this dataset was then utilized to develop a computer
prediction model.

Although the sample size for this research study is limited,
it is important to note that we are proposing a unique, one-of-
a-kind approach for early cancer detection. We believe that
providing these initial results will stimulate more follow-on
efforts in this direction creating a significant clinical impact.
Specifically, for this study, the team was not able to obtain
more disease samples and had to work with the maximum
number of samples the biospecimen repository at the Uni-
versity of Kansas Medical Center was able to recruit. It is
imperative that the activity measured with this nanobiosensor
technology depends strongly on the protocol and quality
of the serum samples collected, which has been previously
noticed by this team. For this reason, the better approach was
to work with a smaller, but well-defined sample size instead
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FIGURE 2. Formation of training set.

of obtaining a larger sample size from different repositories
to avoid multiple variables introduced during the comparison
analysis. Furthermore, we provide confidence intervals for
all our inferences in Section IV in order to accommodate
the sample size effects and better illustrate the power of the
results.

The training set formation process for individual binary
classifiers at respective hierarchical steps is illustrated in
Figure 2. Eighty percent of all the instances in the dataset
are randomly selected to train the binary classifier in the
first hierarchical step. This step results in the isolation of
samples belonging to “healthy” group. So, 80% of the
remaining instances, i.e., the samples from ‘““localized”” and
“metastatic”’ groups are selected at random to form the train-
ing set for binary classifier in the second hierarchical step.
This strategy for preparing the training sets for individual
binary classifiers is adopted due to limited number of samples
available in the dataset.

lll. METHODS

In this work, the problem of early-stage detection of pancre-
atic cancer is modelled as a multi-class classification prob-
lem. The data derived from the experiments consists of four
classes, namely, “Healthy”, “Localized”” pancreatic cancer
and ““Metastatic” pancreatic cancer. Two information fusion
based decision structures are proposed:

1) A HDS with specific feature engineering at each step
for better performance relative to conventional classifi-
cation approaches.

2) A SDS that provides confidence associated with pre-
dicted labels in the form of probability values for each
class.

A. HARD HIERARCHICAL DECISION STRUCTURE

The fundamental premise of the proposed information fusion
based HDS involves tailoring the statistically most signifi-
cant features with appropriate weights to execute an efficient
binary classification task at each hierarchical step. The pro-
posed HDS is shown in Figure 3. The individual elements
involved in building the HDS are described next.

1) COMPUTING WEIGHTS FOR FEATURES
The first step in the proposed HDS framework is to identify
whether the given sample belongs to healthy (null hypothesis)
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TABLE 1. Computing weights for the features (A test decision value of

0 indicates a failure to reject the null hypothesis at 95% confidence level,
a value of 1 indicates rejection of the null hypothesis at 95% confidence
level; a rank of 1 indicates that the corresponding feature is most
important and that of 8 indicates that the corresponding feature is least
important).

Sr. Test

No. Feature Decision p-value | Rank | —log,.p | Weight
1 Arginase 1 3.41e-5 6 10.29 0.0950
2 Cat B 1 8.92e-10 2 20.84 0.1925
3 Cat E 1 9.61e-10 3 20.76 0.1918
4 MMP 1| 0 0.0538 8 2.92 0.0270
5 MMP 3 1 0.0214 7 3.84 0.0355
6 MMP 9 1 5.79¢-10 1 21.27 0.1965
7 | Neutrophil 1 1.62¢-6 5 1334 | 01232

Elastase
3 UpA 1 3.02e-7 4 15.01 0.1387

or non-healthy (alternate hypothesis) group. The feature
engineering in building the corresponding binary classifier
involves appropriate weighing of all the features based on
their relative importance. These weights are obtained based
on the p-values of two-sample t-tests for all the features across
the set of measurements obtained from ‘‘healthy” and “‘non-
healthy” groups. The test decision values and p-values for
the null hypothesis that measures if “healthy” and ‘‘non-
healthy’” groups belong to independent random samples from
normal distributions with equal means, were evaluated for all
the features. It was observed that the p-values are distributed
over a wide range and possess a highly skewed distribution.
Therefore, the associated probability operations can generate
extremely small values that are difficult to represent with
sufficient precision. This results in numerical errors like
underflow or overflow. In order to avoid precision issues,
the p-values are transformed to a logarithmic scale for better
interpretation and analysis [36]-[38]. The negative values of
natural logarithm of p-values, — log, p is computed for all the
features and scaled, as shown in equation (1) to obtain the
corresponding feature weights.

