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Abstract

Cell types are the basic functional units of an organism. They exhibit diverse phenotypic properties 

at multiple levels, making them challenging to define, categorize and understand. This Review 

provides an overview of the basic principles of cell types rooted in evolution and development, and 

discusses approaches to characterize and classify cell types and investigate how they contribute to 

the organism’s function, using the mammalian brain as a primary example. I propose a roadmap 

towards a conceptual framework and knowledge base of cell types that will enable a deeper 

understanding of the dynamic changes of cellular function under healthy and diseased conditions.

Abstract

In this Review, Zeng discusses how insights learned from the mammalian brain have begun to 

reveal generalizable organizing principles of cell types and proposes a roadmap based on these 

principles for taking a multilevel, iterative approach to define cell types and for generating a 

knowledge base of cell types across lifespan, species and the brain and body.

A cell is the basic unit of all living organisms (except for viruses) (Mazzarello, 1999). 

The evolution from unicellular to increasingly complex multicellular organisms involves 

multiplication of individual cells as well as groups of cells and diversification of the function 

of the cells. As such, billions of years of evolutionary process leads to the vast array of 

species whose diverse biological attributes are built upon their cellular compositions that 

exhibit similarities and differences both between species and among different organs within 

an individual organism (e.g., an animal or a plant). Thus, understanding the organization and 

function of cells within an organism lays the essential foundation for understanding how an 

organism works. Similarly, comparing the organization and function of cells between species 

allows understanding of functional diversity across species.

Studies over the past century have revealed that cells within an organism can be grouped into 

types – cells within a type exhibit similar structure and function that are distinct from cells 

in other types (Arendt, 2008). Categorizing cells into types greatly reduces the complexity 
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of investigating the organization and function of cells, especially for large organisms with 

billions to trillions of cells in the body, e.g., mammals. Researchers have measured a wide 

range of cellular properties and used these measurements to classify cell types (Petilla 

Interneuron Nomenclature Group et al., 2008; Regev et al., 2017; Zeng and Sanes, 2017). 

However, there has not been a consistent and standard definition of cell types even though it 

is critical for reproducible investigation. It is often unclear if cell types defined by different 

phenotypic features agree with each other, nor which feature is the “right” one to define cell 

types. Furthermore, lacking a systematic approach and effort, we do not know if all the cell 

types in an organism have been identified and where the gaps are.

Recent advent in single cell transcriptomics is revolutionizing the way we understand cell 

types, with its unprecedented depth and scalability. It has been used to define cell types 

in a variety of species, tissue organs and brain regions (Armand et al., 2021; Svensson et 

al., 2020; Tanay and Sebe-Pedros, 2021). However, despite many illuminating studies it 

remains an open question to what extent transcriptomic clusters represent true cell types 

and what level of granularity is appropriate for defining cell types. Nonetheless, over the 

past few years, tremendous progress has been made and many new insights have been 

generated around these questions. In this review, I will mainly use the mammalian brain as 

an example (but also refer to other organs or species) to address key questions pertaining to 

the conceptual and operational definition of cell types.

Approaches to characterize cell types

Cell types in the brain and the body exhibit diverse properties in many modalities – 

molecular, morphological, physiological, and functional. Numerous studies in these different 

modalities in the brain over the past century, dating back to Ramón y Cajal and his 

contemporaries, have converged on a consistent high-level picture of cell type organization 

across brain regions (Fishell and Heintz, 2013; Markram et al., 2004; Masland, 2012; 

Mukamel and Ngai, 2019; Nelson et al., 2006; Petilla Interneuron Nomenclature Group et 

al., 2008; Sanes and Masland, 2015; Seung and Sumbul, 2014; Somogyi and Klausberger, 

2005; Yuste et al., 2020; Zeng and Sanes, 2017). At the same time, cellular properties 

at individual cell level are highly heterogeneous, variations in different modalities do not 

necessarily exhibit high degrees of concordance, making it often impossible to define 

exactly what is a cell type and draw clear boundaries between “types”. In many cases, 

lacking a way to reproducibly label a cell type (typically using a molecular genetic 

approach) presents a major hurdle to relate different studies and findings to each other.

To untangle this complexity, it is necessary to adopt approaches that provide comprehensive, 

unbiased, quantitative and standardizable measurements and are scalable to densely sample 

a sufficient number of cells within a brain region or tissue organ as well as across 

the entire brain and body to eventually reach completeness, and then perform data-

driven computational clustering and analysis to obtain cell type classification. The Petilla 

convention to define criteria for defining cortical interneuron types represents a major 

community effort to specify such approaches (Petilla Interneuron Nomenclature Group et 

al., 2008). Given that physiological properties can take many different forms under different 

conditions, and functional properties are unknown or poorly defined for many types of cells, 
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as well as the fact that these two modalities are better examined in vivo, it is challenging 

to scale up the physiological and functional approaches, such as in vivo electrode recording 

or functional imaging, in a comprehensive and unbiased manner as a primary way to 

define cell types. On the other hand, molecular and anatomical approaches are more 

suited for this purpose (Fig. 1A). Molecular approaches include the profiling of chromatin 

modifications (epigenomics), RNA transcripts (transcriptomics), and proteins (proteomics). 

Anatomical approaches include the characterization of the spatial distribution, morphology 

and connectivity of individual cells. Currently single-cell transcriptomics and connectomics 

(i.e., delineating the patterns of interconnections between individual neurons) are the two 

primary approaches that have the potential to meet the completeness requirement. Both 

approaches are now being realized in simpler model organisms including C. elegans (Taylor 

et al., 2021; White et al., 1986; Witvliet et al., 2021) and Drosophila (Hulse et al., 2021; Li 

et al., 2022; Scheffer et al., 2020), whereas in mammals transcriptomics is currently feasible 

and connectomics is still in development (Abbott et al., 2020).

Transcriptomics by single-cell or single-nucleus RNA-sequencing (scRNA-seq or snRNA-

seq) is now the most widely used approach to generate cell type taxonomies or atlases 

from many species, tissue organs and brain regions, due to its comprehensiveness and high 

dimensionality (i.e., profiling thousands of expressed genes per cell in a largely unbiased 

manner) as well as its high scalability (to hundreds of thousands or millions of cells). 

