TABLE 2. Combinations of Classification Methods Exhibiting an Overall Mean Accuracy Score of More Than 85%.
Sr. No. | Classification Method | Accuracy Score | Sensitivity | Specificity | |
---|---|---|---|---|---|
Step 1 | Step 2 | ||||
1 | GNB | DT | (87.34 ± 4.70)% | 0.76 ± 0.10 | 0.84 ± 0.04 |
2 | kNN | DT | (89.87 ± 6.28)% | 0.81 ± 0.06 | 0.89 ± 0.06 |
3 | kNN | kNN | (91.14 ± 3.94)% | 0.85 ± 0.08 | 0.93 ± 0.04 |
4 | kNN | SVM | (92.40 ± 3.26)% | 0.93 ± 0.08 | 0.95 ± 0.06 |
5 | RFC | DT | (88.61 ± 4.66)% | 0.88 ± 0.04 | 0.91 ± 0.04 |
6 | RFC | GNB | (86.07 ± 6.94)% | 0.78 ± 0.06 | 0.88 ± 0.02 |
7 | RFC | kNN | (89.87 ± 5.04)% | 0.89 ± 0.02 | 0.86 ± 0.08 |
8 | SVM | SVM | (88.61 ± 3.36)% | 0.87 ± 0.08 | 0.90 ± 0.06 |
9 | SVM | GNB | (87.48 ± 5.52)% | 0.80 ± 0.06 | 0.88 ± 0.02 |
10 | DT | GNB | (86.07 ± 7.76)% | 0.78 ± 0.04 | 0.82 ± 0.08 |