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Abstract

The diagnosis of epilepsy often relies on a reading of routine scalp electroencephalograms (EEGs). 

Since seizures are highly unlikely to be detected in a routine scalp EEG, the primary diagnosis 

depends heavily on the visual evaluation of Interictal Epileptiform Discharges (IEDs). This 

process is tedious, expert-centered, and delays the treatment plan. Consequently, the development 

of an automated, fast, and reliable epileptic EEG diagnostic system is essential. In this study, we 

propose a system to classify EEG as epileptic or normal based on multiple modalities extracted 

from the interictal EEG. The ensemble system consists of three components: a Convolutional 

Neural Network (CNN)-based IED detector, a Template Matching (TM)-based IED detector, and 

a spectral feature-based classifier. We evaluate the system on datasets from six centers from 

the USA, Singapore, and India. The system yields a mean Leave-One-Institution-Out (LOIO) 

cross-validation (CV) area under curve (AUC) of 0.826 (balanced accuracy (BAC) of 76.1%) 

and Leave-One-Subject-Out (LOSO) CV AUC of 0.812 (BAC of 74.8%). The LOIO results are 

found to be similar to the interrater agreement (IRA) reported in the literature for epileptic EEG 

classification. Moreover, as the proposed system can process routine EEGs in a few seconds, it 

may aid the clinicians in diagnosing epilepsy efficiently.
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1. Introduction

Epilepsy is a group of chronic brain disorders that are characterized by unprovoked recurrent 

seizures. According to recent statistics, it affects about 70 million people in the world.1 The 

routine scalp electroencephalogram (EEG) is widely utilized as a fundamental medical test 

for the diagnosis of epilepsy.2 Seizures or ictal events are highly unlikely to occur during 

a routine scalp EEG recording. Interictal Epileptiform Discharges (IEDs), on the other 

hand, are traditional biomarkers of epilepsy.3 An automated IED detection system is highly 

beneficial for the clinical assessment and treatment of epilepsy. This system could be applied 

predominantly for three purposes: epilepsy diagnosis, analyzing the effect of antiepileptic 

medications and assessing the risk of seizure reoccurrence, and for pre-surgical planning 

(localization of epileptic foci).4,5 In this paper, we consider the use case of diagnosing 

epilepsy. For the purpose of diagnosing epilepsy, neurologists are less concerned about the 

exact number IEDs in the EEG, but rather whether any IEDs are present. Consequently, 

EEG-level classification (whether it is epileptic or normal) is the main objective, instead of 

detecting individual IEDs.

In the literature, studies have been performed to identify abnormal EEGs. Roy et al. have 

presented the ChronoNet6 which achieves an accuracy of 86.6% on the Temple University 

Hospital (TUH) Abnormal Corpus.7,8 Gemein et al. have consolidated different studies on 

the same database and have given a review of the literature on abnormal EEG classification.9 

However, there are only limited studies that consider the problem of classifying epileptic 

EEGs (EEGs that exhibit interictal/ictal epileptiform patterns) versus normal EEGs (EEGs 

that do not exhibit any abnormality). Schmidt et al. have proposed a new computational 

biomarker for classifying EEGs of patients with idiopathic generalized epilepsy (IGE) 

with normal EEGs.10 They achieved a maximum balanced accuracy (BAC) of 82.9% for 

classifying 30 epileptic EEGs and 38 nonepileptic EEGs. However, the evaluation was 

performed on 20-s artifact-free segments that were visually selected by an expert.10

In our preliminary study from 2018, we proposed a Support Vector Machine (SVM)11-based 

epileptic EEG classifier with IED detection features derived from a one-dimensional (1D) 

Convolutional Neural Network (CNN), on a small dataset of 154 EEGs.12 We achieved 

a mean four-fold EEG classification area under curve (AUC) of 0.87 with an accuracy 

of 83.86%. In a parallel work to this study, Jing et al. proposed a two-dimensional (2D) 

CNN output-based EEG classifier that achieved an AUC of 0.847 to classify EEGs with 

and without IEDs.13 These two studies12,13 were performed exclusively on datasets from 

a single center, and consider only a single method for EEG classification. We exclude the 

literature14,15 based on the Bonn EEG dataset16 and Bern–Barcelona dataset,17 since these 

datasets only contain single-channel EEG segments without any clinical information such as 

patient details, channel location, etc. Most studies on those two datasets that claim to have 

Thomas et al. Page 2

Int J Neural Syst. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achieved “epileptic EEG classification” have only been tested on hand-picked segments of 

EEG rather than the whole EEG. Therefore, these studies do not represent real-world clinical 

scenarios.