—log, f;
N
Zn:l - logef n
Here, w; is the weight corresponding to feature f;, — log, f;
represents the negative value of natural logarithm of p-value
corresponding to feature f; and N is the total number of
features. The p-values and computation of corresponding

weights for all the features in the dataset under consideration
are presented in Table 1.

ey

w; =

2) SELECTING FEATURES FOR EACH HIERARCHICAL STEP

If a given sample is identified as ‘‘non-healthy” in the
first hierarchical step, the next step is aimed at determining
the degree or extent of abnormality involved. The second
hierarchical step determines if the given sample belongs
to a “localized” or ‘“metastatic” group. The corresponding
binary classifier uses a subset of the features rather than using
all the features obtained from experiments, as in the first hier-
archical step. This feature engineering step identifies the most
relevant features, thereby simplifying the models and making
them easier to interpret. Moreover, this allows to have shorter
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FIGURE 3. Proposed information fusion based HDS framework.

training times and reduces overfitting. The relevant features
are identified by conducting a series of two-sample t-tests
(as in the first hierarchical step) for localized vs. metastatic
groups. The features exhibiting lowest p-values in hypothesis
tests are selected as admissible features for corresponding
binary classifier. For the dataset under consideration, Cat B,
Cat E, MMP 3 and UpA are selected as admissible features
for binary classifier in the second hierarchical step.

B. SOFT HIERARCHICAL DECISION STRUCTURE

While the HDS offers a three-class classifier, it does not
provide any information regarding the confidence associated
with the decisions. This drawback is addressed in the pro-
posed SDS framework that provides confidences associated
with the predicted labels in the form of probability values
for each class. The proposed SDS is shown in Figure 4.

4300208

It is basically an extension of the HDS, where the prediction
for each sample is accompanied with the probability values
of that sample being affiliated to each of the three classes.
The differences between these probability values provide an
indication of confidence associated with the corresponding
prediction. For a given instance, if the probability value cor-
responding to one of the classes in significantly higher than
the rest, the confidence associated with such a prediction
would be HIGH. On the other hand, if there is no significant
difference between the probability values corresponding to all
the classes, the associated confidence would be LOW. This
framework helps the doctors determine whether additional
tests are required for proper diagnosis.

All steps in the SDS are probabilistic extensions of the
HDS. For example, the first step in SDS results in two values
indicating probabilities of the given sample being ‘‘healthy”
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or “non-healthy”, represented by P(H) and P(H) respec-
tively. These values are essentially the probability estimates
of classification model trained at first hierarchical step for a
given sample and are obtained using predict_proba() method
of trained scikit-learn [39] models. The second hierarchical
step evaluates the probabilities of the given sample being
“localized” or ‘“‘non-localized”, given the condition that it
belongs to “non-healthy” group, represented by P(L|H) and
P(L|H) respectively. These values are probability estimates
of classification model trained at second hierarchical step for
a given sample. As a result, the probabilities of a sample
being ‘“‘localized” or ‘“‘metastatic” is evaluated based on
equations (2) and (3) respectively.

P(L) = P(LIH)P(H) 2)
P(M) = P(L) = P(LIH)P(H) 3)

IV. RESULTS AND DISCUSSION

A. HARD HIERARCHICAL DECISION STRUCTURE

The proposed framework is evaluated by training a series
of hierarchical classification models by considering several
combinations of binary classifiers in all the three hierarchi-
cal steps, indicated in Figure 3. The classification methods
considered for individual binary classifiers include: (i) Gaus-
sian Naive Bayes (GNB) [40], (ii) Decision Tree (DT) [41],
(iii) Support Vector Machine (SVM) [42], (iv) k-Nearest
Neighbors (kNN) [43], (v) Random Forest Classifier
(RFC) [41], [43] and Logistic Regression (LR) [44]. In order
to avoid overfitting, we have used k-fold (k = 5) cross
validation technique as a resampling method for training
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Metastatic

TABLE 2. Combinations of classification methods exhibiting an overall
mean accuracy score of more than 85%.

Sr. | Classification Method Accuracy Sensitivity Specificity
No. | Step 1 Step 2 Score
1 GNB DT (87.34 £ 4.70)% | 0.76 = 0.10 | 0.84 & 0.04
2 kNN DT (89.87 £ 6.28)% | 0.81 £ 0.06 | 0.89 £ 0.06
3 kNN kNN (91.14 + 3.94)% | 0.85 £ 0.08 | 0.93 £+ 0.04
4 kNN SVM (9240 £+ 3.26)% | 0.93 £ 0.08 | 0.95 & 0.06
5 RFC DT (88.61 + 4.66)% | 0.88 £ 0.04 | 0.91 £+ 0.04
6 RFC GNB (86.07 + 6.94)% | 0.78 £ 0.06 | 0.88 £+ 0.02
7 RFC kNN (89.87 £ 5.04)% | 0.89 £ 0.02 | 0.86 & 0.08
8 SVM SVM (88.61 + 3.36)% | 0.87 £ 0.08 | 0.90 £ 0.06
9 SVM GNB (87.48 £ 5.52)% | 0.80 £ 0.06 | 0.88 & 0.02
10 DT GNB (86.07 + 7.76)% | 0.78 £ 0.04 | 0.82 £ 0.08

and evaluating the performance of classification models. The
combinations of classification methods exhibiting an over-
all mean accuracy score of more than 85% are reported in
Table 2. The sensitivity and specificity of all model com-
binations are also indicated. The 95% confidence intervals
for evaluation metrics (accuracy score, sensitivity and speci-
ficity) are represented using mean and standard deviation of
k-fold cross-validated values.

