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The mammalian cerebral cortex contains a great diversity of 
neurons that differ in their connectivity, neurotransmitter 
usage, morphology, gene expression and electrophysiologi-

cal properties1. Although recent work has uncovered the molecular 
states that define different classes of terminally differentiated neu-
rons in the adult brain2–11, profiling of cortical neurons over devel-
opmental time courses has been limited and largely confined to 
transcriptional profiling of a few embryonic and neonatal stages12–15 
or of adult timepoints10,13,16–24. There is not yet a holistic picture of the 
molecular dynamics and regulatory landscapes of individual corti-
cal neuron classes, or any other class of mammalian central neurons, 
over extended trajectories of cell identity acquisition and maturation 
during postnatal life. This has precluded in-depth understanding of 
the molecular strategies used by neurons to acquire their identity, to 
mature and to wire. Similarly, how such molecular strategies might 
vary across species has not been addressed.

Genomic approaches have been instrumental to studying 
the molecular logic of cellular differentiation and cell type iden-
tity acquisition in the brain10,25–29 and other tissues30,31. Assay for 
transposase-accessible chromatin using sequencing (ATAC-seq) 
methods have shown that the number of active enhancer regions 
varies across development in different cell types; for example, 
during differentiation of helper T cells, enhancer usage decreases 
during maturation32, whereas cardiomyocytes employ a constant 
number of enhancers across differentiation33. During B cell matura-
tion, the number of active enhancers decreases as they mature from 
hematopoietic stem cells to terminal cell types34. Despite progress, 

the regulatory logic that accompanies cell-type-specific differentia-
tion across tissues remains understudied. This is particularly true 
for the central nervous system, where it is unclear whether common 
regulatory strategies controlling the development of the great diver-
sity of neural cell types exist.

Here we provide a comprehensive single-cell dataset of defined 
transcriptional and epigenomic changes in different classes of post-
mitotic cortical neurons over a time course spanning perinatal ages 
to adulthood, in both mouse and marmoset. We uncover previously 
unappreciated divergence in pan-neuronal regulatory mechanisms 
governing early stages of neuronal development versus later stages 
of neuronal circuit formation. These distinct regulatory modes rep-
resent a common strategy across all cortical neuron types and are 
conserved between mice and non-human primates.

Results
Early and late stages of cortical pyramidal neuron postmi-
totic development use divergent regulatory programs. Even 
after becoming postmitotic, cortical neurons undergo extensive 
development, from establishment of subtype identity to postnatal 
refinement of terminally differentiated features. It is largely not 
understood whether regulatory strategies at play during postmitotic 
development remain constant over postnatal life.

To understand these regulatory strategies, we first applied induc-
ible Cre mouse lines to examine two major classes of neocortical 
pyramidal neurons: Cux2-lineage35 layer 2/3 (L2/3) callosal projec-
tion neurons (CPNs)1, which are involved in associative functions 
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and are the most recently evolved population of cortical neurons 
(henceforth, Cux2 CPNs), and Tle4-lineage36 layer 6 (L6) cortico-
thalamic projection neurons (CThPNs)1, which are responsible for 
integration of sensory and motor information (henceforth, Tle4 
CThPNs). We isolated these neuronal subtypes across a time course 
spanning the acquisition of class-specific neuronal identity and 
early neuronal development (embryonic day (E) 18.5 and postnatal 
day (P) 1, P3 and P7), through periods of cortical plasticity, neuro-
nal maturation and integration into cortical circuits (P21 and P48) 
(Fig. 1a, Extended Data Fig. 1 and Supplementary Fig. 1). Labeled 
neurons from dissected somatosensory and motor cortex (ten ani-
mals per library, five male and five female, from two litters) were 
isolated by fluorescence-activated cell sorting (FACS) and profiled 
in bulk for gene expression by RNA sequencing (RNA-seq), for 
DNA methylation (DNAme) by whole-genome bisulfite sequencing 
(WGBS) and for open chromatin by ATAC-seq. Two biological rep-
licates were performed for each age and neuron type for each assay.

We identified features (transcribed genes, differentially accessi-
ble chromatin peaks and differentially methylated regions (DMRs)) 
that were dynamic over age or between cell types (examples in 
Supplementary Fig. 2) and applied k-means clustering to group 
features with similar patterns (Fig. 1c–e, Supplementary Fig. 3 and 
Supplementary Tables 1–3). For all datasets, 40–60% of dynamic 
features were assigned to clusters that were associated with develop-
mental stage and independent of neuronal subtype (Fig. 1c–f). These 
shared, developmentally regulated clusters fell into two major cat-
egories: those predominantly active (transcriptionally upregulated, 
accessible or hypomethylated) at embryonic and/or early postnatal 
ages (E18.5 to P7; early developmental, yellow bars in Fig. 1c–e)  
and those predominantly active at weaning and older ages (P21 to 
P48; late developmental, light green bars in Fig. 1c–e).

A smaller proportion of dynamic features showed neuron 
class-specific patterns. As expected, these clusters included known 
molecular markers of CPNs and CThPNs37,38 (Fig. 1c–e). Notably, 
although class-specific clusters accounted for only 23% of dynamic 
transcriptional features, they comprised 34% (DNAme) to 45% 
(ATAC) of dynamic epigenetic features (Fig. 1f), indicating higher 
neuronal subtype specificity of epigenetic changes, in agreement 
with findings that epigenetic signatures may be particularly power-
ful in discriminating neuronal subclasses16,39.