To address those shortcomings, we combine multiple approaches to classify EEGs, and 

assess those methods on EEG data from multiple centers. Specifically, we explore two types 

of IED detectors, based on CNN and template matching (TM), respectively, in addition 

to a classifier that leverage spectral information. We follow the methodology proposed in 

our previous work to design the CNN18 and TM IED detector.19,20 CNN IED detectors 

have shown superior performance than traditional IED detectors as well as noninferiror 

performance to experts.13,18 For the TM IED detector, the IED library is developed by 

applying affinity propagation (AP)21 in conjunction with Dynamic Time Warping (DTW).22 

We apply correlation coefficient23 as distance measure for the TM IED detector.19 Since 

correlation is invariant to scaling, the TM IED detector is invariant to EEG amplitude 

scaling. In addition, spectral features have been shown to discriminate epileptic and normal 

EEGs.24 For the spectral feature-based classifier, we compute relative power features in the 

five standard EEG frequency bands (delta, theta, alpha, beta, and gamma), and with those 

relative power values as features, we apply an SVM with Gaussian kernel,11 since it has 

been shown to perform well in the literature.25 The TM and EEG spectral feature-based 

detectors are more explainable, easier to understand, and invariant to amplitude scaling. On 

the other hand, the CNN IED detector offers fewer misclassifications for detecting IEDs.

We evaluate the proposed systems on EEG data from six centers. We employ the dataset 

from Massachusetts General Hospital (MGH)18 as the primary dataset to train and validate 

the IED detectors. The evaluation of the other datasets is performed considering two real-

world scenarios. In the first scenario, we wish to apply our proposed system to EEG data 

of a center that is not included in the current study, and assume that we have access to 

a small dataset of EEGs and corresponding reports from this center. Here, we would be 

able to calibrate the EEG classification system on dataset from the new center. To assess 

our system in this scenario, we compute Leave-One-Subject-Out (LOSO) cross-validation 

(CV) for each individual center. In the second scenario, we assume that we do not have 

any prior information regarding the EEGs from the center. This scenario is evaluated by 

Leave-One-Institution-Out (LOIO) CV. As far as we know, the current study might be the 

first to perform a cross-institutional assessment of epileptic EEG classification. It is indeed 

necessary to perform LOIO CV to establish the clinical validity of a diagnostic tool. The 

proposed system achieves an LOIO CV mean AUC of 0.826 (mean BAC of 76.1%) that 

corroborated with the interrater agreement (IRA) reported in the literature for discriminating 

epileptic EEGs from normal EEGs.

The rest of this paper is organized as follows. We describe the EEG datasets and 

preprocessing steps in Sec. 2.1, and the methodology applied to design and evaluate the 

proposed system in Secs. 2.2 and 2.3, respectively. In Sec. 3, we present the results, while in 

Sec. 4, we provide a discussion, and elaborate on the limitations of this study. In Sec. 5, we 

offer concluding remarks, and suggest several topics for future research.
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2. Materials and Methods

2.1. Scalp EEG dataset

We analyzed routine scalp EEG recordings from six centers across the globe:

1. MGH, Boston, USA.

2. TUH, USA (public dataset8).

3. National University Hospital (NUH), Singapore.

4. National Neuroscience Institute (NNI), Singapore.

5. Fortis Hospital Mulund, Mumbai, India.

6. Lokmanya Tilak Municipal General Hospital (LTMGH), Mumbai, India.

The scalp EEGs were recorded according to the International 10–20 electrode system at 

different sampling frequencies. We categorize the EEGs into two types according to the 

clinical report: epileptic EEGs (containing IEDs or seizures), and normal EEGs, which do 

not exhibit any abnormalities. Along with the overall EEG assessment (epileptic or normal), 

we also extract the following additional information: the presence of ictal events in the EEG 

and the patient’s history of seizures. Details about the different datasets are presented in 

Table 1.

The MGH dataset consists of 18,164 IEDs (from 93 epileptic EEGs) annotated by 

two neurologists. The annotations were performed with the aid of NeuroBrowser (NB) 

software.26 The NUH and NNI datasets consist of routine scalp EEGs recorded during 

the routine clinical care at NUH and NNI Singapore, respectively. The TUH database8 is 

the largest public epileptic EEG database. In our analysis, we consider the TUH Epilepsy 

corpus27 that contains routine scalp EEGs, recorded sometimes over multiple sessions, from 

133 patients with epilepsy (1360 EEGs) and 104 patients without epilepsy (288 EEGs). We 

select the EEGs with a duration range of 5–60 min, in order to maintain the same mean 

EEG duration as the other datasets. Also, we select the EEGs with IEDs from the patients 

with epilepsy and normal EEGs from the patients without epilepsy. In addition to the above, 

we also evaluate whether we can discriminate the normal EEGs from epileptic patients (163 

EEGs from 33 patients) and normal EEGs from nonepileptic patients (44 EEGs from 30 

patients) by applying the proposed system.

The Fortis dataset consists of a large cohort of routine scalp EEGs recorded during the 

routine clinical care at Fortis Hospital Mulund, India. The LTMGH data consists of EEGs 

recorded during routine clinical care at LTMGH, Mumbai, India. The LTMGH data were 

recorded with equipment provided by a local manufacturer, while the other EEG datasets 

are recorded by EEG machines of internationally established manufacturers. Moreover, the 

EEGs at LTMGH are recorded in a hot climate without air conditioning in the EEG room, 

leading to excessive delta band power most likely caused by sweating artifacts. As a result, 

it is challenging to reliably detect abnormalities in the LTMGH EEGs. Nevertheless, as we 

will show, the proposed EEG classifiers also perform well on those EEGs. The six datasets 
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consists of predominantly adult EEGs; approximately 95% of the EEGs are from adults with 

age >20 years. This study was approved by the Review Boards of the respective institutions.

