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Abstract

De novo assembly of metagenome samples is a common approach to the study of microbial 

communities. Current metagenome assemblers developed for short sequence reads or noisy 

long reads were not optimized for accurate long reads. We thus developed hifiasm-meta, a 

new metagenome assembler that exploits the high accuracy of recent data. Evaluated on seven 

empirical datasets, hifiasm-meta reconstructed tens to hundreds of complete circular bacterial 

genomes per dataset, consistently outperforming other metagenome assemblers.

A short-read metagenome assembly1 often results in contigs of tens of kilobases (kb) 

in length2, ∼1% of a bacterial genome. After years of metagenome sequencing, there 

were only 62 complete genomes assembled from metagenome samples as of September 

20193. Although we can cluster short contigs into metagenome-assembled genomes 

(MAGs) with binning algorithms4, binning can be an important source of errors which 

complicate or mislead downstream analysis3. The limitation of short-read MAGs motivated 

the development of metaFlye5, the only published assembler specialized for long-read 

metagenome assembly. Initially developed for noisy long reads of error rate ∼10%, Flye6, 

which metaFlye is based on, does not take advantage of PacBio’s high-fidelity reads (HiFi) 

and is suboptimal for single-species HiFi assembly7. To leverage the full power of long 

accurate HiFi reads, we developed hifiasm-meta, extending our earlier work8 to metagenome 

samples.

In comparison to the assembly of a single species, metagenome assembly poses several 

unique challenges1,9, such as a larger variance in read length distribution in PacBio HiFi 

data, and high ploidy combined with low coverage in certain haplotypes. We made several 

major changes in hifiasm-meta to address these challenges. First, hifiasm-meta has an 

optional read selection step that reduces the coverage of highly abundant strains without 
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losing reads on low abundant strains. Second, during the construction of the assembly graph, 

hifiasm-meta tries to protect reads in genomes of low coverage, which may be treated 

as chimeric reads and dropped by the original hifiasm. Third, hifiasm-meta only drops a 

contained read if other reads exactly overlapping with the read are inferred to come from the 

same haplotype. This reduces contig breakpoints caused by contained reads10. Fourth, after 

the initial graph construction, hifiasm-meta uses the coverage information to prune unitig 

overlaps, assuming unitigs from the same strain tend to have similar coverage. It also tries to 

join unitigs from different haplotypes to patch the remaining assembly gaps. These strategies 

make hifiasm-meta more robust to features in metagenome datasets.

We first evaluated hifiasm-meta r58-31876a0, metaFlye5 v2.9 and HiCanu7 v2.2 on two 

mock communities ATCC and zymo (Table 1). ATCC consists of 20 distinct species, 15 

of which are abundant at 0.18–18% and 5 are rare at 0.02% abundance. We were able to 

reconstruct 13 of the abundant species each as a complete circular contig, comparable to 

metaFlye and Hicanu (Table S1). All tools assembled P. gingivalis, at 18% abundance, into 

two contigs. No assemblers could fully reconstruct the five species of low abundance. We 

manually checked the read alignment of these species and found their assembly gaps are 

all caused by insufficient coverage. We would not be able to assemble these species in full 

with the current data. The zymo dataset features 21 strains of 17 species, including five 

strains of E. coli at 8% abundance each. A challenge of this dataset lies in the phasing 

of the E. coli strains. Hifiasm-meta assembled strain B766 into a complete circular contig, 

strain B3008 into 2 contigs and the rest as fragmented contigs. HiCanu assembled both 

B766 and B3008 into complete circular contigs; metaFlye failed to assemble all 5 strains 

as circular contigs. Hifiasm-meta produces a more contiguous assembly for M. smithii at 

0.04% abundance (Table S1). Generally, all three assemblers have comparable accuracy on 

the two mock community datasets.

We then evaluated the three HiFi metagenome assemblers on real datasets (Table 1). Due 

to the lack of their true compositions, we used CheckM11 to measure the completeness 

and the contamination level of each assembly. We define quality brackets in line with 

the minimum information requirement12. From the sheepA gut sample, hifiasm-meta 

reconstructed 323 contigs longer than 1Mb (Fig. 1a; Extended Data Fig. 1) totaling 651Mb 

in length. 176 of them were near-complete according to CheckM (Fig. 1b). Most long 

contigs that failed to reach this category are due to incompleteness, not due to excessive 

contamination. Among the 176 near-complete hifiasm-meta contigs, 134 are circular (Fig. 