Transcriptomic cell atlases at the whole organism level have been generated for Drosophila 

(Li et al., 2022), Ciona (Cao et al., 2019a), and the nervous system of C. elegans (Taylor et 

al., 2021). The Human Cell Atlas community effort aims to create cell atlases for all organs 

in the human body (Lindeboom et al., 2021; Regev et al., 2017). The BRAIN Initiative 

cell census effort has the goal of creating high-resolution whole-brain cell type atlases for 

mouse, human and non-human primates (Brain Initiative Cell Census Network, 2021; Ecker 

et al., 2017; Ngai, 2022). A variety of transcriptomic cell atlases have been generated in 

mouse from many different regions of the nervous system, such as cortex, hippocampus, 

striatum, thalamus, hypothalamus, cerebellum, spinal cord, retina, etc. (Cembrowski et al., 

2018; Hashikawa et al., 2020; Kozareva et al., 2021; Macosko et al., 2015; Marques et al., 

2016; Phillips et al., 2019; Pool et al., 2020; Poulin et al., 2014; Ren et al., 2019; Romanov 

et al., 2017; Russ et al., 2021; Sathyamurthy et al., 2018; Saunders et al., 2018; Shekhar et 

al., 2016; Stanley et al., 2020; Tasic et al., 2018; Van Hove et al., 2019; Yao et al., 2021a; 

Yao et al., 2021b; Zeisel et al., 2018; Zeisel et al., 2015), and body organs (Han et al., 

2018a; Jaitin et al., 2014; Tabula Muris et al., 2018), and increasingly more in human and 

non-human primates (Bakken et al., 2021; Darmanis et al., 2015; Drokhlyansky et al., 2020; 

Garcia et al., 2022; Han et al., 2022; Hodge et al., 2019; Kamath et al., 2022; Lake et al., 

2016; Masuda et al., 2019; Tabula Sapiens et al., 2022; Winkler et al., 2022; Yang et al., 

2022).

Single-cell epigenomics, such as single-nucleus ATAC-seq (to characterize chromatin 

accessibility) or DNA methylation-sequencing, has also been used to generate cell type 

atlases for different brain regions that are consistent with transcriptomic cell atlases and 

further reveal cell type-specific gene and chromatin regulatory landscapes (Cusanovich et 

al., 2018; Lake et al., 2018; Li et al., 2021; Liu et al., 2021; Luo et al., 2017; Preissl 

et al., 2018; Yao et al., 2021a). Spatially resolved transcriptomics, including a variety of 
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techniques based on in situ imaging, in situ capture or in situ sequencing (Close et al., 

2021; Larsson et al., 2021; Lein et al., 2017; Moses and Pachter, 2022; Rao et al., 2021; 

Zhuang, 2021), is a powerful approach combining molecular and spatial characterization 

at single cell or near-single cell level, revealing spatial relationships between cell types in 

both local environment and global architecture (Chen et al., 2021; Moffitt et al., 2018; Ortiz 

et al., 2020; Rao et al., 2021; Wang et al., 2021; Zhang et al., 2021a). Other attributes in 

the transcriptomes, such as alternatively spliced variants, can provide further information 

and help to refine cell types (Booeshaghi et al., 2021). An area awaiting critical technology 

development is single-cell proteomics (Cho et al., 2022; Slavov, 2021), as the expression 

and subcellular distribution of proteins provides a crucial link between gene expression 

and cellular structure and function, and it may not have lock-step correlation with the 

transcriptome of the same cell type.

A cell’s morphology (i.e., shape) and connectivity (especially for neurons) has been 

regarded as the most defining feature of brain cell types ever since Cajal, though its place 

may be overtaken by transcriptome. A cell’s morphology can be reconstructed from high-

resolution light microscopy (LM) (coupled with colorimetric or fluorescent sparse labeling) 

(Gao et al., 2022; Jenett et al., 2012; Peng et al., 2021; Winnubst et al., 2019; Wolff and 

Rubin, 2018) or electron microscopy (EM) datasets (Hulse et al., 2021; Scheffer et al., 2020; 

Seung and Sumbul, 2014). Connections among individual neurons can be identified using 

approaches such as EM (Gour et al., 2021; Helmstaedter et al., 2013; Hildebrand et al., 

2017; Hulse et al., 2021; Morgan et al., 2016; Scheffer et al., 2020; Schneider-Mizell et 

al., 2021; Turner et al., 2022; Witvliet et al., 2021), single-neuron trans-synaptic tracing 

(Schwarz and Remy, 2019) and barcoded connectomics (Chen et al., 2019; Clark et al., 

2021; Gergues et al., 2020; Han et al., 2018b; Kebschull et al., 2016; Sun et al., 2021). 

Again, for definitive cell type classification, one needs to use a fully representative, rather 

than partial and biased, set of morphological and connectional features. In this regard, 

with the acquisition of whole brain EM connectomic and LM morphological datasets in 

Drosophila, refined cell type classification in the brain of this species has been primarily 

driven by morphology and connectivity (Hulse et al., 2021; Jenett et al., 2012; Scheffer et 

al., 2020; Wolff and Rubin, 2018).

Most critically, these various approaches need to be integrated to achieve a coherent 

understanding of cell types and their function and to resolve issues such as which 

approach(es) (e.g., between transcriptomics and connectomics) can define cell types more 

clearly. The most common type of integration is to relate transcriptomic profiles with other 

modalities. Technically there are three ways to achieve such integration (Fig. 1B).

• First, conduct multimodal characterization from the same cell using approaches 

such as single-cell multi-omics (Zhu et al., 2020), Patch-seq which collects 

electrophysiological, morphological and transcriptomic data from a single 

patched cell (Berg et al., 2021; Cadwell et al., 2016; Fuzik et al., 2016; Gouwens 

et al., 2020; Lee et al., 2021; Munoz-Manchado et al., 2018; Scala et al., 2021), 

retrograde connectivity tracing coupled with single-cell molecular profiling (e.g., 

Retro-seq, Epi-retro-seq, or Retro-MERFISH) (Kim et al., 2020; Tasic et al., 

2018; Zhang et al., 2021a; Zhang et al., 2021b), or in vivo calcium imaging 
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followed by multiplexed FISH (Bugeon et al., 2021; Condylis et al., 2022; 

Lovett-Barron et al., 2020; von Buchholtz et al., 2021; Xu et al., 2020).

• Second, perform label transfer between independently collected datasets through 

“Rosetta stone” features, e.g., integration between single-cell transcriptomic and 

epigenomic datasets through marker genes and nearby chromatin modification 

sites (Armand et al., 2021; Yao et al., 2021a), or assigning molecular identities 

to neurons in EM and LM datasets using morphologies obtained from Patch-

seq data. Integration between transcriptomics and epigenomics is now further 

empowered by various single-cell multi-omic techniques (Armand et al., 2021; 

Zhu et al., 2020).

• Third, create cell type-targeting genetic tools (e.g., transgenic lines or 

recombinant viral vectors) using marker genes, promoters and enhancer elements 

identified from transcriptomic and epigenomic cell atlases (Chan et al., 2017; 

Daigle et al., 2018; Dimidschstein et al., 2016; Graybuck et al., 2021; Hrvatin 

et al., 2019; Matho et al., 2021; Mich et al., 2021; Vormstein-Schneider et 

al., 2020), and use these tools for structural and functional studies. Currently 

available genetic tools are mostly targeting more coarse-level cell classes or 

subclasses, or a mixture of cell types. These tools have nonetheless proven to 

be tremendously powerful as the vast majority of our current knowledge of 

cell types in the brain and body and their functions has been derived from 

studies utilizing these tools. The emergence of comprehensive transcriptomic and 

epigenomic cell atlases now makes it possible to create highly specific tools 

targeting nearly all identified cell types, and even extended to non-genetic-model 

organisms and species (Ngai, 2022). This will have a paradigm-shifting effect to 

the study of function and dysfunction of broad biological systems.