We apply the following preprocessing steps: a Butterworth notch filter (fourth order) of 

50 Hz (Singapore and India) and 60 Hz (USA) to remove the electrical interference of 

power lines, a 1 Hz high-pass filter (fourth order) to remove the direct current offset and 

baseline fluctuations, and the Common Average Referential (CAR) montage. In order to 

keep a uniform sampling rate, the EEGs were down-sampled to 128 Hz after applying an 

anti-aliasing filter. Further, we also applied a noise statistics-based artifact rejection.18

2.2. EEG-level features

We investigate two types of features for EEG classification: IED and spectral features.

2.2.1. IED features—We apply two different types of IED detectors: one is based on a 

CNN,18 while the other one relies on TM.19 The former is complex and has shown superior 

performance, whereas the latter is more intuitive and easier to interpret. The IED features are 

investigated at the EEG-level, while the IED detectors are trained at the waveform level.

The IED detectors are trained to predict the probability of a single-channel 500 millisecond 

(ms) EEG segment being an IED. The prediction is performed in the range [0, 1], with 0 and 

1 indicating background waveform and IED, respectively. First, the IEDs are extracted as 

500 ms (64 samples) waveforms for IED detector training. The background EEG waveforms 

(or the non-IEDs) are extracted from the IED-free EEGs as 500 ms waveforms with an 

overlap of 75%. The background waveforms are extracted from IED-free EEGs, since there 

might be overlooked (unmarked) IEDs in the epileptic EEGs. Later these segments are 

applied for CNN IED detector training and IED template library extraction for the TM IED 

detector. During the evaluation of IED detectors, we obtain 19 IED detector predictions 

corresponding to 19 channels of EEGs for a single time segment. We combine these into 

a single output for each 500 ms time segment, by taking the maximum of the 19 single-

channel outputs. For both the IED detectors and for each EEG, we compute the IED rate per 

minute for different thresholds between [0,1]. These IED rates are later applied as features 

for EEG-level classification.

We design the CNN IED detector similar to the 1D architecture proposed by Thomas 

et al.18 Initially, we apply 1D convolutional filters to produce the feature maps. We 

consider Rectified Linear Units (ReLU) as the activation function. The dimensionality of 

the generated features is reduced by applying max-pooling. Later the features are flattened 

and fed into a fully connected layer. The fully connected layer outputs are mapped to [0, 

1] by applying a softmax function, with “1” indicating an IED. An illustration of the CNN 

pipeline is shown in Fig. 1.

While training the CNN, we applied balanced training, where the number of IEDs and 

background waveforms are identical. We decided to apply dropout (with a probability of 

0.5) at the fully connected layer during training of the CNN, in order to prevent overfitting. 

We organized the training samples in mini-batches of size the same as the number of IEDs 

in training. We utilized the one-step background rejection technique introduced by Thomas 
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et al.12,18 to select suitable background waveforms for training the CNN IED detector. 

The hyperparameters of the CNN are optimized by applying a nested CV on the training 

data. During the hyperparameter optimization, the validation set in split into two: one for 

CNN training termination criteria and the other for hyperparameter selection.18 For each 

CV iteration, the network is trained until we obtain the lowest validation loss. Table 2 

presents the different parameter sets optimized during the CNN training process. The CNN 

was implemented with Tensorflow 1.2.128 utilizing Nvidia GeForce GTX 1080 Graphical 

Processing Unit (GPU) on Ubuntu 16.04.

We design a clustering-based template library for the TM IED detector. We follow the 

procedures proposed by Thomas et al.19 Concretely, we apply AP21 in conjunction with 

DTW to extract the IED templates.29 AP is capable of determining the cluster centers 

automatically based on the density of data. Also, AP in conjunction with DTW has 

been shown to perform better than traditional clustering methods.29 Here, we employ the 

optimized DTW implementation by Rakthanmanon et al.22 We compute correlation23 as the 

evaluation distance measure for the TM system. While extracting the template library for the 

TM IED detector, the Sakoe–Chiba band30 of DTW was set at 0.1, the damping factor and 

initial priorities for AP are set as 0.9, and as the median of the similarity values, respectively. 

An illustration of the TM library extraction procedure is given in Fig. 2. Once the library is 

created, for a test 500 ms EEG segment, we compute the correlation between IED templates, 

and consider the minimum value across the different templates in the TM library as the TM 

prediction for the segment. Since we compute the correlation coefficient, the output values 

are in the range [0, 1], similar to that of the CNN IED detector.

2.2.2. Spectral features—We investigate spectral features derived from the five 

standard EEG frequency bands: delta (δ, 1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), 

beta (β, 13–30 Hz), and gamma (γ, greater than 30 Hz). Specifically, we compute relative 

power feature from the frequency bands:

Relative power RPf = Pf
P total 

, (1)

where f indicate different frequency bands (f ∈ {δ, θ, α, β, γ}), Pf denotes the power in 

frequency band f, and Ptotal = Pδ + Pθ + Pα + Pβ + Pγ. We compute the five features as the 

mean of the 19 channels of EEG. We apply this 1 × 5 feature vector as the spectral features 

for each EEG to perform EEG classification.