1b), representing a significant improvement over HiCanu (71 circular near-complete contigs) 

and metaFlye (47). We aligned hifiasm-meta, HiCanu and metaFlye assemblies to each 

other and investigated the similarity between them. We found 86% and 94% of circular 

near-complete HiCanu and metaFlye contigs, respectively, are also circular in the hifiasm-

meta assembly and are of similar lengths (Table S3). The remaining near-complete circular 

HiCanu and metaFlye contigs are assembled into either one linear contig or two linear 

contigs by hifiasm-meta. Hifiasm-meta can reconstruct most high-quality contigs found by 

other assemblers. Furthermore, the mash13 sequence divergence between hifiasm circular 

contigs is mostly above 1%, except for four pairs of contigs at 0.62–0.92% divergence. In 

general, strains of high divergence (more than a couple of percent) can be separated into 

disconnected contigs; a few strains of low divergence tend to be collapsed and represented 
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by mosaic contigs; many strains of mixed divergence may lead to complex assembly 

subgraphs and are the most challenging to assemble.

To reconstruct MAGs from non-circular contigs, we applied the MetaBAT2 binning 

algorithm4 to each assembly. Not optimized for long-read assemblies, MetaBAT2 may 

mistakenly group different strains of the same species into one MAG and even group two 

circular contigs occasionally. Such MAGs would be considered to be contaminated by 

CheckM. To improve binning, we separated circular contigs into individual bins. In the end, 

we identified more than 110 non-circular MAGs of medium or higher quality from each 

sheepA assembly (Fig. 1b). Hifiasm-meta still finds more quality MAGs in total.

We applied hifiasm-meta to the larger sheepB dataset14 (Table 1) and obtained 379 near 

complete MAGs and 279 circular contigs. Bickhart et al14 assembled the combined sheepA 

and sheepB datasets with metaFlye and clustered contigs into MAGs using additional Hi-C 

data. They reported 44 circular contigs and 428 near complete MAGs evaluated by DAS 

Tool. For a direct comparison, we ran CheckM on their assembly and identified 241 near 

complete MAGs instead. Hifiasm-meta produced a more contiguous assembly with HiFi 

data alone.

For the chicken and the four human gut metagenomes (Table 1), hifiasm-meta consistently 

produced more circular contigs and more total MAGs than HiCanu and metaFlye as well 

(Fig. 1b). Hifiasm-meta and metaFlye have comparable performance on the sludge dataset, 

both better than HiCanu. All assemblers produced fewer MAGs in comparison to the 

sheepA gut sample. To see how much this is caused by the higher data volume of sheepA, 

we randomly sampled sheepB, which represents the same specimen, but was sequenced 

in SequelII and had similar read length distribution to that of humanO1, to ∼18Gb of 

sequences, comparable to the size of humanO1 and sludge. On the downsampled dataset, 

we could assemble 70 circular contigs, much more than the number of circular contigs in 

humanO1 and sludge. This suggests that data volume does affect the assembly quality but 

the more contiguous sheepA assembly is probably more related to the composition of the 

sample.

Among the four human gut datasets, two were collected from omnivore donors and the other 

two from vegan donors. Each dataset represents a pool of four individuals (Table 1). We 

further pooled the four datasets together and co-assembled them. With read names reported 

in the final hifiasm-meta assembly, we can identify the composition of each contig based on 

the sources of reads. We found the great majority of contigs of ≥1Mb in size and almost all 

≥1Mb circular contigs are either omnivore-specific or vegan-specific (Fig. 1c), whereas the 

two omnivore samples are well mixed in long omnivore-specific contigs, so it is with the 

two vegan samples. We see more reads coming from the humanO1 and humanV1 datasets 

probably because humanO1 and humanV1 have more and longer reads than the other two 

human gut samples.

Omnivore and vegan samples are also well separated among co-assembled MAGs, though 

omnivore- and vegan-specific MAGs are mixed in the phylogenetic tree (Fig. 1d): in this 

tree, 20 genera consist of three or more MAGs, 17 of which contain both omnivore- and 
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vegan-specific MAGs. This suggests hifiasm-meta assembly is better at untangling subtle 

composition differences. Also notably, a clade of seven circular contigs (in the northeastern 

direction in Fig. 1d) only has 75–79% CheckM completeness but they all have 5S, 16S 

and 23S rRNA genes and ≥18 tRNA genes (Table S4). Two of them were assembled by 

HiCanu into circular contigs of near identical lengths, so they are less likely to be truncated 

misassembly. We speculate this clade may be underrepresented in CheckM.