Overall, application of these approaches to characterize cell types in different brain regions 

and tissue organs as well as across species has begun to reveal generalizable organizing 

principles of cell types. Below I will discuss the large body of studies supporting these 

principles, and then conclude with a proposed roadmap based on these principles for taking 

a multilevel, iterative approach to define cell types and build an overarching knowledge base 

of cell types across the brain and body, across lifespan and across species.

Cell types are the product of evolution

The concept of cell types needs to be established based on where cell types originated 

and how they have diversified. Cell type classification has been compared to species 

classification (Stadler et al., 2021; Tanay and Sebe-Pedros, 2021; Zeng and Sanes, 2017). 

Indeed, species specialization is an overall culmination of the function of all the cell types 

within that species, thus they may follow similar evolutionary principles. There have been 

several ways proposed to classify species. One is based on the notion of reproductive 

isolation. However, this approach is not universally implementable, and many exceptions 

have also been found. A more fruitful approach is phylogenetic analysis, that is, comparing 

the relatedness between species using a wide range of structural and functional phenotypic 

features. Such analysis led to the foundational “tree of life” as we understand it today. 
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Nonetheless, many issues remain unresolvable in the phylogenetic classification of species, 

often due to the highly specialized phenotypic features acquired by some species as they 

adapt to their ecological niches, as well as convergent phenotypic evolution in other cases, 

both of which could skew comparative analysis. Over the past decade, evolutionary approach 

based on comparative genomics (i.e., phylogenomics) has brought an entirely new paradigm 

to species classification, providing a systematic, rational, unbiased, universally applicable 

and extensible classification scheme (Murphy et al., 2021; Preuss and Wise, 2022; Stephan 

et al., 2022).

Similarly, cell types are inherited through the genome. Relatedness between cell types 

reflects their evolutionary distance as they were created through cell type duplication and 

segregation events. It has been proposed that the formation of a new cell type identity 

requires the evolution of a unique cell type regulatory signature that includes a cell type-

specific core regulatory complex (CoRC) of transcription factors, which defines the identity 

and coordinated gene expression pattern of the new cell type (Arendt et al., 2016). This set 

of master regulatory transcription factors, sometimes called terminal selectors, have been 

identified in a number of neuron types in worms, flies and mice (Hobert and Kratsios, 

2019; Reilly et al., 2020). The master transcription factors should be identifiable when the 

transcriptomes of evolutionarily related cell types are compared. A large body of studies 

(see above) have now shown that clustering of single-cell transcriptomes can systematically 

categorize cells into putative types, many of which are consistent with existing knowledge 

and thus can be considered as bona fide cell types. Evolutionarily conserved cell types can 

be systematically identified by cross-species comparison of single-cell transcriptomic types 

in the brain (Bakken et al., 2021; Colquitt et al., 2021; Hodge et al., 2019; Kebschull et 

al., 2020; Krienen et al., 2020; Tosches et al., 2018; Yamagata et al., 2021). Thus, this 

approach appears to “make sense”; it is not coincidental, but strongly supports the notion 

that transcriptomes harbor the molecular genetic code for cell type identity.

However, there are several challenges that must be surmounted to arrive at a complete and 

accurate evolutionary definition of cell types through cross-species comparisons. Accurate 

cross-species comparison of cell types at transcriptomic level requires well-annotated 

genomes, comparative gene ontologies and consistently high-quality transcriptomic data 

generation from many species (Tanay and Sebe-Pedros, 2021). Furthermore, species mostly 

diverged millions of years ago, as did cellular identities. Cell type homologies between 

related species are often discernible only at a relatively coarse level which do not fully 

capture the biological complexity. Many gaps also exist due to the extinction of intermediate 

species. These challenges could limit a deeper understanding of cell types (see below) and 

how they contribute to the body or brain function. On the other hand, one does not need to 

characterize cells from a large number of evolutionarily related species in order to define cell 

types. It is possible to gain a deep understanding of cell types from even a single species, 

since each species has evolved from its simpler ancestors through many rounds of cellular 

and regional duplications in which the newly created cell types and regions adopt new 

functions, and thus comparing between cell types and between regions within the species 

(in the same way as comparing between species) can reveal the evolutionary relationships 

between cell types as well. Then, we can expand the investigation into as many other species 
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as possible, which will further clarify the description of cell types, their origins and how 

their functions manifest.

Therefore, the first and foremost principle is that cell types are the product of evolution 

and cell type identities are encoded in the genome. Like phylogenomics for species 

classification, transcriptomic (and epigenomic) classification is a good proxy of cell type 

classification as the gene regulatory mechanisms that encode and maintain cell type 

identities are embedded in the transcriptomes and epigenomes. This core concept has led 

to a systematic delineation of the relationship between cell types both within a species and, 

increasingly, across species. At the same time, cell type conservation may be imposed more 

by function than natural selection directly as in organismal evolution. As such, evolution of 

individual cell types may be more complicated than organismal evolution as a whole, and 

it will be interesting to see if different cell types evolve in similar or different ways as the 

whole organism. Finally, a transcriptome also contains gene expression profiles that underlie 

arguably all phenotypic features of the cell at the time or state when the cell is characterized. 

What else are transcriptomes and transcriptomic clusters telling us?

Hierarchical organization of transcriptomically-defined cell types

Transcriptomically derived cell type taxonomies in the adult mammalian brain, with 

majority of the studies conducted in mouse, have consistently revealed a hierarchical 

organization of cell types (Fig. 2) (Brain Initiative Cell Census Network, 2021; Macosko 

et al., 2015; Romanov et al., 2017; Russ et al., 2021; Saunders et al., 2018; Shekhar et al., 

2016; Tasic et al., 2016; Tasic et al., 2018; Yao et al., 2021b; Zeisel et al., 2018; Zeisel et 

al., 2015; Zeng and Sanes, 2017). The first (highest) level of branches is the separation of 

neuronal and various non-neuronal cell classes (Fig. 2A). For neurons, the second level of 

branches is driven by major brain structures/regions, and the third level comprises various 

cell subclasses and types within each major brain structure, although there may be cell types 

crossing or shared between brain structures due to cell migration during development.

The basic architecture of the mammalian brain (Swanson, 2000, 2012) is composed of 

telencephalon, diencephalon, mesencephalon (midbrain) and rhombencephalon (hindbrain). 

Telencephalon (consisting of five major brain structures – isocortex, hippocampal formation, 

olfactory area, cortical subplate and cerebral nuclei) and diencephalon (including thalamus 

and hypothalamus) are collectively called forebrain. Midbrain is divided into tectum and 

tegmentum. And hindbrain is divided into pons, medulla and cerebellum. Within each of 

these major brain structures there are multiple regions and subregions, each with many cell 

types. A cell type can be specific to a subregion, a region or a major brain structure.