We feed the relative power values as features into an SVM with Gaussian kernel11 for 

classification (see Fig. 3). While training the SVM, we match the number of IED EEGs 

and normal EEGs. The hyperparameters of SVM are optimized by applying Bayesian 

optimization32 with five-fold CV. Further, the SVM scores are transformed to probabilities 

(range [0, 1]) by applying a sigmoid function.33

2.3. Performance assessment

2.3.1. Cross-validation on MGH dataset—First, we performed five-fold CV on the 

MGH dataset for evaluating the effectiveness of the three types of features: IED rates from 
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CNN-IED and TM-IED detectors, and spectral features. The MGH dataset was divided into 

five folds (see Table 3), approximately matching age, gender, and annotated IED distribution 

in all five folds. We consider the same fold split as performed by Thomas et al.18 Moreover, 

we assigned EEGs from the same patient to the same fold, so that EEGs of the same patient 

shall never be both in the training and test set.

To investigate the EEG classification performance based on IED detection, we need to 

perform two steps: implement and validate the IED detectors, and implement and evaluate 

the EEG classifier. In the first step, we perform the training, hyperparameter optimization, 

and evaluation of the IED detectors (CNN and TM IED detectors). In the second step, we 

extract the EEG-level features, train the EEG classifier, and analyze the performance of the 

EEG classifier. We design an EEG classifier that contains three components: EEG classifier 

based on CNN IED features, EEG classifier based on TM IED detector features, and an 

EEG classifier based on spectral features. We evaluate these (three component classifiers, 

and one overall classifier) in different weighted configurations. Therefore, we need to split 

the data into three sets: first set for training the IED detector, second for training the 

EEG classifier, and finally, a separate test set. Therefore, we split the folds of the MGH 

dataset into three groups: three folds for IED detector/SVM training, one fold for EEG-level 

feature extraction/training, and one independent fold for testing. For the IED feature-based 

components (CNN and TM), we apply the EEG-level feature extraction/training fold for 

the following purposes: extract IED rates, choose the optimized CNN and TM threshold, 

normalize the IED feature vector, design the threshold-based EEG classifier, and finally, to 

optimize the weights of the ensemble EEG classifier. However, for the spectral feature-based 

SVM, we apply the EEG classifier training fold for optimizing the weights of the ensemble 

EEG classifier.

We develop the IED detectors based on the annotated MGH dataset (three training folds). 

Once the IED detectors are trained, the EEG-level IED rate per minute (for 100 thresholds 

between [0, 1]) is computed on the fourth fold, set aside for training the EEG classifier. 

We select the IED detector threshold that corresponds to the highest EEG classification 

BAC on the fourth fold. Next, we normalize the IED rates for this optimized threshold. The 

normalization is performed to ensure that the predictions from the three components (CNN, 

TM, and SVM) are in the same range. We apply normalization in two steps in order to 

convert the IED rates into normalized IED rates that take values in [0, 1]. First, we remove 

outliers; concretely, the IED rates of patients that are three or more standard deviations 

above the mean (of the training set) are replaced by mean + 3 × standard deviation. Next, we 

compute min–max normalization to the resulting IED rates xi:

xi = xi − Xmin
Xmax − Xmin

, (2)

where xi is the IED rate of a patient (after removing outliers), and Xmin and Xmax are the 

minimum and maximum values in IED rate feature vector across different patients (X). For 

the SVM, the outputs are already converted into the [0, 1] with a sigmoid function.33
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Once the components are ready, we evaluate the EEG classifier by applying varying weights 

to each individual prediction. We define weights wCNN, wTM, and wS for the CNN, TM, 

and the spectral feature-based classifier (SVM), respectively. Next, we evaluate the possible 

weights (with the condition wCNN + wTM + wS = 1) on the fourth fold. The best weight 

configuration is chosen based on AUC values on the fourth fold. Finally, the final test fold 

is evaluated by applying the best system configuration obtained on the training folds. In 

total, we have 10 (5C3) sets of CNN/TM IED detectors and 20 (2 × 5C3) configurations (by 

alternating the EEG classifier training fold and test fold) for the five-fold CV on the MGH 

dataset. The MGH CV procedure is illustrated in Fig. 4.

2.3.2. LOSO and LOIO cross-validation—In order to perform the evaluation on the 

datasets, we train the IED detectors (CNN and TM) on the entire MGH dataset. We apply 

four folds of the MGH dataset to train the CNN IED detector and the fifth fold is applied 

as the validation set to determine the stopping criteria as well as the best hyperparameters. 

We select the CNN model that produced the lowest validation loss. Similarly, we apply all 

the 18,164 annotated IEDs to generate the template library. These IED detectors are kept the 

same during the LOSO and LOIO CV. We perform the EEG classification across multiple 

centers considering two scenarios:

• LOSO CV: In this scenario, we assume to have access to a sufficient number 

of epileptic and normal EEGs and their reports (e.g. at least 50 epileptic and 50 

normal EEGs). This EEG dataset would allow us to retrain the EEG classifier, 

while the CNN-IED and TM-IED detectors remain fixed and are not retrained. 