On performance, hifiasm-meta took ∼18 hours over 48 CPU threads to assemble the sheepA 

and the chicken datasets and took ∼3 hours for the human gut samples (Table S3). On these 

datasets, it is as fast as metaFlye and is consistently faster than HiCanu by a few folds. 

Hifiasm-meta tends to use more memory than metaFlye and HiCanu, consuming ∼200Gb 

RAM for the sheepA and chicken gut samples. Hifiasm-meta assembled the largest sheepB 

dataset in 8.9 days and used 724Gb RAM at the peak.

In the era of short-read sequencing, metagenome assembly was rarely considered as a 

method to reconstruct full genomes3. This view has been changed by recent progress in 

long-read assembly5,14–16. Optimized for long accurate HiFi reads, hifiasm-meta moves 

metagenome assembly even further. It possibly assembles more circular MAGs from one 

deeply sequenced sample, without manual intervention, than all circular MAGs published in 

the past. Such high-quality metagenome assemblies may fundamentally change the practice 

in metagenome analysis and shed light on the biological and biomedical implications of 

microbial communities.

Methods

Overview of the hifiasm-meta algorithm.

The hifiasm-meta workflow consists of optional read selection, sequencing error correction, 

read overlapping, string graph construction and graph cleaning. The error correction and 

read overlapping steps are largely identical to the original hifiasm. We added optional read 

selection and revamped the rest of steps.

Optional downsampling of input reads.

If read selection is enabled, hifiasm-meta will first make a crude guess of whether there are 

too many alignments to be performed for the whole read set. This is done by examining 

anchors and is alignment free. We proceed to do the selection if 2/3 reads have more than 

300 target reads. We start with an empty hash table which will record kmer counts, and 

go through reads in batches of 2000. In a batch, for each read encountered, we collect its 

canonical kmers and query the hash table for their occurrences. Three percentiles 3%, 5% 

and 10% are checked against the corresponding thresholds 10, 50 and 50 respectively. If 

any percentile is lower than the given threshold, the read is kept. The rationale is that we 

would like to keep a read when it has some rare kmers, i.e. when discarding it will lead to 

loss of information. Note that the “rare kmers” here are not necessarily rare globally, and 

the read selection result might change if the inputs are shuffled. We assume that the input is 

not particularly sorted. After all reads in the batch have been processed, we update the kmer 

counting hash table with them (kmers of discarded reads are also counted). The termination 
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criterion of the read selection is either the total number of reads being kept has exceed the 

desired count, or all reads have been processed.

Modified chimera detection.

Before graph construction, the original hifiasm regards a read to be chimeric and discards 

it if a middle part of the read is not covered by other reads. A read from a genome of low 

abundance may have such an uncovered region due to statistical fluctuation. Hifiasm-meta 

disables the heuristic if both ends of the read overlap with five or fewer other reads. This 

extra threshold improves the contiguity of genomes of low abundance.

Treatment of contained reads.

The standard procedure to construct a string graph discards a read contained in a longer 

read. This may lead to an assembly gap if the contained read and the longer read actually 

reside on different haplotypes10. The original hifiasm patches such gaps by rescuing 

contained reads after graph construction. Hifiasm-meta tries to resolve the issue before 

graph construction instead. It retains a contained read if other reads exactly overlapping with 

the read are inferred to come from different haplotypes. In other words, hifiasm-meta only 

drops a contained read if there are no other similar haplotypes around it. This strategy often 

retains extra contained reads that are actually redundant. These extra reads usually lead to 

bubble-like subgraphs and are later removed by the bubble popping algorithm in the original 

hifiasm.

Changes to graph cleaning.

At the graph construction stage, the original hifiasm-meta rejects overlaps between unitigs 

inferred to come from different haplotypes. Hifiasm-meta may do this to patch remaining 

assembly gaps. Hifiasm-meta also uses the unitig coverage to prune overlaps. Suppose unitig 

A overlaps unitig B and C in the same orientation. Such a bifurcation is an ambiguity in 

the assembly graph. Let rAB = min{cov(A),cov(B)}, where cov(A) is the coverage of A. 