Here I use isocortex (or simply called cortex) as an example to illustrate the organization 

of cell types within a major brain structure. Isocortex is composed of multiple cortical 

areas, each mediating sensory, motor or associational function. Transcriptomic cell type 

taxonomies from visual cortex and motor cortex display a similar organization (Fig. 2B) 

(Brain Initiative Cell Census Network, 2021; Tasic et al., 2018; Yao et al., 2021a). In each 

of these areas, there are two neuronal classes based on the dominant neurotransmitters 

they release, glutamatergic and GABAergic, as well as several non-neuronal classes. The 
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glutamatergic excitatory neurons mostly have long-range axon projections to other cortical 

and/or subcortical regions. They are divided into nine subclasses based on their layer 

specificity and long-range projection patterns: L2/3 IT, L4/5 IT, L5 IT, L6 IT, Car3 IT, 

L5 ET, L5/6 NP, L6 CT, and L6b (IT: intratelencephalic projecting; ET: extratelencephalic 

projecting; NP: near-projecting; CT: corticothalamic projecting). The GABAergic inhibitory 

neurons mostly have their axon projections confined within the local area. They are divided 

into six subclasses named after canonical marker genes: Lamp5, Sncg, Vip, Sst, Sst-Chodl 

and Pvalb. Within each of the glutamatergic or GABAergic subclasses, as well as each 

non-neuronal class, there are several transcriptomic clusters or types, resulting in a total of 

~110 transcriptomic cell types in each cortical area (Brain Initiative Cell Census Network, 

2021; Tasic et al., 2018). This organization is highly consistent with the existing knowledge 

about cortical cell types which have been extensively studied in a variety of phenotypic 

modalities over the past 50 years (Harris and Shepherd, 2015; Tremblay et al., 2016; Yuste 

et al., 2020; Zeng and Sanes, 2017), suggesting that single-cell transcriptomics alone can 

faithfully capture the overall cell type organization at class and subclass levels, although the 

validity of transcriptomic clusters at the lowest branch level has yet to be fully tested.

Comparison of transcriptomic cell types across different cortical areas reveals new insights. 

Glutamatergic neuron types are distinct between visual and motor cortical areas whereas 

GABAergic neuron types are shared between the two areas (Tasic et al., 2018). This 

dichotomy may be rooted in the developmental origins of these two cell classes. During 

development, glutamatergic neurons are generated within the cortex in which different areas 

are laid out by gradient expression of morphogens (Cadwell et al., 2019; O’Leary et al., 

2007), whereas GABAergic neurons are generated in the subcortical ganglionic eminence 

and migrate into cortex (Hu et al., 2017; Lim et al., 2018). A larger transcriptomic study 

covering all areas from both isocortex and hippocampal formation (HPF) further identifies 

hundreds of transcriptomic types and a high degree of diversity in the glutamatergic neuron 

class across both brain structures (Fig. 2C) (Yao et al., 2021b). Within isocortex, cell 

types that are specific to a cortical area or shared among areas are both identified, and 

the shared cell types often exhibit gradient distribution or gradient gene expression across 

areas. This highly complex transcriptomic cell type landscape along the cortical sheet likely 

results from the series of cortical developmental events from “Protomap” to “Protocortex” 

(Cadwell et al., 2019; O’Leary et al., 2007). Compared between the two brain structures, the 

glutamatergic cell types in isocortex and HPF are highly distinct from each other, yet they 

also display one-to-one homology at subclass level suggesting a similar evolutionary origin 

(Yao et al., 2021b). This homologous relationship suggests that parallel neural networks can 

be formed by homologous sets of cell types.

Overall, based on these findings, we may hypothesize that the adult-stage transcriptomic 

landscape can reveal the organization of cell types within and between brain regions that 

reflect their evolutionary and developmental histories. The hierarchical organization of 

transcriptomic cell types likely represents evolutionary origins of and distinctions between 

cell types; major branches represent earlier division of cell classes, and minor branches 

represent more recent segregation events. This hierarchical organization is laid out via an 

elaborate developmental program involving a series of highly coordinated processes and 
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events. This hypothesis can be tested by studying the evolution and development of cell 

types (see below).

Another prominent feature of the relationship between cell types revealed by transcriptomic 

studies is the coexistence of discrete and continuous variations between types. Continuous 

variations have been observed in a variety of forms in cortical excitatory and inhibitory 

neurons, medium spiny neurons in the striatum and excitatory projection neurons across 

different nuclei of the thalamus (Phillips et al., 2019; Stanley et al., 2020; Tasic et al., 2018; 

Yao et al., 2021b). Discrete variations exist among cell subclasses and major types that are 

usually at the higher branches of the hierarchy. Continuous variations are usually found 

among closely related transcriptomic clusters or subtypes at lower branches, such as the 

many IT neuron types across the cortical depth from L2/3 to L6 (Fig. 2C). Cells at opposite 

ends of the continuum have clearly distinct transcriptomic profiles, but the transition from 

one end to the other is gradual among the cells composing the continuum. This makes it 

difficult to subdivide the cells into types using statistical criteria and name an exact number 

of cell types. But the continuous variation itself is nonetheless biologically meaningful and 

needs to be properly represented in cell type descriptions. One way to better understand the 

significance of the continuous variation is to examine how it correlates with other modalities 

of cell type properties (see below).

Regarding non-neuronal cells in the mammalian brain, there are multiple classes which can 

be divided into neural and non-neural groups (Fig. 2A–B) (Brain Initiative Cell Census 

Network, 2021; Zeisel et al., 2018). The non-neural group contains cell classes of the 

immune origin, i.e., microglia and border-associated macrophages (BAMs) (Butovsky and 

Weiner, 2018; Masuda et al., 2019; Munro et al., 2022; Prinz et al., 2019; Thion and Garel, 

2020; Van Hove et al., 2019), and of the vascular origin, i.e., endothelial cells, smooth 

muscle cells (SMCs), pericytes, and vascular leptomeningeal cells (VLMCs) (Schaeffer 

and Iadecola, 2021; Sweeney et al., 2019; Vanlandewijck et al., 2018). The neural group 

contains cell classes of the neuroectoderm origin (same as the origin of neurons), including 

oligodendrocytes, oligodendrocyte progenitor cells (OPCs), astrocytes and ependymal cells 

(Ben Haim and Rowitch, 2017; Dimou and Simons, 2017; Escartin et al., 2021; Khakh and 

Deneen, 2019; Kuhn et al., 2019; Ortiz-Alvarez et al., 2019; Redmond et al., 2019). In brain 

transcriptomic cell type taxonomies, non-neuronal cells generally display less diversity than 

neurons, with little regional specificity except for astrocytes. There are two major subclasses 

of astrocytes, one specific to the telencephalon and the other to non-telencephalon regions, 

in addition to several other highly specialized astrocyte-like cell types such as Müller 

glia of the retina and Bergmann glia of the cerebellum (Zeisel et al., 2018). Immature 

and mature oligodendrocytes form a long continuous trajectory originating from OPCs, 

indicating coexistence of multiple states of gradually maturing oligodendrocytes (Marques et 

al., 2016; Zeisel et al., 2018).