To evaluate the performance of the proposed EEG classification system, we 

compute LOSO CV on data of each institution separately (with fixed CNN-IED 

and TM-IED detectors).

• LOIO CV: In this scenario, we directly apply the EEG classification system on 

a test EEG dataset, without access to EEG reports from the institution providing 

the data. In other words, in this case, we cannot and do not retrain the system on 

EEG data from that institution. In order to assess the EEG classification system 

for such use cases, we conduct LOIO CV, where no data is used from the target 

institution for training.

During the LOSO and LOIO CV evaluation process, the IED detectors (CNN and TM) 

are trained on three folds of the MGH dataset. The spectral features classifier (SVM) is 

developed by applying 50% of the training data. The remaining 50% of the data is applied 

as the EEG classifier training/calibration set. Similar to MGH five-fold CV, we apply this 

fold for designing the threshold based-IED components (CNN and TM) and optimizing the 

weights (wCNN, wTM, and wS) of the ensemble EEG classifier (see Fig. 5). LOSO CV is 

performed on each dataset separately. In each iteration, one EEG of the dataset is left out as 

the test EEG, and the systems are trained on the remaining EEGs of that dataset (see Fig. 

5). Finally, we combine the predictions of each iteration and report the results in terms of a 

single receiver operating characteristic (ROC). While performing the LOIO CV, we leave out 

the dataset from a center entirely. The EEG classification system is trained based on the data 

from the remaining centers (see Fig. 5). While combining the data from different centers for 

training, we randomly select an equal number of EEGs from each center in order to avoid 
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any dataset bias. The number of EEGs is set as the lowest number of epileptic/normal EEGs 

available for any of the datasets. Also, since LTMGH EEGs are recorded with an equipment 

from a local manufacturer, we consider LTMGH EEGs only for testing during LOIO CV. We 

report standard performance metrics, including ROC curve AUC, and BAC.18 The BAC is 

reported for a sensitivity of 80%.

3. Results

3.1. Cross-validation results on MGH dataset

We evaluated the EEG classification system on the MGH dataset by applying five-fold 

CV. The results are summarized in Table 4. We have evaluated eight configurations for the 

system weights (wCNN, wTM, wS). The eight configurations are presented in Table 4, column 

1. System configuration “CNN” represents EEG classifier with only CNN component, 

configuration “TM” represents EEG classifier with only TM component, configuration 

“S” represents the EEG classifier with the spectral component, configuration CNN-TM-S 

(equal weights) represents the classifier with equal weights of 1/3 for the three components, 

configuration CNN-TM-S (optimized weights) represents the classifier with the best weights 

optimized on the EEG classifier training set, configuration CNN-TM represents the classifier 

with equal weights of 1/2 for CNN and TM components, and so on.

The proposed pipeline has achieved a mean AUC of 0.922, mean BAC of 83.0% for a 

configuration of CNN and TM IED detector features. The weight configuration for the 

CNN-TM-S (optimized weights) is presented in Fig. 6. It can be observed that wCNN was 

higher in most of the cases (13/20), followed by wTM. wS is zero in most of the cases, 

indicating that the spectral features are less discriminative in comparison with IED features.

3.2. LOSO and LOIO cross-validation results

We trained the CNN IED detector and extracted the IED template library on the entire MGH 

dataset. Concretely, we choose the CNN model that achieved the lowest loss value on the 

validation set. The network had two convolutional layers with 32 filters (dimension 1 × 5) 

each and one fully connected layer with 64 hidden layer neurons. We limit ourselves to a 

single IED detector model instead of combining models, for the sake of simplicity. We will 

leave the topic of model selection for future research.

We first compared the IED rates for epileptic EEGs with and without seizures. Seizures 

are rare during a routine EEG. However, it is a well-known fact that the IED frequency 

is boosted in the presence of seizures,34 making it easier for classification. In Fig. 7, we 

plot the IED rates for a CNN threshold of 0.5 for EEGs with seizures, without seizures, 

and normal EEGs (NUH and TUH dataset). It can be observed that the EEGs with seizures 

show significantly higher IED rates in comparison with EEGs without ictal events as well 

as normal EEGs. Therefore, in order to prevent bias due to seizures, we further remove 

the EEGs whose clinical reports indicate seizure events from the NUH (31 EEGs from 31 

patients), TUH (225 EEGs from 16 patients), NNI (2 EEGs from 2 patients), and Fortis (1 

EEG from a patient) datasets. The three feature sets for the different datasets are illustrated 

in Fig. 8. The CNN feature discriminates epileptic and normal EEGs for all the datasets. The 
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TM and spectral features are able to discriminate epileptic and normal EEGs for NUH and 

TUH datasets only. For NNI and LTMGH datasets, there is significant overlap between the 

epileptic and normal EEG features, potentially leading to more misclassifications.