We applied multi-dimensional scaling (MDS) to visualize the 
relative distance between the high-dimensional transcriptional and 
epigenetic landscapes over time. Despite widespread changes over 
development, these two classes of neurons showed only limited 
changes in overall similarity with time in either gene expression 
or open chromatin profiles (Fig. 1g and Supplementary Fig. 3b). 
In contrast, the DNA methylation landscape became more diver-
gent between neuronal subtypes over postnatal life (P < 0.03329, 
one-sided t-test; Fig. 1g and Supplementary Fig. 3b). This increase 
was not associated with global changes in methylation or expres-
sion of DNA methylases (Extended Data Fig. 2a,b) but, rather, 
with changes in distribution patterns across the genome. DNA 
methylation increased over time at genes and gene regulatory ele-
ments (GREs, inferred from open chromatin sites) characteristic of 
other cell types and earlier developmental stages (Extended Data 
Fig. 2c,d), consistent with its known role in stabilizing silencing of 
inappropriate transcriptional programs40. Similarly, analysis of CpA 
methylation (the dominant form of non-CpG methylation in mam-
mals) identified 11,150 DMRs across cell types and developmen-
tal time, although with small effect sizes (Extended Data Fig. 2f). 
Notably, CpA methylation exhibited dynamic patterns that were 
similar to those found for CpG methylation but showed only mini-
mal overlap with CpG DMRs (<10%).

Next, to identify strategies for genome regulation that are  
common to pyramidal neuron classes across developmental time, 
we examined clusters whose temporal dynamics were shared 

between both cell types (shared-early and shared-late clusters;  
Fig. 1c–e). This uncovered a pronounced temporal transition in 
regulatory dynamics, across multiple modalities, between shared 
programs of early (E18.5 to P7) versus late (P21 to P48) postmitotic 
neuronal development.

The shared-early clusters contained genes typical of early dif-
ferentiation events, such as Sox4, Sox11 and Apc2, whereas the 
shared-late clusters contained genes controlling later processes such 
as synaptic function, including Egr3, Syp and Nefm. We validated 
temporal expression patterns in the cortex for selected example 
genes using the Allen Institute mouse brain in situ hybridization 
(ISH) database41 (Extended Data Figs. 3a,b and 4a,b) and a Slide-seq 
spatial transcriptomics dataset of young and adult mouse cortex42 
(Extended Data Figs. 3c and 4c).

To examine whether these temporal patterns were conserved 
in humans, we leveraged human developing brain transcrip-
tomic data from BrainSpan43. About 85% of the genes in both  
the shared-early (1,129/1,334) and shared-late (1,234/1,446)  
gene clusters had orthologs that were expressed in the human  
data, and most of these showed similar temporal dynamics as in 
mouse (Supplementary Fig. 4).

We then systematically characterized each of these distinct classes 
of genes and GREs (Fig. 2a). We first assessed the temporal, cell 
type and tissue specificity of gene expression across the transcrip-
tional clusters (Fig. 2b), for both all genes in each cluster (Fig. 2c) 
and for transcription factors (TFs) only. We examined expression 
across a wide range of tissues and cell types, using 77 mouse brain 
regions and developmental timepoints from the Allen Brain Atlas41 
and 294 mouse cell types and tissues from the FANTOM5 project44 
(Fig. 2b,c and Extended Data Fig. 5a). For both all genes and for 
TFs only, the shared-late genes showed significantly higher tempo-
ral and/or cell type specificity in both tissue panels compared to the 
shared-early genes (P ≤ 2.576 × 10−7 for all comparisons, one-sided 
Mann–Whitney test). This suggests that the pan-neuronal genes 
and TF programs that are active in perinatal postmitotic neurons 
reflect more broadly used developmental processes compared to 
those active at later ages.

Interestingly, although some cell-type-specific clusters 
also showed temporal correlation, early-active and late-active 
cell-type-specific clusters did not show significant differences in tis-
sue specificity (Fig. 2b,c), indicating that the pan-neuronal and the 
neuron-type-specific gene programs use different regulatory logic 
during neuron maturation.

To investigate the relationship between gene expression and 
ATAC peak cluster dynamics, we calculated the overlap between 
genes in the transcriptomic clusters and genes putatively regulated 
by GREs in the ATAC clusters (defined as peaks within 100 kilo-
bases (kb) of the transcriptional start site (TSS)). We found that 
the shared-early gene expression clusters were most strongly 
associated with the shared-early ATAC clusters (Benjamini–
Hochberg-corrected P = 5.748203 × 10−36, Fisher’s exact test) and 
similarly for the shared-late gene expression and ATAC clusters 
(Extended Data Fig. 5c), indicating that the shared developmental 
transcriptional and epigenetic programs affect similar sets of genes.