Like comparative genomics for species classification, single-cell transcriptomics is highly 

effective for cross-species comparison of cell types to reveal their evolutionary relationships. 

Comparative studies of cortical cell types among mouse, human and non-human primates 

(Bakken et al., 2021; Brain Initiative Cell Census Network, 2021; Hodge et al., 2019; 

Krienen et al., 2020) show that the hierarchical organization described above along with all 
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the neuronal and non-neuronal cell classes and subclasses (major branches of the hierarchy) 

is well conserved across these mammalian species. Main differences across species lie in 

the heterogeneity of individual gene expression within each subclass and type, as well 

as the ambiguity of cross-species correspondence of the leaf-node transcriptomic types 

which likely will require multimodal characterization to clarify. Similarly, comparative 

transcriptomic studies reveal homologous cortical glutamatergic and GABAergic cell classes 

between mammal and reptile (Tosches et al., 2018), as well as homologies and variations 

of neuron subclasses and types in the cerebellar nuclei or the retina of mouse, chicken and 

primates (Kebschull et al., 2020; Yamagata et al., 2021). These studies further suggest that 

the hierarchical organization of brain cell types is a framework extensible to describing cell 

type evolution.

Correspondence between transcriptomic cell types and other cellular 

properties

Cell types are also considered to be the basic functional units of an organism. For 

the categorization of cell types based on their transcriptomes to be meaningful and to 

understand their relevance to the structure and function of the tissue organ where the cells 

reside, it is necessary to characterize other modalities of cellular properties. Multimodal 

correspondence of cell types in the mouse retina is a classic example where independent 

anatomical, functional and transcriptomic studies uncover similar numbers of neuron types 

(~130) and find that molecular profiles and anatomical distribution patterns (laminar 

specificity and mosaicism) are well correlated with visual response properties (Baden et 

al., 2020; Masland, 2012; Sanes and Masland, 2015; Seung and Sumbul, 2014; Shekhar 

and Sanes, 2021). Recent work from the BRAIN Initiative Cell Census Network (BICCN) 

in creating a multimodal cell census and atlas of the mammalian primary motor cortex 

represents the most comprehensive multimodal study to date, integrating transcriptomics 

with epigenomics, spatially resolved transcriptomics, morpho-electrical properties, and 

connectivity (Brain Initiative Cell Census Network, 2021).

Integration of transcriptomic and epigenomic datasets using computational approaches 

allows consolidation of robust molecular cell types and identification of hundreds of 

thousands of cis-regulatory elements (CREs) associated with specific cell types (Yao et 

al., 2021a). Some of these CREs are associated with specific marker genes whereas others 

may represent past events.

Integration of transcriptomics and MERFISH, a spatially resolved transcriptomic method, 

reveals the spatial organization of mouse motor cortex cell types (Zhang et al., 2021a). A 

major finding of the study is that, in addition to the laminar distribution of glutamatergic 

neuron subclasses as expected, even the GABAergic types within each subclass exhibit 

layer-selective localization, and the continuous variations among individual glutamatergic 

types or GABAergic types correlate well with their continuous distribution along cortical 

layers/depth (with a prominent example being that all the excitatory L2/3-L6 IT types line 

up along the cortical depth from L2/3 to L6) (Fig. 3A). Thus, a strong correspondence is 

demonstrated here between the continuous variations among cortical neuron types in the 
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transcriptomic space and their continuous and directed spatial distribution patterns. Other 

MERFISH studies of neuron types in hypothalamus or nucleus accumbens also reveal strong 

correlation between transcriptomic specificity and anatomical/subregional specificity (Chen 

et al., 2021; Moffitt et al., 2018).

Integration of transcriptomic, electrophysiological and morphological properties by Patch-

seq reveals multimodal corresponding distinctions of mouse motor cortex cell types at 

subclass level (Scala et al., 2021). Within each subclass the morpho-electrical properties 

vary continuously along with the transcriptomic types. There is also additional heterogeneity 

of morpho-electrical properties within some transcriptomic types, indicating a more complex 

picture. Another Patch-seq study of mouse visual cortical GABAergic neurons also reveals 

a relatively high degree of corresponding continuous variations of transcriptomic types 

with their anatomical distribution along the cortical depth and the variations of their 

morpho-electrical properties (Fig. 3B) (Gouwens et al., 2020). To overcome heterogeneity 

at individual type level, a set of triple-modality MET types are defined at an intermediate 

level of granularity (between transcriptomic subclasses and types). These visual cortex 

GABAergic MET types show robust cross-modality concordance and mutual predictability.

The vast majority of cortical and subcortical neuron types have long-range axon projections 

to form circuit networks throughout the brain. To examine the long-range axon projection 

specificity of transcriptomic cell types, Retro-seq and related methods (e.g., Epi-retro-seq, 

Retro-MERFISH) have been used (Kim et al., 2020; Tasic et al., 2018; Zhang et al., 2021a; 

Zhang et al., 2021b). Since a neuron type usually has multiple projection targets and a 

neuron within that type can choose a subset of those targets either specifically or randomly, 

a single-target-site Retro-seq assay is often insufficient to resolve the target specificity of 

a transcriptomic type except in special cases. Brain-wide complete reconstruction of single 

neuron morphology is currently the only approach to capture the full extent of a neuron’s 

axon projection pattern and define projection neuron types (Gao et al., 2022; Peng et al., 

2021; Winnubst et al., 2019). A study using this approach in cortical excitatory neuron 

subclass-specific Cre driver lines (Peng et al., 2021) reveals distinct projection patterns 

between subclasses, e.g., not only between IT and ET but also between L2/3 IT and L5 IT 

neurons, confirming subclass level projection specificity (Fig. 3C). Within each subclass, 

the study also finds extensive heterogeneity among individual neurons; this heterogeneity 

reflects three axes of variations: regional specificity, topographic specificity and individual 

(potentially stochastic) variation, which do not readily correlate with transcriptomic types 

within the subclass. Thus, it remains an open question how axon projection patterns 

correlate with transcriptomic types, which needs to be addressed in future studies using 

approaches such as coupling complete morphology reconstruction with multiplexed FISH, 

or performing MAPseq/BARseq with sequencing of both starter cells and axon targets. 

It may also be necessary to extend such studies into developmental periods, to identify 

potentially clearer molecular correlates when the projection specificity is established 

(Klingler et al., 2021).

Systematic investigation of connectivity among transcriptomic types at synaptic level and 

relating them to conventional studies where morphology and individual molecular markers 

were used to identify cell types is much needed to better understand the connectional 
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specificity between transcriptomic types. It has been suggested that neuron types may be 

defined by their unique communication properties implemented as synaptic input-output 

patterns (Huang and Paul, 2019; Paul et al., 2017). The emerging large-scale EM datasets 

(e.g., from the MICrONS project, https://www.iarpa.gov/research-programs/microns) hold 

great promise to tackle synaptic-level connectivity between cell types and individual cells 

in the mammalian brain (Abbott et al., 2020). Perhaps a greater opportunity lies in the 

Drosophila field where comprehensive catalogs of both transcriptomic cell types and 

connectional cell types have been obtained independently (Hulse et al., 2021; Li et al., 

2022; Scheffer et al., 2020) and a systematic comparison and cross-correlation between them 

may be realized soon.