The AUC and BAC values for the different datasets and three systems are summarized in 

Fig. 9. For the TUH dataset, since there are multiple recordings from the same patient, we 

perform two sets of evaluation: EEG-level evaluation (assumes each EEG as an independent 

observation), and patient-level evaluation (combines the features for a single patient from 

multiple EEGs). We consider the maximum value of individual EEG predictions while 

combining the different EEGs from an individual patient. While calculating the mean for 

AUC and BAC values, we employ the results at patient-level results for the TUH dataset.

The results for LOSO and LOIO CV on the MGH dataset are superior to the other datasets. 

This is primarily due to the fact that we have trained the IED detectors on the MGH dataset. 

From the mean performance measures on the five datasets, it can be seen that the CNN 

IED detector system performed consistently over other system configurations. The TM and 

spectral feature-based systems performed well on selected datasets (MGH, NUH, and TUH). 

The mean results for LOSO and LOIO CV for the five datasets (for the different system 

combinations) are presented in Table 5.

We observe that the proposed pipeline has achieved a mean LOSO CV AUC of 0.812, 

LOSO CV BAC of 74.8%, LOIO CV AUC of 0.826, and LOIO CV BAC of 76.1% for 

the best system configuration. For LOSO CV, the CNN system performed the best, and 

for LOIO CV, the combination of the three systems with optimized weights performed the 

best. We compared the weights of the optimized combination for the LOIO evaluation and 

observed that the CNN system contributed the most (mean weight = 0.92), followed by TM 

(mean weight 0.07), and spectral feature-based system (mean weight = 0.01). Further, the 

mean LOIO and LOSO CV results are similar for each of the eight different configurations 

(see Table 5). Therefore, it seems that the proposed system generalizes well to datasets from 

other institutions, since training the EEG classification systems on EEG data of the target 

center does not improve the results much in comparison to systems that are trained on EEG 

data from other centers.

4. Discussion

We have developed an automated epilepsy diagnostic tool and have evaluated it on scalp 

EEG datasets from six different centers from the USA, Singapore, and India. The system 

was evaluated under two scenarios: LOSO CV (scenario where labeled EEGs from test 

center are available), and LOIO CV (scenario where labeled EEGs from test center are 

not available). We observed that the LOSO CV performance was similar to LOIO CV 

performance. This demonstrates that the proposed approach is generalizable as well as 

feasible for clinical deployment. The CNN-based system achieved a mean LOSO CV AUC 

of 0.812 (BAC of 74.8%) and LOIO CV AUC of 0.826 (BAC of 76.1%) on the six different 

datasets.
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In the current literature, the IRA for IEDs and seizures is shown to be moderate to high.35,36 

In this study, the proposed system achieved LOIO CV BAC of 76%, which is in high 

agreement with the EEG assessment of the experts. We have summarized the literature 

related to EEG-level IRA in Table 6. The EEG classification performance across different 

centers (LOIO CV BAC) obtained in our study is superior to those reported in the literature, 

except for the IRA value of 80.9% reported by Jing et al.35 However, this study was 

performed with eight experts, out of which six are from the same institution and had similar 

training.35 Piccinelli et al. achieved a mean pairwise agreement of 88.6% across three 

annotators for classifying EEGs into three classes, namely, EEGs with ictal or interictal 

patterns, EEGs with slow waves, and normal EEGs. This study was exclusively performed 

for EEGs from patients with childhood idiopathic epilepsy. Moreover, ictal EEG is easier to 

detect than interictal EEG,34 as we have also demonstrated in Sec. 3.2. Further, most studies 

in the literature have only been validated on datasets from a single center, while most EEG 

interpreters are from the same center or received similar training. Apparently, no IRA study 

so far considers EEG from multiple centers in different countries, similarly as the data in 

our study. Nevertheless such research would be quite valuable and is an interesting topic for 

future research.

4.1. Comparison of system configurations

The CNN-TM combination and CNN-TM-spectral optimized weight combination 

performed superior to the other combinations of systems for classifying MGH EEGs. 

For LOIO CV, the CNN-TM-spectral optimized combination system performed the best 

(AUC of 0.826) with mean weights of 0.92 (CNN), 0.07 (TM), and 0.01 (spectral 

features), respectively. The CNN system performs well on all the datasets, whereas the 

TM and spectral feature-based systems yielded good performance only on certain datasets. 

Therefore, it is necessary to validate the diagnostic systems on multiple datasets to establish 

the generalizability of the system. The TM system, even though it is more explainable, 

is susceptible to artifacts, and therefore could potentially lead to more misclassifications. 

The spectral features classifier (SVM) leads to the lowest performance of the different 

systems. This is attributed to the difference in the EEG recording systems and as well 

the subject-level variance. Melnik et al. have shown that subjects could account for 32%, 

and EEG machines for 9% of the variance of EEG data based on a study on event-related 

potentials (ERPs) and steady-state visually evoked potentials (SSVEPs).40

Moreover, we have evaluated the system on a dataset recorded from locally manufactured 

EEG recording equipment under non-standard conditions (LTMGH dataset). The results for 

LTMGH are satisfactory with an LOIO CV AUC of 0.745 (BAC of 69.9%) and LOSO CV 

AUC of 0.725 (BAC of 69.0%). Also, the proposed system performed consistently on the 

EEG recordings from diverse standard recording equipment from five centers. This implies 

that the performance of the proposed approach is robust toward variations introduced due to 

EEG recording equipment. Further, we have evaluated the performance on the public TUH 

Epilepsy Corpus data,8 freely accessible to anyone. Therefore, in the future, our results may 

serve as a benchmark for epileptic EEG classification.
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4.2. Investigation of EEG misclassifications

We analyzed the misclassified EEGs in the LOSO CV of the CNN classifier. For MGH and 

NUH, the complete clinical reports were not available, and therefore a detailed investigation 

could not be performed. We observed that there was mention of a low occurrence of 

IEDs in a few clinical reports of epileptic EEGs. This accounted for 3.0% and 12.5% 

misclassifications for TUH and Fortis dataset, respectively.