Next, we more finely characterized the putative GREs iden-
tified from our ATAC-seq profiles. We found that GREs in the 
shared-early ATAC clusters were more than ten-fold enriched for 
annotated promoter regions (within 1 kb upstream or downstream 
of the TSSs) and CpG islands (CGIs) compared to the shared-late 
clusters (P < 2.2 × 10−16, Fisher’s exact test; Fig. 2d,e and Extended 
Data Fig. 5b). CGIs are strongly associated with TSSs and play an 
important role in gene regulation45. Conversely, members of the 
shared-late ATAC clusters were largely TSS distal and showed lower 
frequency of overlap with CGIs and annotated promoters (2.6% 
and 1.8%, respectively; Fig. 2d,e and Extended Data Fig. 5b), sug-
gesting that they disproportionately function as distal regulatory  
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elements, such as enhancers or insulators. To confirm the enhancer 
identity of the candidate GREs in our datasets, we examined puta-
tive activated enhancers (H3K27ac-positive regions) in mouse 
brain samples from the mouse ENCODE project46 (Extended Data  
Fig. 5g). We observed enriched overlap of H3K27ac-positive 
regions from E14.5 whole-brain samples with candidate GREs from 
the ATAC shared-early clusters and between H3K27ac-positive 
regions from adult cortex samples with candidate GREs from the 
ATAC shared-late clusters, supporting the identity as enhancers of 
the GREs in these clusters.

In agreement with our findings in the transcriptional dataset, the 
cell-type-specific ATAC clusters did not show a similar transition 
from promoter to enhancer/insulator usage during neuron matu-
ration. Additionally, the cell-type-specific ATAC clusters showed  
low overlap with CGIs and annotated promoters regardless of  
developmental dynamics and, thus, likely act as enhancer regions 
(Fig. 2d,e and Extended Data Fig. 5b,g). This further supports  
the suggestion that, during neuronal maturation, neurons use dif-
ferent mechanisms to regulate shared versus cell-type-specific  
maturation processes.

Given the close relationship between chromatin accessibility and 
DNAme state, we examined the concordance of these states across 
cell types and developmental time. We found significant over-
lap between clusters with similar dynamics, where regions losing 
open chromatin gained DNAme and vice versa, for shared-early, 
shared-late and cell-type-specific clusters (Extended Data Figs. 2g,h 
and 5d). However, the fraction of open chromatin regions exhibit-
ing temporally dynamic DNAme patterns was significantly higher 
in the shared-late ATAC cluster compared to the shared-early clus-
ter (41.72% versus 4.29%; Fig. 2f and Extended Data Fig. 5e), con-
sistent with the elevated frequency of promoter and CGI regions 
found in the shared-early clusters and the much higher frequency of  
distal putative regulatory elements in the shared-late clusters  
(Fig. 2d,e and Extended Data Fig. 5b,c). Promoter regions are 
well-known to be much less prone to DNAme changes over devel-
opment, whereas distal differentially accessible sites frequently 
coincide with enhancer regions and TF binding sites that exhibit 
highly dynamic DNAme patterns47. This observation suggests that 
DNA methylation plays a greater role in regulating the shared-late 
developmental programs by mediating stable silencing of distal 
putative regulatory elements.

To confirm the biological activity of the predicted GREs, we 
selected three open chromatin regions each for the Sox4 and Sox11 
genes and silenced them using the enCRISPRi system48 in an 
in vitro differentiated neuroectodermal cell line (NE-4C; Methods). 
Inactivation of four of the six predicted GREs resulted in downregu-
lation of their respective gene, indicating that these genomic regions 
have properties of enhancers and are able to regulate gene expres-
sion (Extended Data Fig. 6).

Previous work has suggested that cell-type-specific accessible 
chromatin sites are preferentially localized in putative enhancer 
regions compared to promoter regions4,49–51. We, therefore, evalu-
ated the tissue specificity of early-active versus late-active GREs 
across a panel of DNase hypersensitivity sites in 35 adult and 
embryonic mouse primary tissues and cell types from the ENCODE 
database46. GREs in shared-late developmental epigenetic clusters 
were, on average, found in an open state in significantly fewer tis-
sues than GREs in shared-early developmental clusters (ATAC clus-
ters early versus late: P < 2.2 × 10−16, Mann–Whitney test; Fig. 2g  
and Extended Data Fig. 5f). Notably, late-active ATAC clusters were 
highly enriched for chromatin regions that are accessible in adult 
(8-week) mouse brain tissues but not for those open in embry-
onic brain, adult cerebellum, adult and perinatal retina or any 
non-central nervous system tissue. In contrast, GREs in early-active 
ATAC clusters showed high overlap with adult and embryonic brain 
but also showed broad associations with open chromatin regions 

in many other cell types and tissues (Fig. 2g and Extended Data 
Fig. 5f). The ratio of accessible sites suggests that the shared-late 
active regions are highly enriched for GREs that are specific to the 
adult brain, consistent with the enrichment of neuron-specific Gene 
Ontology (GO) processes in these clusters (Supplementary Table 4).

We then compared the average tissue specificity of accessible 
sites in the shared-early and shared-late ATAC clusters across a 
single-cell ATAC-seq (scATAC-seq) panel of 85 mouse primary 
tissues and cell types17 (Methods). The shared-early active sites 
showed lower average specificity (P < 2.2 × 10−16, Mann–Whitney 
test; Fig. 2h), again indicating that these sites are more widely used 
across tissues.