To compare functional properties among transcriptomic cell types, two general approaches 

have been taken – coupling in vivo calcium imaging with post hoc multiplexed FISH 

to decode the molecular identities of the imaged cells (Bugeon et al., 2021; Condylis et 

al., 2022; Lovett-Barron et al., 2020; von Buchholtz et al., 2021; Xu et al., 2020), or 

mapping immediate early gene (IEG) activation during sensory response or behavior using 

scRNA-seq or MERFISH (Hrvatin et al., 2018; Kim et al., 2019; Moffitt et al., 2018; 

Sathyamurthy et al., 2018; Wu et al., 2017). Using the former approach, it has been shown 

that GABAergic transcriptomic types in mouse visual cortex differ in their response to 

behavioral states (e.g., running versus resting), whereas visual response properties (e.g., 

orientation or direction selectivity) only differ at subclass level (Bugeon et al., 2021); in 

somatosensory cortex, higher sensory response is seen in a specific L2/3 IT excitatory 

transcriptomic type (Condylis et al., 2022). In hypothalamus, several studies using either of 

the two approaches in mice demonstrate that activated neurons during a specific behavioral 

state are often distributed across a range of transcriptomic cell types (Kim et al., 2019; 

Moffitt et al., 2018; Xu et al., 2020). Understanding the functional roles of different 

transcriptomic cell types is a huge undertaking. Obviously, studies mentioned here are just 

the beginning; many more will come in the future and will allow us to gain a much deeper 

understanding.

In summary, for a definition of cell types to be meaningful, it must be associated with 

what cell types do. A transcriptomic cell type taxonomy must be linked to anatomical and 

functional information to evaluate the validity of the transcriptomic taxonomy and determine 

the appropriate level of granularity (since in theory transcriptomic clusters can be infinitely 

subdivided and the more cells profiled the more clusters can be obtained). So far it has been 

shown that transcriptomic types have excellent correspondence with their spatial distribution 

patterns. Since the spatial distribution pattern is defined during development, this suggests 

that transcriptomes may retain the developmental plan. At the same time, whether specific 

transcriptomic types (beyond the subclass level) have specific connectional or functional 

attributes or not is still unclear in many cases. Since transcriptomes are rich in containing 

the molecular correlates of all sorts of cellular properties, specific molecular signatures 

responsible for certain essential anatomical or functional features may be hidden below 

noise and will need to be brought out through supervised approaches and used to refine 

the classification of cell types towards more functional relevance. It is also necessary to 

trace back into development to identify potentially clearer molecular correlates as different 

connectional or functional properties may be established at different developmental time 
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points. On the other hand, it is also reasonable to propose that some connectional or 

functional properties should not be used to define cell types, because they may be emerging 

properties arising from the interaction of a network of cell types, or from experience and/or 

activity dependent processes that represent a cell “state” rather than a defining feature for a 

cell “type”.

Cell types versus cell states

A key question arising when evaluating a transcriptomic taxonomy is whether some clusters 

actually represent a particular cell state – i.e., a transient or dynamically responsive property 

of a cell to a context – rather than a cell type, as a cell type can exist in different 

states. This is a difficult question since most of the phenotypic measurements including 

the single-cell transcriptome are only a one-time snapshot of the cell. However, one 

can compare transcriptomes collected from different time points or different behavioral, 

physiological or pathological states and see which clusters appear, disappear or shift under 

different conditions. Cell type-specific gene expression changes associated with different 

cell states may be seen during circadian cycles, variable metabolic states, development, 

aging, or under behavioral, pharmacological or diseased conditions (Fig. 4) (Mayr et al., 

2019; Morris, 2019). Furthermore, individual variations within a species (e.g., within the 

human population) that are driven by genetic or environmental factors may be manifested 

as a variety of cell type or cell state variations. Studying the various states of cell types 

will enhance our ability to distinguish core gene sets (e.g., master transcription factors) 

maintaining cell type identities versus genes associated with specific functional states, and 

further our understanding of the diverse function of cell types as well as the biological basis 

of individual variability.

The distinction between cell types and cell states is particularly challenging during 

development, as cells continually change their states and, at certain key time points, 

they may switch their cell type identities. Can single cell phenotypic properties such as 

transcriptomes distinguish types versus states? Although not absolute, it is reasonable to 

assume that transcriptomic changes tend to be more continuous during cell state transitions, 

and more abrupt or discrete when cells switch their types. More often, emergence of a new 

cell type during development is the consequence of cell division from which a daughter cell 

takes up a new cell type identity (Fig. 4). Trajectory analysis or lineage tracing coupled 

with single-cell transcriptomics across developmental time points has now often been used 

to identify the time course of emergence and maturation of each cell type, as well as the 

ancestor-descendant relationship across cell types that are present at different developmental 

stages (e.g., progenitors versus differentiated cells) (McKenna and Gagnon, 2019; Saelens et 

al., 2019; Tritschler et al., 2019; Wagner and Klein, 2020).

Coordinated neuronal activities in brain circuits generate sensory perception and behavior. 

Specific neuronal populations activated during a particular perceptual or behavioral episode 

can be identified by screening for the activation of IEGs in them, via immunostaining, 

transgenic reporter lines, or single-cell or spatial transcriptomics in more recent years 

(DeNardo and Luo, 2017; Hrvatin et al., 2018; Moffitt et al., 2018; Wu et al., 2017). 

IEG activation leads to expression of downstream effectors, such as ion channels or 
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synaptic proteins, that shape the cell states and remodel neuronal connections. Cell state 

changes in the brain are closely related to neural plasticity. Similarly, various diseased 

conditions can induce pathological changes in cell states in different brain regions or tissue 

organs. Numerous studies have revealed selective vulnerability of specific cell types for 

specific diseases. Pharmacological or genetic (e.g., CRISPR-based) perturbations in normal 

or diseased conditions, in combination with single-cell profiling (e.g., Perturb-seq), are 

powerful approaches to gain a mechanistic understanding of how disruptive or restorative 

cell state changes can affect cell type function or dysfunction (Adamson et al., 2016; Dixit et 

al., 2016; Jaitin et al., 2016; Replogle et al., 2022).

Here I highlight a prominent feature of the non-neuronal cell types in the brain, which is 

that despite having lower diversity than neurons in baseline adult state, many non-neuronal 

cell types undergo pronounced changes, i.e., they exhibit many different cell states, under 

different physiological or diseased conditions. Astrocytes exhibit diverse morphological 

and physiological properties in different brain regions and contribute to essential functions 

in blood-brain barrier, synaptogenesis, neurotransmitter buffering, ion homeostasis, and 

secretion of neuroactive agents (Ben Haim and Rowitch, 2017; Khakh and Deneen, 2019). 