For the normal EEG, the presence of artifacts accounted for 3.8% (NNI dataset), 

4.5% (Fortis dataset), and 1.1% (LTMGH dataset) misclassifications. Similarly, for the 

misclassified normal EEGs, a significant percentage of patients had a recent history of 

epilepsy (13.4% for Fortis and 25.4% for LTMGH datasets). However, the information on 

whether the normal EEG is from an epileptic patient is only available for the TUH dataset. 

We verified whether the CNN classifier is able to distinguish normal EEGs from epileptic 

patients versus normal EEGs from nonepileptic patients. We obtained a classification AUC 

of 0.536, indicating there is no significant difference between the EEGs in terms of IEDs. 

Also, it is well understood that the EEGs from patients with epilepsy do not have to 

have IEDs. Moreover, annotating IEDs by visual inspection is inherently subjective.4,41 

Therefore, an interesting direction for future research is to explore additional EEG features 

beyond IEDs and spectral information, e.g. interictal networks inferred from scalp EEG,10 

for distinguishing epileptic from nonepileptic EEGs.

4.3. Comparison to the state-of-the-art

We achieved five-fold CV mean AUC of 0.886 on the MGH dataset for the CNN system 

(see Table 4). This is superior to our previous results12 (AUC of 0.87) and better than the 

results reported by Jing et al.13 (AUC of 0.847) even though Jing et al. had performed 

the evaluation on a larger EEG dataset from MGH. We have evaluated the proposed 

pipeline across six institutions. The EEGs in the different institutions were annotated 

by experts belonging to the respective centers. This makes our results more robust and 

reliable, in comparison with the studies performed on datasets from a single center.10,12,13 

Furthermore, we have evaluated entire EEGs for analysis rather than hand-picked EEG 

segments. Therefore, our assessment more closely resembles real-life clinical settings.

The proposed CNN system approximately takes slightly more than a second (on a 

CPU+GPU system) for evaluating a single 30-min 19-channel routine EEG recording 

sampled at 128 Hz (excluding the time taken to load the data and model). The detailed 

time profiling of the CNN system is presented in Table 7. An expert takes approximately 10 

min to review a 30-min routine EEG.18 Therefore, the CNN system can be operated in real 

time, thereby improving the efficiency of epilepsy diagnosis. The evaluation was performed 

with an Intel (R) Xeon(R) CPU E5–2630 v4 @2.2 GHz CPU, Nvidia GeForce GTX 1080 

GPU, in Python v3.5. The proposed system could be applied to EEG with any arbitrary 

number of electrodes. This is due to the fact that the IED detectors are trained at the channel 

level. This would be beneficial in the context of wearable epilepsy diagnostic devices.

This study has the following limitations. First, the proposed pipeline leverages on the 

performance of the CNN IED detector. Therefore, the system performance could be further 
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improved by training the IED detector with more annotated interictal patterns. Also, the 

false positives in IED detection could be improved by applying a sophisticated artifact 

rejection system. Second, we have predominantly evaluated adults EEGs (age > 20 years). 

Aanestad et al. have shown that a system should operate at an age-dependent threshold 

for epilepsy diagnostics, as IEDs have age-dependent characteristics.42 Consequently, a 

separate study is required to evaluate the performance on EEGs of patients younger than 20 

years. Third, we have applied the CAR montage for the evaluation of IEDs. However, in a 

typical clinical setting, multiple montages are applied by clinicians to make annotate EEGs. 

Therefore, it would be beneficial to consider multiple montages in the machine learning 

pipeline. We will explore combinations of montages in the future.

5. Conclusion and Future work

We have developed an efficient, automated, and generalized epileptic EEG diagnostic 

system based on interictal pattern detection. The proposed system was evaluated cross-

institutionally on data from six different centers and achieved a mean LOSO CV AUC of 

0.812 (BAC of 74.8%) and LOIO CV AUC of 0.826 (BAC of 76.1%). The proposed EEG 

classification system may thus be a practical tool to aid the neurologists for accelerated 

review of epileptic EEGs.
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Acronyms.