To validate that the shared-early and shared-late accessible chro-
matin sites from our ATAC-seq data confer different degrees of 
restriction in expression, we examined the activities of these sites 
in the VISTA enhancer dataset, in which enhancer activity is visual-
ized by a LacZ reporter assay driven by non-coding DNA fragments 
in transgenic mice52. We examined 16 representative chromatin sites 
selected from our ATAC-seq data in E11.5 mouse embryos in the 
VISTA dataset. We found that the early ATAC-seq open regions 
predominantly drove broad LacZ expression in multiple tissues 
throughout the organism, whereas the late ATAC-seq open regions 
drove more selective expression, with LacZ signal visible in fewer 
tissues (Extended Data Fig. 7), consistent with our bioinformatic 
analysis (Fig. 2h).

Previous studies of DNA methylation have reported that 
sequence conservation varies for DMRs characteristic of different 
tissue types53 and that DMRs specific to excitatory cortical neurons 
are less conserved than those specific to interneurons16. Given these 
observations and the more ubiquitous activity of genes and GREs in 
the shared-early developmental clusters, we hypothesized that these 
regions might be under different degrees of evolutionary constraint. 
Quantifying sequence conservation across placental mammals of the 
ATAC peak regions in the shared developmentally regulated ATAC 
clusters found significantly higher conservation of shared-early ele-
ments (P < 2.2 × 10−16, Mann-Whitney test; Fig. 2i and Extended 
Data Fig. 5b). Shared-early active GREs also showed a higher 
density of TF binding motifs (P < 2.2 × 10−16, Mann–Whitney test;  
Fig. 2j) and lower sequence entropy (a metric of sequence constraint; 
P < 2.2 × 10−16, Mann–Whitney test; Fig. 2k), both broadly associ-
ated with increased CpG density. Interestingly, across all of these 
metrics, the neuron subtype-specific gene and GRE clusters largely 
resembled the shared-late developmental clusters (Fig. 2b–e,h–i and 
Extended Data Fig. 5b).

Together, these findings (summarized in Fig. 2l) indicate that 
the shared-early GREs use more widely shared regulatory mecha-
nisms that are consequently under greater evolutionary constraint. 
In contrast, the shared-late GREs, which have more restricted tissue 
usage, may be more amenable to variation and may employ more 
species-specific or evolutionarily recent mechanisms. Notably, we 
did not find a comparable difference between the cell-type-specific 
early and late gene and GRE clusters, suggesting that this change 
in regulatory mechanisms applies specifically to genes and GREs 
involved in processes shared by all neurons.

Temporal divergence in global regulatory strategies is a con-
served principle of cortical neuron maturation across species. 
Next, we sought to investigate whether these regulatory principles 
are common to all neuronal classes in the cortex and, furthermore, 
whether cortical neurons in other species follow the same principles. 
Marmosets (Callithrix jacchus) are an attractive non-human primate 
model for neurobiology, offering more human-like brain anatomy 
and circuitry, cognitive capacities and behavioral repertoires54,55. We 
performed single-cell (mouse) or single-nucleus (marmoset) RNA 
sequencing (scRNA-seq and snRNA-seq) and single-cell ATAC 
sequencing (scATAC-seq) on unfractionated cortical tissue from 
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Fig. 3 | scRNA-seq demonstrates a developmental shift in specificity of shared gene expression programs across multiple neuronal subclasses in both 
mouse and marmoset. a, UMAP representation of gene expression profiles from 60,989 single cells from mouse cortex at P1, P7 and P21, color-coded by 
major cell type. Left: UMAP plots showing cell distribution by age. b, UMAP representation of 36,592 single nuclei from marmoset cortex at P0 and Y2, 
color-coded by major cell type. Left: UMAP plots showing cell distribution by age. c, Representative marker genes for major cell types in the mouse data. 
Also see Supplementary Fig. 6a,c. d, Representative marker genes for major cell types in the marmoset data. Also see Supplementary Fig. 8a,c.  
e, Developmental dynamics of clusters of differentially expressed genes across the mouse excitatory and inhibitory neuronal populations (cell type 
indicated by color-coded bar at top, corresponding to colors in a). f, Developmental dynamics of clusters of differentially expressed genes across the 
marmoset excitatory and inhibitory neuronal populations (cell type indicated by color-coded bar at top, corresponding to colors in b). g, Mouse gene 
expression specificity in the shared-early and shared-late gene clusters, within the mouse brain (from expression data from the Allen Brain Atlas; left), and 
across 397 mouse cell types (from the FANTOM5 project; right). Higher values indicate more specific expression. Box and midline: 25th, 50th and 75th 
percentiles; whiskers: 1.5× interquartile range from box. h, Marmoset gene expression specificity in the shared-early and shared-late gene clusters, within 
the mouse brain (from expression data from the Allen Brain Atlas; left), across 397 mouse cell types (from the FANTOM5 project; center) and across cell 
populations from our mouse single-cell dataset (right). Higher values indicate more specific expression. Box plot as in g.
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these two species across early and late stages of postnatal develop-
ment. For mice, we profiled combined somatosensory and motor 
cortex at three selected ages: P1, when early active gene and GRE 
clusters predominate; P7, an intermediate stage; and P21, when late 
active gene and GRE clusters predominate. For marmoset, we pro-
filed somatosensory cortex at neonatal (P1 to P2) and adult ages 
(2 years (Y2) for scRNA-seq and Y7 to Y8 for scATAC-seq, based on 
limited tissue availability for this species). We expect that the Y2 and 
Y7/8 marmoset samples represent comparable adult neurons, given 
the 12–16-year life span of this species56.