Astrocytes become reactive under pathological conditions. Reactive astrocytes undergo 

morphological, molecular, and functional changes in response to injury or CNS diseases; 

they may adopt multiple, heterogeneous states depending on context (Escartin et al., 2021). 

Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are 

generated from OPCs throughout life. Myelination process also exhibits activity-dependent 

plasticity (Monje, 2018). Oligodendrocyte pathology is evident in a range of disorders 

including multiple sclerosis, schizophrenia and Alzheimer’s disease (Kuhn et al., 2019). 

Regarding cerebrovascular cell types, recent single-cell transcriptomic studies in the human 

brain reveal gene expression changes in them that can impact blood-brain barrier integrity 

in Huntington’s and Alzheimer’s diseases (Garcia et al., 2022; Yang et al., 2022). Finally, 

microglia are the primary innate immune cells in the CNS and have a distinct developmental 

origin from peripheral immune cells. They are generated from mesodermal progenitors 

that arise from the yolk sac and are among the earliest residential cell types in the brain. 

Microglia display diverse and dynamic phenotypic states and play a plethora of roles in 

development, adulthood (homeostasis), aging and diseases (Butovsky and Weiner, 2018; 

Prinz et al., 2019; Thion and Garel, 2020). Single-cell transcriptomic studies reveal a 

relatively homogeneous adult microglia population, and greater heterogeneity of microglia 

states at different developmental stages, during aging and in pathological conditions 

(Hammond et al., 2019; Li et al., 2019; Masuda et al., 2019). In particular, microglia 

can be both responders to and inducers of various neurodegenerative, neuroinflammatory 

and neurodevelopmental diseases. Taken together, these studies paint a collective picture on 

how the variety of non-neuronal cell types actively respond to and contribute to different 

physiological and pathological changes in the brain.

Cell type development

A deep understanding of a subject often comes from understanding how it is built. The 

entire repertoire of cell types in the brain and the body is built through a sequential and 

parallel series of spatially and temporally coordinated developmental events starting from 
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a single fertilized egg, the zygote. This developmental program carries out a remarkable 

implementation plan that unravels the identities of all cell types which are encoded in 

the genome through evolution. Transcriptional and epigenetic regulatory programs are 

unfolded from the genome sequences and drive a cascading series of cell proliferation 

and differentiation processes leading to the manifestation of diverse cellular phenotypes. 

In the developmental ontogeny of cell types, earlier-stage ancestral cell types are fewer 

and are more multipotent, they give rise to a larger number of descendant cell types with 

increasingly restricted fates. The developmental program rolls out not only a temporal but 

also an elaborate spatial plan, specifying the location of each tissue organ and the spatial 

organization of all the cell types within each. This is a highly dynamic spatiotemporal 

process involving specific cell-cell interactions, cell migration streams, and formation of 

niches and microenvironments that allow functional specialization.

For the brain, the main series of events of brain development leading to the mature 

adult-stage cell types and circuits include: patterning and regionalization (laying out the 

master plan of brain architecture), neurogenesis and neuronal migration, gliogenesis and glia 

cell differentiation, neuronal differentiation and circuit formation (axonogenesis, dendritic 

arborization, synaptogenesis, myelination), and circuit refinement and plasticity (Fig. 4). 

Systematic single-cell transcriptomic, epigenomic and spatially resolved transcriptomic 

profiling with high temporal resolution, coupled with lineage tracing and other phenotypic 

characterization, holds tremendous potential to capture key sets of genes and genomic 

regulatory networks involved in these series of events and begin to resolve the extremely 

complex spatial and temporal transition of cell types and states leading to the adult-stage 

repertoire of cell types (Allaway et al., 2021; Bandler et al., 2022; Bhaduri et al., 2021; Cao 

et al., 2019b; Chen et al., 2022; Delgado et al., 2022; Di Bella et al., 2021; Klingler et al., 

2021; La Manno et al., 2021; Romanov et al., 2020; Schmitz et al., 2022; Sharma et al., 

2020; Shekhar et al., 2022; Tiklova et al., 2019; Zhu et al., 2018). Studying brain cell type 

development using these approaches will allow us to establish the developmental trajectory 

for each cell type from progenitors to transitional cell types and states to adult mature cells, 

discover the set of master transcription factors that define and maintain the identity of each 

cell type, and identify key events and molecular correlates that lead to the acquisition of a 

cell type’s specific connectional or functional properties.

The generation and patterning of mouse cortex and spinal cord cell types are two example 

systems where extensive historical studies have uncovered several common principles 

(Cadwell et al., 2019; Catela et al., 2015; Jessell, 2000; O’Leary et al., 2007; Osseward 

and Pfaff, 2019; Sagner and Briscoe, 2019). First, opposing morphogen gradients establish 

the basic plan for cortex (anterior-posterior) or spinal cord (dorsal-ventral) patterning and 

provide instructive signals for the expression of complementary sets of transcription factor 

activators and repressors, which in turn define distinct neural progenitor domains within 

cortex or spinal cord. Second, driven by the transcription factor network, each type of 

neural progenitors generates a series of neuronal cell types. The set of cell type-defining 

transcription factors in a progenitor or a daughter cell can change with time, such that 

different neuronal types emanate from the same progenitor in a precisely timed “birth 

order”. Later in development, the same neural progenitors also generate non-neuronal 

cell types such as astrocytes and oligodendrocytes. Third, specific sets of cell adhesion 
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molecules provide guidance cues for axon path finding and synapse formation, leading to 

the assembly of region- and cell type-specific local and global circuit networks. Fourth, 

patterned neural activities spontaneously emerged from the circuits and/or influenced 

by external inputs further sculpt synaptic connections and circuit organization to refine 

functional specificity of the circuit networks.

In addition to these general principles, it is worth noting the many kinds of complexity 

already encountered. The development of a cell type may not follow a simple trajectory 

but involves multiple steps of divergent or convergent differentiation (Shekhar et al., 2022), 

the former due to the multipotency of progenitors or transitional cell types and the latter 

due to convergence of different transitional types. Developmental trajectory also is not the 

same as developmental lineage, as a lineage is defined as all the cells descended from a 

single precursor/progenitor and it has been shown in multiple systems that a progenitor 

can produce cells belonging to several neuronal and non-neuronal types, ordered by 

developmental timing (Agathocleous and Harris, 2009; Sagner and Briscoe, 2019; Sulston 

et al., 1983; Zeng and Sanes, 2017). Finally, there are transient cell types and circuits that 

mainly exist during development and have developmental stage-specific functions (Cossart 

and Garel, 2022; Molnar et al., 2020). All these observations, and more to be discovered, 

contribute to a nuanced understanding that cell type development is not a simple linear 

process, but a highly multifaceted process leading to the complex cell type landscape 

described in the above sections, which underlies the richness of cell type function.

A comprehensive atlas of mammalian cell type development, likely first generated in 

mouse and then extended to other species including human (Haniffa et al., 2021), will 

provide the foundation for matching developmental events and their timelines across species, 

better understanding the evolutionary relationships between cell types, evaluating and 

guiding human iPSC and organoid in vitro development, and ultimately, transforming our 

investigation and treatment of developmental disorders.