The training sets were formed as described in Section II,
and evaluation was performed over all the instances in the
dataset under consideration. In Table 2, it can be observed
that the best performance (overall mean accuracy score of
92.40%) is obtained using kNN for binary classification in
first hierarchical step and SVM in the second step. Moreover,
the sensitivity and specificity scores for this case are observed
to the most favorable as compared to all other combinations of
classification methods. The corresponding confusion matrix
is presented in Table 3.
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TABLE 3. Confusion matrix - HDS (Step 1: kNN; Step 2: SVM).

Predicted Class
Healthy | Localized | Metastatic
Healthy 46 1 1
orue | Localized 1 18 0
Metastatic 1 2 9

TABLE 4. Performance obtained using conventional multi-class
classification approaches.

Classification Accuracy
Sr. No. Method Score
1 GNB (70.48 £ 7.50)%
2 DT (68.52 + 11.22)%
3 SVM (71.21 £ 5.74)%
4 kNN (74.66 £ 4.28)%
5 RFC (69.18 £ 7.82)%
6 LR (72.95 £ 9.16)%

On the contrary, the maximum mean classification accu-
racy obtained from conventional multi-class classification
approach using individual classification methods is 74.66%,
as indicated in Table 4. The 95% confidence intervals asso-
ciated with the predictions of statistical models are reported
using mean and standard deviation of k-fold (k = 5) cross-
validated accuracy scores. This demonstrates that the HDS
framework outperforms the conventional multi-class classifi-
cation approaches for early-stage detection of pancreatic can-
cer. The superior performance of proposed HDS framework is
primarily attributed to the following reasons: (i) the features
are weighed in the first hierarchical step based on their distin-
guishing ability, unlike traditional multi-class classification
approaches which give equal importance to all the features;
(ii) only a subset of features which are able to confidently
differentiate between localized and metastatic PC are consid-
ered in the second hierarchical step, instead of accounting for
all the features irrespective of their differentiating capability;
(iii) splitting a multi-class classification problem into step-
wise binary classification tasks allows for a more simplified
feature representation and better learning.

B. SOFT HIERARCHICAL DECISION STRUCTURE

The proposed SDS framework supports computation of con-
fidences associated with the predicted labels in the form of
probability values for each class. An example for a correct
and incorrect prediction are shown in Figure 5 and Figure 6
respectively.

The instance shown in Figure 5 is correctly classified as
“Healthy”. It can be seen that the probability of this sample
belonging to “Healthy” class is significantly higher than
those of the other classes. In such a situation, the clinician
can have sufficiently high confidence on the model prediction
and it can be concluded that no further tests are required.
In contrast, the instance shown in Figure 6 actually belongs to
a “Healthy” class but is misclassified as “Metastatic”. Addi-
tionally, it can be observed that the differences in probabilities
of “Healthy” and “Metastatic’ classes is not as significant
as in the instance demonstrated in Figure 5. One of the fun-
damental limitations of standard Al-based decision-making
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FIGURE 6. Example of incorrect prediction - SDS.

models is that they attempt to impose a strict conclusion in
the form of an output by selecting the most appropriate option
among all the possibilities. In such a scenario, the confidence
and faithfulness towards predictions of these computational
models is disputable, particularly for crucial applications
such as medical diagnosis. The proposed SDS framework
overcomes this shortcoming by specifying confidence asso-
ciated with model predictions in the form of class proba-
bility values. This information helps the clinician perceive
the lack of confidence in the model predictions and nudge
them to possibly prescribe further tests prior to diagnosis.
In a sense, the SDS builds off the HDS and makes it more
“interpretable” to the end user.

V. CONCLUSION

In this work, we have combined the use of ultrasensitive
nanobiosensors for protease/arginase detection with informa-
tion fusion based statistical framework to detect PC at the
localized stage by means of a simple Liquid Biopsy. The
information fusion based hierarchical decision structures are
proposed for early-stage detection of pancreatic cancer. The
HDS, coupled with feature engineering at each step exhibits
an overall accuracy score of around 92%, as opposed to
74% obtained with conventional multi-class classification
techniques. The SDS builds off the HDS to achieve a more
“interpretable” outcome by providing confidence associated
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with predictions in terms of probability values for each class.
This information can be used to clinicians in order to perceive
the lack of confidence in model predictions and to exam-
ine if any further tests are required before making a final
decision. The prime advantage of using such computational
methods for detection of pancreatic cancer during early-stage
is detecting the onset of pancreatic cancer in the group of
chronic pancreatitis patients, which would allow a maximal
time for successful treatment with emerging methods like
immunotherapy.
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