We first examined programs of gene expression across the two 
species. After quality control and filtering, the final dataset contained 
a total of 60,989 mouse and 36,592 marmoset cells across the differ-
ent timepoints (Fig. 3a,b and Supplementary Figs. 5–8). We per-
formed cell clustering and assigned cell identity based on expression 
of known canonical marker genes (Fig. 3a–d and Supplementary 
Figs. 6 and 8). This identified major neuronal and glial cell pop-
ulations, including different populations of pyramidal neurons 
(CPNs, subcerebral projection neurons (SCPNs) and CThPNs) and 
interneurons, astrocytes and oligodendrocyte-lineage populations, 
which expressed classical cell type marker genes, including Neurod2 
and Tbr1 (glutamatergic neurons), Gad2 (GABAergic interneu-
rons), Pdgfra (oligodendrocyte lineage) and Aqp4 (astrocytes)  
(Fig. 3c,d). For both mice and marmoset, clusters showed separa-
tion by both age and cell type, with projection neuron populations 
being predominantly separated by age (Fig. 3a,b and Supplementary 
Figs. 5c and 7c), consistent with our findings that most changes in 
the mouse bulk sequencing datasets were developmentally related 
rather than neuron subtype-specific (Fig. 1).

We then identified shared developmental and cell-type-specific 
gene clusters using unsupervised k-means clustering (Methods), 
following the same strategy used for the bulk datasets. For each 
species, we selected all pyramidal neuron and interneuron popu-
lations, identified genes that showed differential expression across 
the sc/snRNA-seq datasets and clustered them by their expression 
pattern across age and cell type (Fig. 3e,f). For mice, we identified 
two shared-early and two shared-late developmentally regulated 
pan-neuronal gene clusters (that is, shared across all pyramidal and 
interneuron populations), and, for marmoset, we identified one 
early and one late pan-neuronal gene cluster (Fig. 3e,f).

Next, we analyzed tissue specificity and cell type specificity for TFs 
in these clusters as we did for the bulk RNA-seq and found that, for 
both species, the shared-late developmental clusters showed greater 
TF specificity across both the Allen (brain) and FANTOM5 (tis-
sue) datasets than the shared-early clusters (Fig. 3g–h and Extended 
Data Fig. 8b,c,e,f). In addition, the marmoset shared-late gene clus-
ter showed greater cell type specificity across our mouse scRNA-seq 
dataset compared to the shared-early clusters (Fig. 3h). Notably, 
although the pyramidal and interneuron cell types contained mul-
tiple subclusters (both separating different subclasses and further 
dividing some subclasses), we did not observe striking differences 

within the subclusters of individual types, indicating that heteroge-
neity within neuron populations does not explain the gene clustering 
results. Collectively, these data indicate that the shift in global regu-
latory principles observed in CPN and CThPN applies to all cortical 
neuron subtypes and is conserved in the non-human primate cortex.

To examine regulatory characteristics of GREs across cell types 
and species, we performed scATAC-seq at neonatal and juvenile/
adult ages for both species (Fig. 4a,b and Methods). After quality 
control and filtering, the final dataset included 19,145 mouse and 
15,919 marmoset cells (Fig. 4a,b and Supplementary Figs. 9 and 10). 
Cell type identities were assigned to cell clusters based on inferred 
expression of the same panel of known marker genes used in the 
sc/snRNA-seq analyses (Supplementary Fig. 11). Similarly to the 
scRNA-seq data, neuron populations were predominantly separated 
by age in both species (Supplementary Figs. 9b and 10b).

We then collapsed differentially accessible ATAC peak regions 
by cell cluster and clustered these pseudo-bulk profiles. For 
mice, we identified one pan-neuronal early-peak cluster and one 
pan-neuronal late-peak cluster, as well as two late-peak clusters 
shared across pyramidal neuron populations but not interneurons 
(Fig. 4c). To confirm the biological relevance of these regions, we 
compared them to histone acetylation chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) enrichment data  
from the ENCODE project46. The mouse shared-early and 
shared-late clusters showed high overlap with H3K27ac-enriched 
regions from embryonic mouse whole brain and adult mouse cor-
tex, respectively, supporting their status as active enhancer elements 
(Extended Data Fig. 9g,h).

Notably, the dynamics of the scATAC peak clusters were cor-
related with DNAme dynamics (from the mouse bulk dataset): 
early pan-neuronal scATAC peaks remained mostly unmethylated, 
whereas late pan-neuronal peaks lost methylation over developmen-
tal time (Extended Data Fig. 10e). Interestingly, glia-specific open 
chromatin regions (such as clusters 2 and 4) showed relatively low 
DNAme levels in P1 CPNs and CThPNs and only gained DNAme 
in these neurons during maturation (Extended Data Fig. 10f), con-
sistent with the progressive silencing of alternative lineage programs 
by DNAme57. Interneuron-specific open chromatin regions (cluster 
7), however, showed consistently high DNAme levels in CPNs and 
CThPNs across all ages, suggesting that these programs may need 
to be silenced at an earlier stage of pyramidal neuron development.