Hifiasm-meta drops the overlap between A and C if rAB > 0.7 and rAC < 0.7. This strategy 

is only applied to unitigs longer than 100kb as it is difficult to accurately estimate coverage 

for short unitigs. In addition, attempt to resolve short unitigs would not greatly improve the 

assembly quality anyway in our testing.

Assembly of metagenome datasets.

We evaluated hifiasm-meta r58, HiCanu v2.2 and metaFlye v2.9 all with 48 CPU 

threads. We used “hifiasm-meta reads.fa” for the assembly of empirical gut samples 

and used “hifiasm-meta --force-rs reads.fa” to enable read selection for the two 

mock community datasets. We ran HiCanu with “canu maxInputCoverage=1000 

genomeSize=100m batMemory=200 -pacbio-hifi reads.fa”. We tried to increase the 

“genomeSize” parameter to 1000m for sheepA and got identical results. We ran 

metaFlye with “flye --pacbio-hifi reads.fa --plasmids --meta”. Hifiasm-meta and metaFlye 

report assembly time and peak memory usage. We used a script (https://gist.github.com/

xfengnefx/d4abf19de8ebae9cc8ccd56e9898604d) to check /proc/ID/status files to measure 

the performance of HiCanu. For general file manipulations, we used seqtk (https://
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github.com/lh3/seqtk, 1.3-r107-dirty), readfq.py (https://github.com/lh3/readfq, 7c04ce7), 

GNU Parallel20 and SAMtools21.

Metagenome binning.

We used MetaBAT2 for initial binning and then post-process MetaBAT2 results to get final 

MAGs. We aligned raw reads to an assembly with “minimap2 -ak19 -w10 -I10G -g5k 

-r2k --lj-min-ratio 0.5 -A2 -B5 -O5,56 -E4,1 -z400,50 contigs.fa reads.fa” 22, calculated the 

depth with “jgi_summa_rsize_bam_contig_depths --outputDepth depth.txt input.bam”, and 

ran MetaBAT2 with “metabat2 --seed 1 -i contigs.fa -a depth.txt”. We tried different random 

seeds or “-s 500000”, and got similar results. We only applied MetaBAT2 to the primary 

hifiasm-meta and HiCanu assemblies as including alternate assembly led to worse binning. 

After MetaBAT2 binning, we separate circular contigs of 1Mb or longer into a separate 

MAG if it is binned together with other contigs.

Evaluating assemblies of mock metagenome libraries.

To evaluate the quality of assemblies, we mapped contigs with “minimap2 -cxasm20” to 

the reference genomes and inspected structural changes in the alignment. Out of 22 circular 

hifiasm-meta contigs assembled from the two mock communities, 21 are consistent with the 

reference, except for the assembly of S. mutans. For this genome, hifiasm-meta introduced a 

20kb deletion that is supported by a small fraction of reads in alignment, suggesting this is a 

real but rare allele in the community.

In the contig-to-reference alignment, we observed up to several thousand mismatches and 

gaps per genome (Table S1). The number of small differences is much lower between HiFi 

assemblies. For example, for N. meningitidis, there are 6,090 small differences between 

the hifiasm-meta contig and the reference genome, but there are only two small base-pair 

differences between the hifiasm-meta and HiCanu contigs. We suspect most of these 6,090 

differences may be consensus errors in the reference genome.

Evaluating metagenome assemblies.

We ran CheckM v1.1.3 to measure the completeness and the contamination level of 

MAGs. The command line is “checkm lineage_wf -x fa input/wd/; checkm qa -o 2 wd/

lineage.ms .”. We also tried DAS Tool23 for evaluation on the sheepA dataset. DAS Tool 

is more optimistic, identifying 22% more near-complete MAGs in comparison to CheckM. 

As CheckM is more often used for evaluation, we only applied CheckM to all assemblies. 

For sheepB, additionally, yak QV (https://github.com/lh3/yak) was used to evaluate contig 

correctness (Extended Data Fig. 2).

We used GTDB-Tk v1.3.0 and its database version r95 for phylogenetic placement 

with command line “gtdbtk classify_wf”.We annotated the tree and used GraPhlAn for 

visualization.