EEG Electroencephalogram

IED Interictal epileptiform discharge

CNN Convolutional neural network

TM Template matching

CV Cross-validation

AUC Area under curve

BAC Balanced accuracy

LOIO Leave-one-institution-out

LOSO Leave-one-subject-out

IRA Interrater agreement

ROC Receiver operating characteristics

SVM Support vector machine
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1D/2D One-/two-dimensional

AP Affinity propagation

DTW Dynamic time warping

MGH Massachusetts General Hospital

TUH Temple University Hospital

NUH National University Hospital

NNI National Neuroscience Institute

LTMGH Lokmanya Tilak Municipal General Hospital

ReLU Rectified linear units

RP Relative power
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Fig. 1. 
Architecture of the CNN IED detector.
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Fig. 2. 
TM IED template library extraction procedure. We illustrate the different clusters generated 

by AP in conjunction with DTW as a 2D projection by applying t-Distributed Stochastic 

Neighbor Embedding (t-SNE).31
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Fig. 3. 
Spectral feature-based EEG classifier.
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Fig. 4. 
Five-fold CV evaluation on MGH dataset. Folds 1, 2, and 3 are applied to train the IED 

detectors and the SVM. The fold four is applied to compute the IED rates for CNN and TM, 

optimize the thresholds, normalize features, and develop the threshold-based EEG classifier 

components. The same fold is applied to optimize the weights (wCNN, wTM, and wS) of the 

ensemble EEG classifier. Finally, the testing is performed on fold five.
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Fig. 5. 
LOSO and LOIO CV methodology on the different datasets. Here, the IED detectors are 

trained on the three folds of the MGH dataset. The spectral feature SVM detector is trained 

on 50% of the training data, selected randomly. The remaining 50% of the training data is 

applied for EEG classifier training/calibration steps: designing the threshold based classifier 

for IED feature-based components (CNN and TM) and optimizing the weights (wCNN, wTM, 

and wS) of the ensemble EEG classifier. For LOSO CV, in each iteration, one patient is 

evaluated by applying the system trained on the remaining EEGs. LOSO CV is performed 

on each dataset independently. In LOIO CV, in each iteration, the dataset from one center is 

evaluated from the combined dataset from other centers. In the above figure, the data from 

NUH is evaluated by applying the system trained on the dataset from the other centers.
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Fig. 6. 
Weight configurations for the three EEG classifier components (CNN, TM, and SVM) for 

the 20 configurations of MGH five-fold CV.
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Fig. 7. 
CNN IED rate per minute for epileptic EEGs with seizures, without seizures, and normal 

EEGs (NUH and TUH dataset). The IED rates are higher for EEGs with seizures in 

comparison with normal EEGs.
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Fig. 8. 
CNN, TM, and spectral features for 10 randomly selected epileptic and normal EEGs from 

each dataset.
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Fig. 9. 
LOSO and LOIO CV results for the different datasets and system combinations (AUC and 

BAC): (a) LOIO AUC, (b) LOSO AUC, (c) LOIO BAC, and (d) LOSO BAC.
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Table 2.

Parameter values evaluated for CNN optimization.

Parameters Values/type

Number of convolution layers 1, 2, 3

Number of fully connected layers 1, 2, 3

Number of convolution filters 4, 8, 16, 32, 64

Dimension of convolution filters 1 × 3, 1 × 5, 1 × 7

Number of hidden layer neurons 16, 32, 64, 128, 256, 512

Activation function ReLU

Dropout probability 0.5

Size of the batch processing
ns
2

Maximum number of iterations 10,000

Optimizer Adam

Learning rate 10−4

Measure Cross-entropy

Notes: ns: number of IEDs.
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Table 3.

Distribution of the five folds created from the MGH dataset.

Fold number Number of epileptic EEGs Number of annotated IEDs Number of nonepileptic EEGs

1 18 4077 93

2 19 3571 92

3 18 3207 92

4 19 4021 92

5 19 3288 92

Total 93 18,164 461
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Table 4.

Five-fold CV results on MGH dataset.

System configuration AUC BAC F1-score

CNN 0.886 ± 0.09 79.9 ± 9.2% 0.646 ± 0.16

TM 0.894 ± 0.06 79.5 ± 7.2% 0.595 ± 0.13

S 0.816 ± 0.06 72.8 ± 4.9% 0.478 ± 0.08

CNN-TM-S 0.891 ± 0.06 79.8 ± 6.6% 0.614 ± 0.14

Equal Weights

CNN-TM 0.922 ± 0.06 83.0 ± 7.3% 0.692 ± 0.17

CNN-S 0.877 ± 0.06 78.2 ± 6.6% 0.575 ± 0.13

TM-S 0.859 ± 0.06 74.8 ± 6.0% 0.528 ± 0.10

CNN-TM-S 0.919 ± 0.06 83.2 ± 7.0% 0.689 ± 0.16

Optimized Weights

Notes: The results are reported as mean ±standard deviation. BAC, F1-score is reported for a sensitivity of 80%.
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Table 7.

Time cost of evaluation of a 19-channel 30-min EEG recording (128 Hz).

Task Time cost (s)

EEG loading from hard disk 1.1 ± 0.13

CNN model loading from hard disk 4.1 ± 0.12

Preprocessing 0.74 ± 0.07

CNN evaluation (CPU + GPU) 0.45 ± 0.01

CNN evaluation (CPU only) 8.4 ± 0.11

EEG feature extraction and evaluation Less than 0.02

Notes: Time is reported as mean ± standard deviation.
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