For marmoset, we likewise identified one pan-neuronal early-peak 
cluster and one late-peak cluster shared across pyramidal neurons 
but not interneurons. However, we did not identify a pan-neuronal 
late-peak cluster (Fig. 4e). This may suggest that, in marmoset, adult 
regulatory programs may diverge more between interneurons and 
projection neurons than they do in mice, which may reflect greater 
neuronal specialization in more evolutionarily advanced cortices.

We repeated the ATAC peak characterization previously per-
formed on the mouse Cux2-CPN/Tle4-CThPN bulk sequencing 
dataset on the scATAC-seq datasets. Consistent with the bulk data, 

Fig. 4 | Developmental shift in gene regulatory principles is common to multiple neuronal subclasses and is conserved across mouse and marmoset.  
a, UMAP representation of ATAC chromatin accessibility profiles from 19,145 single cells from mouse cortex at P1, P7 and P21, color-coded by major 
cell type. Left: UMAP plots with cell distribution by age. b, UMAP representation of ATAC chromatin accessibility profiles from 15,919 single cells from 
marmoset cortex at P0 and Y2, color-coded by major cell type. Left: UMAP plots with cell distribution by age. c, Developmental dynamics of clusters 
of differentially accessible ATAC peaks across the mouse excitatory and inhibitory neuronal populations (cell type indicated by color-coded bar at top, 
corresponding to colors in a). Color scale: average peak normalized read count. d, Summary of CGI overlap, promoter overlap, TF motif density, tissue 
specificity and sequence conservation for each of the mouse shared developmentally regulated clusters, as in Fig. 2k. Also see Extended Data Fig. 9a–c.  
e, Developmental dynamics of clusters of differentially accessible ATAC peaks across the marmoset excitatory and inhibitory neuronal populations (cell 
type indicated by color-coded bar at top, corresponding to colors in b). Color scale: average peak normalized read count. f, Summary of CGI overlap, 
promoter overlap, TF motif density, tissue specificity and sequence conservation for each of the marmoset shared developmentally regulated clusters. 
Also see Extended Data Fig. 9d–f. g, Overlap between genes in the mouse and marmoset single-cell gene expression clusters, showing the four most 
similar pairs. Also see Extended Data Fig. 10b. h, Overlap between accessible regions in the mouse and marmoset single-cell ATAC chromatin accessibility 
clusters, showing the five most similar pairs. Also see Extended Data Fig. 10d. Color scale: average peak normalized read count.
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we found that, for both species, the pan-neuronal/pan-projection 
neuron (pan-PN) early active peak clusters showed greater enrich-
ment for promoters and CGI; increased density of binding motifs 
(mouse not significant, marmoset early versus late: P < 2.2 × 10−16); 
lower tissue specificity (mouse early versus pan-neuronal late: 
P = 0.04574, mouse early versus pan-PN late: P < 2.2 × 10−16,  

marmoset early versus late: P = 2.282 × 10−8); and higher sequence 
conservation (mouse early versus pan-neuronal late: P < 2.2 × 10−16, 
mouse early versus pan-PN late: P < 2.2 × 10−16, marmoset early ver-
sus late: P = 0.0008774) (Fig. 4d,f and Extended Data Fig. 9b,c,e,f). 
Similarly to the sc/snRNA-seq data, we did not observe significant 
differences between more finely subclustered neuronal subtypes.
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Together, these data show that the transition in pan-neuronal 
developmental programs between broadly used, more highly con-
served regulatory elements at earlier stages of postmitotic develop-
ment versus more cell-type-specific and tissue-specific regulatory 
elements at later stages holds true across different neuronal classes 
and is conserved in the non-human primate cortex. The data points 
at these regulatory principles as broadly generalized properties of 
neuronal maturation across species.

To compare the similarity of the shared developmental programs 
between species, we examined the overlap between mouse and 
marmoset gene and ATAC peak clusters (Fig. 4g,h). We found that 
the shared-early gene clusters were among the most highly similar 
pairs of clusters between species; similarly, the shared-early ATAC 
peak clusters were among the most similar pairs between species 
(Fig. 4g,h). These findings indicate that general programs of early 
pan-neuronal development are more frequently shared between 
species compared to later pan-neuronal programs, which show 
greater species specificity. This observation is consistent with the 
broader sequence-level conservation found in shared-early clusters 
identified from both the bulk pyramidal neuron and scATAC-seq 
datasets. Interestingly, interneuron-specific clusters were the most 
highly similar between species for both the gene and ATAC-seq 
datasets, suggesting that interneuron-specific developmental pro-
grams are more highly conserved (Fig. 4g,h).

Lastly, we also compared the mouse bulk ATAC-seq and 
snATAC-seq clusters to an available snATAC-seq dataset of human 
fetal cerebrum58. This analysis revealed that the mouse shared-early 
clusters had significant overlap with the human fetal open chroma-
tin regions (Supplementary Fig. 12), suggesting evolutionary con-
servation of chromatin dynamics at these sites.

In sum, our analysis uncovered a temporal shift in regulatory 
principles—across multiple modalities and between generalized 
programs of early (perinatal) and late (juvenile/adult) postmitotic 
neuronal development—that is found across neuronal subtypes and 
evolutionarily conserved in rodents and non-human primates.