How to define cell types?

In conclusion, cell types are the product of evolution, and they are the basic functional units 

of an organism. To unify these two concepts and define cell types properly, we need to take 

a multilevel approach, progressing from simple and singular to complex and multifaceted. In 

such a roadmap, with each iteration, the definition of cell types will become more mature 

and unified, and the repertoire of cell types defined will better align with the functional 

architecture of the organism.

The logical first step is to use single-cell transcriptomics-based cell type taxonomy as the 

initial framework and anchor for defining cell types. The transcriptomic taxonomy contains 

evolutionarily rooted molecular signatures and allows effective label transfer and linking 

with all other modalities. Conversely, relating other cellular properties will help to refine 

transcriptomic types. The transcriptomic taxonomy organizes cell types in a hierarchical 

manner, laying out different levels of descriptions from major divisions at class and subclass 

levels to more granular and fuzzier divisions at type and subtype levels (due to the more 

prevailing continuous variations at the latter levels). To account for the biological reality, a 
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hierarchical presentation of cell types is more meaningful than ascertaining an exact number 

of types. The transcriptomic taxonomy should be supported by comprehensive epigenomic 

and spatially resolved transcriptomic characterizations (Fig. 1A), to associate chromatin 

modification and gene regulatory elements to transcriptomic profiles and assign precise 

spatial distribution patterns to transcriptomic cell types.

Second, we need to conduct comprehensive anatomical, physiological and functional studies 

of transcriptomic types using approaches that allow molecular identification of the cells 

under study (Fig. 1A–B). Such studies will help to resolve differing opinions in lumping or 

splitting cell types and provide rationales for determining the appropriate level of granularity 

in defining cell types. They will also provide a context for understanding cell type function 

and associated cell state changes. In particular, generating complete neuronal morphology 

reconstructions and comprehensive brain-wide connectomics datasets and relating them to 

transcriptomic types (Fig. 1A) will be extremely informative in understanding the ultimate 

synaptic-level brain architecture and its underlying organizing principles, which will lay the 

foundation for understanding circuit-based brain function.

Third, we need to systematically study the entire developmental process of cell types, 

at least in mouse. Extending the above-mentioned approaches into development will 

reveal causal relationships and molecular mechanisms underlying the unique identities, 

connectivity or other forms of cell-cell interactions, and functions of the vast array of cell 

types. We should also extend such cell type studies into other species as much as possible, 

to further uncover evolutionary principles of cell type diversity and how it supports the 

common or species-specific biological functions including those of the human itself. The 

studies of cell types and evolution-development (Evo-Devo) are truly interdependent; to 

achieve meaningful progress one cannot just do one without the other.

Finally, to put all these together, we need a conceptual framework and knowledge base to 

organize all the knowledge gained from these studies. A tantalizing idea of a “periodic table 

of cell types” has been proposed (Xia and Yanai, 2019). Considering the Evo-Devo root 

and the consequential hierarchical organization of cell types, here I suggest that a “tree of 

cell types” might be more appropriate for an overarching classification of cell types and 

delineation of their origins and relationships (Stadler et al., 2021; Tanay and Sebe-Pedros, 

2021). One can define a tree of cell types for each species, covering its entire life span, 

and compare such trees across species. Obviously, the “tree” will be a very complex, 

multi-dimensional graph, and there will likely be multiple branches connecting each node 

to account for convergence, divergence and other multipronged interrelatedness. To make 

the tree of cell types widely applicable, it will be critical to adopt explicitly definable 

and standardized criteria, develop a common cell type ontology and nomenclature, and 

create computational tools to allow mapping and comparison across datasets as well as 

genetic tools to enable consistent access of cell types (Osumi-Sutherland, 2017; Yuste et al., 

2020). To extract knowledge and insights from the vast amount of data, a list of associated 

rules, logics and principles will need to be established and articulated, and this will be 

greatly facilitated by computational modeling. Ultimately, this knowledge base of cell types, 

interweaving cell type function, development and evolution, will provide the blueprint of life 

to enable a deeper understanding of the dynamic changes of cellular function under a wide 
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range of healthy and diseased conditions, and lead to innovations that improve human health 

in many ways.
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Figure 1. Approaches to characterize cell types.
(A) Molecular and anatomical approaches as primary ways of single-cell characterization 

include single-cell transcriptomics by sc/snRNA-seq, single-cell epigenomics exampled by 

snATAC-seq, spatially resolved transcriptomics exampled by MERFISH, full morphology 

reconstruction exampled by MouseLight (image adopted from Winnubst et al., 2019), 

EM connectomics (image adopted from Hulse et al., 2021), and barcoded connectomics 

exampled by BARseq (image adopted from Chen et al., 2019). (B) Cross-modality 

integrated approaches include Patch-seq (image adopted from Lee et al., 2021), retrograde 

tracing followed by molecular profiling, functional imaging followed by spatially resolved 

transcriptomics, using Patch-seq data as a Rosetta stone to assign molecular identities to 

neurons reconstructed from EM dataset (image adopted from Turner et al., 2022), and 

generation of enhancer based viral vectors (image adopted from Mich et al., 2021).
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Figure 2. Hierarchical organization of cell types.
(A) A transcriptomic cell atlas for the mouse nervous system (image adopted from Zeisel 

et al., 2018). (B) A transcriptomic cell type taxonomy for the mouse primary motor cortex, 

with annotation (image adopted from Brain Initiative Cell Census Network, 2021). (C) 

UMAP representation of a transcriptomic cell type taxonomy for the glutamatergic neuron 

types in mouse isocortex and hippocampal formation, revealing discrete and continuous 

variations (image adopted from Yao et al., 2021b).
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Figure 3. Multimodal correspondence of cell type phenotypic properties.
(A) MERFISH data from mouse motor cortex shows that continuous variation of 

glutamatergic IT transcriptomic types is correlated with their continuous spatial distribution 

along the cortical depth from L2/3 to L6 (image adopted from Zhang et al., 2021a). (B) 

Patch-seq data on GABAergic interneurons from mouse visual cortex shows correspondence 

between transcriptomic (T) types and morpho-electrical (ME) types (image adopted from 

Gouwens et al., 2020). (C) Brain-wide complete morphology reconstruction of cortical 

glutamatergic neurons shows distinct axon projection patterns between major transcriptomic 

types and further heterogeneity within each type (image adopted from Peng et al., 2021). 

Each color outlines the projection of one neuron within the type in each panel.
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Figure 4. Dynamic changes of cell types and states during development, aging and various 
physiological or pathological contexts.
Major neuronal and non-neuronal classes are shown along the life stages of development, 

adulthood and aging. Neural progenitors generate different neuronal types, astrocytes 

and oligodendrocytes at different developmental timepoints, whereas microglia have a 

separate developmental origin. Major developmental events, various physiological states 

in adulthood, and different diseased states throughout the lifespan are shown below the 

timeline.
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