We used INFERNAL24 to identify rRNAs and tRNAs from contigs. The command line is 

“cmscan –cut_ga –rfam –nohmmonly –fmt 2 –tblout cmscan.table Rfam.cm in.fa”. Entries 

with E-value larger than 0.01 were dropped. 733 of the 738 long circular contigs assembled 
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by hifiasm-meta in this manuscript were RNA-complete (Table S5), i.e. having at least one 

full length copy for all three types of rRNAs, and at least 18 full length copies of tRNAs.

Data availability

HiFi data were obtained from NCBI Sequence Read Archive (SRA) with accession 

numbers shown in Table 1. All generated assemblies and underlying data of 

the figures are available at https://zenodo.org/record/6330282. ZymoBIOMICS mock 

reference genomes were downloaded from https://s3.amazonaws.com/zymo-files/BioPool/

D6331.refseq.zip. The list of reference genomes in the ATCC mock community is available 

at https://www.atcc.org/products/msa-1003. CheckM database: https://data.ace.uq.edu.au/

public/CheckM_databases/checkm_data_2015_01_16.tar.gz. GTDB-Tk database: https://

data.ace.uq.edu.au/public/gtdb/data/releases/release95/95.0/auxillary_files/.

Code availability

Hifiasm-meta is available at https://github.com/xfengnefx/hifiasm-meta.
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Extended Data

Extended Data Figure 1. 
The hifiasm-meta assembly graph of the sheepA dataset. Short disconnected contigs are not 

shown.
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Extended Data Figure 2. 
Yak QV score correlated with contig coverage. Plots shwoing >1Mb contigs in sheepB 

assemblies. Contig coverage was estimated by jgi_summarize_bam_contig_depths from 

metabat2, and alignment was done with minimap2 -a -k 19 -w 10 -I 10G -g 5000 -r 2000 

–lj-min-ratio 0.5 -A 2 -B 5 -O 5,56 -E 4,1 -z 400,50. Hifiasm-meta assembled 37 contigs 

without k-mer errors. HiCanu and metaFlye each assembled 4 contigs without k-mer errors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Metagenome assemblies of empirical datasets. (a) Quality score of contigs longer than 

300kb from the hifiasm-meta assembly of sheepA. The quality score of a MAG is defined 

as “completeness −5 × contamination” based on CheckM reports. (b) CheckM evaluation. A 

MAG is “near-complete” if its CheckM completeness is ≥90% and its contamination level 

≤5%, is “high-quality” if completeness ≥70% and contamination ≤10%, or is “medium-

quality” if its quality score is ≥50%. “HumanPooled” represents the co-assembly of all four 

human gut samples. (c) Composition of long contigs in the hifiasm-meta co-assembly of 
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four human gut samples. Each bar represents a contig of ≥1Mb in length. It gives the number 

of reads used in the contig. Each color corresponds to a human gut sample. A cross at the 

top of a bar indicates the contig being circular. (d) Phylogeny of human gut MAGs from the 

co-assembly. A colored clade corresponds to a phylum inferred by GTDB-Tk18,19. A MAG 

is omnivore/vegan-specific if 90% of reads in the MAG come from omnivore/vegan samples, 

respectively. Two adjacent leaves coming in the same genus have the same shade on the 

“Genus” outer ring.
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Table 1.

Evaluated metagenome datasets

Sample Accession # bases (Gb) N50 read length (kb) Median read QV Sample description

ATCC SRR11606871 59.2 12.0 36 Mock community ATCC MSA-100317

zymo SRR13128014 18.0 10.6 40 Mock community ZymoBIOMICS D6331

sheepA SRR10963010 51.9 14.3 25 Sheep gut microbiome5

sheepB SRR14289618 206.4 11.8 N/A Sheep gut microbiome14

chicken SRR15214153 33.6 17.6 30 Chicken gut microbiome

sludge ERR7015089 15.3 15.4 32 Anaerobic digester sludge

humanO1 SRR15275213 18.5 11.4 40 Human gut from a pool of four omnivore samples

humanO2 SRR15275212 15.5 10.3 41 Human gut from a pool of four omnivore samples

humanV1 SRR15275211 18.8 11.0 39 Human gut from a pool of four vegan samples

humanV2 SRR15275210 15.2 9.6 40 Human gut from a pool of four vegan samples

The N50 read length is the length of the shortest read at 50% of the total number of read bases. The quality value (QV) of a read is −10log10e, 

where e is the expected sequencing error rate of the read, assuming accurate base quality. No base quality is available for the sheepB dataset.
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