Discussion
The neocortex contains a great diversity of neuronal classes that 
are born during embryogenesis but undergo substantial postnatal 
maturation to acquire their adult features. Here we have defined a 
global outline of the regulatory principles underlying key steps of 
late-embryonic and postnatal development of postmitotic cortical 
neurons in both rodents and non-human primates. In both species, 
we uncovered a striking developmental shift between two distinct 
strategies of epigenomic and transcriptional regulation active at 
early (perinatal) and late (juvenile/adult) stages of pan-neuronal 
development. Notably, early and late non-shared (cell-type-specific) 
programs did not show similar differences. These rules also apply 
across species, including non-human primates, suggesting that 
this temporal change in regulatory programs represents a broadly 
applied, core strategy for cortical neuron development.

Our finding of greater evolutionary conservation of shared, 
early-active regulatory elements is consistent with previous findings 
of higher conservation of regulatory elements at earlier stages in 
bulk forebrain tissue25. We now show that this differential conser-
vation applies specifically to shared pan-neuronal regulatory pro-
grams but not to cell-type-specific programs active at the same ages 
and, furthermore, that this strategy is shared by multiple neuron 
types and conserved across evolution.

A previous study comparing multiple developing and adult 
human cell types indicated that, whereas programs specific to pro-
genitor stages are often shared between multiple progenitor types, 
regulatory elements that become active in differentiated cell types 
are mostly cell type specific59. We show here that differentiated, post-
mitotic neurons nonetheless use a high proportion of GREs with 
broad tissue and cell type distribution to regulate early pan-neuronal  

programs. Taken together, these findings suggest that the regulatory 
programs necessary to produce a baseline cortical neuronal iden-
tity are under different developmental and evolutionary constraints 
from the programs required to confer the distinct, subtype-specific 
features of each neuronal class. Notably, these results could not have 
been predicted from analysis of other tissues. Indeed, the greater 
enhancer usage that we observed in the shared-late GRE clusters 
contrasts with observations in hematopoetic lineages, where the 
differentiation and maturation of hematopoietic stem cells into ter-
minal cell types is associated with decreased enhancer usage32,34,60.

The data support a conceptual framework in which fundamen-
tal events of general, pan-cortical neuron development that occur 
during perinatal stages, such as establishment of neuronal identity 
and the acquisition of basic aspects of neuronal architecture, use 
molecular programs that are shared with other tissues and are, thus, 
mediated by more generic regulatory programs, requiring a more 
constrained degree of variation. It is tempting to speculate that 
this reflects the need for the nervous system to build its basic cell 
types in a reproducible and invariant manner. In contrast, as neu-
rons transition to phases of neuronal, circuit and synaptic plastic-
ity and function, they employ more specialized transcriptional and 
epigenetic programs that may allow for more flexibility. The greater 
variation in cell and circuit behavior at these later stages of corti-
cal maturation may benefit from increased customization, reflected 
by more rapid species divergence in late developmental regulatory 
programs, similar to that found in the subtype-specific programs.
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Methods
Ethics approvals. All animal housing and procedures were conducted in 
accordance with the US National Institutes of Health Guide for the Care and Use 
of Laboratory Animals. All mouse experiments were approved by the Institutional 
Animal Care and Use Committee of Harvard University. All marmoset 
experiments were approved by the Institutional Animal Care and Use Committee 
of the Massachusetts Institute of Technology.

Experimental design. No statistical methods were used to predetermine sample 
sizes, but our sample sizes are similar to those reported in previous publications61. 
For mice, animals were selected according to age, sex and genotype and were 
randomized within these criteria where possible. For marmosets, sample inclusion 
was constrained by tissue availability; all tissue was collected from healthy, 
un-manipulated individuals. Data collection and analysis were not performed 
blinded to the conditions of the experiments, as the identity of the samples was 
central to the analysis. The assumptions of the statistical tests used is detailed in 
the sections for each experimental method, where applicable. No animals or data 
points were excluded from the analysis.

Mice. Mice were group-housed in standardized, individually ventilated cages with 
a 12-hour light/dark cycle, food and water ad libitum, 30–70% humidity and a 
temperature of 22 °C ± 1 °C. Male and female mice were used for each experiment.

Cux2-lineage CPNs were labeled using a Cux2-CreERT2 knock-in line35,62 
(MMRRC 032779-MU). Tle4-lineage CThPNs were labeled with a Tle4–
2A-CreERT2 mouse line36 (JAX 036298). The CRE-inducible tdTomato reporter 
line Ai14 (ref. 63) (JAX 007914) was used to detect recombined cells. Animals 
were maintained on a mixed C57BL/6J background. Cux2-CreERT2;Ai14 or Tle4-
2A-CreERT2;Ai14 double homozygous male mice were crossed with wild-type 
C57BL/6J females. Cre recombination was induced at E17.5, after the major 
wave of CPN neurogenesis (E15.5 to E17.5) was complete64. 4-Hydroxytamoxifen 
(4-OHT; Sigma-Aldrich) dissolved in corn oil was administered to pregnant mice 
at 1 mg of 4-OHT per 10 g of body weight.

For FACS isolation, CRE recombination was induced at E17.5, and the 
somatosensory cortex and a portion of the motor cortex from transgenic animals 
was dissected and dissociated at E18.5, P1, P3, P7, P21 and P48. We primarily 
aimed to analyze somatosensory cortex; however, our dissection strategy was 
informed by the limited recombination frequency typical of these experiments 
and the need to collect sufficient tissue to obtain enough labeled cells for 
bulk RNA-seq, ATAC-seq and WGBS. Tissue dissociation was performed as 
described37, and td-Tomato+ cortical pyramidal neurons were isolated by FACS. 
In brief, cortex was enzymatically digested at 37 °C for 30 min with 10 U ml−1 of 
papain (Worthington Biochemical, LS003126) in dissociation medium (20 mM 
glucose, 0.8 mM kynurenic acid (Sigma-Aldrich, K3375), 0.05 mM DL-2-amino-
5-phosphonopentanoic acid (APV; Sigma-Aldrich, A5282), 50 μl ml−1 of penicillin–
streptomycin solution (Gibco, 15140122), 0.09 M Na2SO4, 0.03 M K2SO4 and 
0.014 M MgCl2) supplemented with 0.016 μg μl−1 of L-cysteine HCl (Sigma-Aldrich, 
C7477). For P21 and P48 animals, papain concentration was increased to 20 U ml−1. 
Papain digestion was stopped with room temperature dissociation medium 
supplemented with 10 mg ml−1 each of ovomucoid protease inhibitor and BSA 
(Worthington Biochemical, LK003182), and tissue was mechanically dissociated 
by gentle trituration in ice-cold Opti-MEM (Gibco, 31985070) supplemented 
with 20 mM glucose, 0.4 mM kynurenic acid and 0.025 mM APV. We performed 
RNA-seq and ATAC-seq at E18.5, P1, P3, P7, P21 and P48 and WGBS at P1, P21 
and P48. Each library represents a pool of tissue from ten animals (five male and 
five female) from two litters. Two biological replicates were performed for each age 
and neuron type for each assay.

Marmoset. Marmoset tissue was obtained from the laboratory of Guoping Feng at 
the Massachusetts Institute of Technology. For tissue collection, adult marmosets 
were deeply sedated with ketamine (20–40 mg kg−1, intramuscular) and/or 
alfaxalone (5–10 mg kg−1, intramuscular), followed by intravenous injection of 
sodium pentobarbital (10–30 mg kg−1). Because venous access was not possible in 
neonates, infant marmosets were sedated with intraperitoneal injection of sodium 
pentobarbital (10–30 mg kg−1). When pedal withdrawal reflex was eliminated and/
or respiratory rate was diminished, animals were transcardially perfused with 
ice-cold PBS or sucrose-HEPES buffer. Whole brains were rapidly extracted into 
fresh buffer on ice. A series of 2-mm coronal blocking cuts were rapidly made 
using a custom-designed marmoset brain matrix. Slabs were transferred to a dish 
with ice-cold buffer, and regions of interest were dissected using a marmoset atlas 
as reference. Samples of somatosensory cortex were flash-frozen in RNAlater 
(Invitrogen) or immediately processed for cell dissociation.

Evaluation of interneuron representation in FACS-purified Cux2-CreERT2 
cells. It was reported that the Cux2-CreERT2 line used here also labels a subset 
of cortical interneurons35,65. To evaluate the effects of this on our analysis, we 
performed single-cell sequencing of a total of 14,792 cells for the Cux2 CPN and 
Tle4 CThPN populations at three ages, labeled using the same induction strategy 
used for our primary analysis (Supplementary Fig. 1), using the same approaches 
as described below for library preparation and analysis. Of these, 239 cells were 

positive for expression of the interneuron marker Gad1 (1.61%); 339 cells were 
positive for the interneuron marker Gad2 (2.29%); and 118 cells were positive for 
both (0.798%), for a total of <5% cells positive for either marker. We conclude that 
the effect of interneuron contamination on our analysis was minimal.

RNA-seq of genetically identified projection neuron populations. Pools of 
5,000–10,000 cortical pyramidal neurons were sorted directly into TRIzol-LS 
buffer (Invitrogen), and RNA was extracted according to the manufacturer’s 
protocol. Ten nanograms of total RNA was used for library preparation using the 
SMART-Seq v4 Ultra Low Input RNA Kit (Clontech) and the Nextera XT DNA 
Library Preparation Kit (Illumina) according to the manufacturer’s protocols. All 
libraries were sequenced according to the manufacturer’s protocols on the HiSeq 
2500 system (Illumina), using 125-bp paired-end reads at a depth of >20 million 
reads per library.

ATAC-seq of genetically identified projection neuron populations. Pools of 
3,000–5,000 cortical pyramidal neurons were sorted into Opti-MEM media (Life 
Technologies). Nuclei were extracted and libraries prepared following a previously 
published protocol66. All libraries were sequenced according to the manufacturer’s 
protocols on the HiSeq 2500 system, using 50-bp single-end reads at a depth of ~50 
million reads per library.

WGBS of genetically identified projection neuron populations. Pools of 
5,000–10,000 cortical pyramidal neurons were sorted into PBS. The EZ DNA 
Methylation-Direct Kit (Zymo Research) was used to perform bisulfite conversion, 
and libraries were prepared with the EpiGnome Methyl-Seq Kit (Illumina).  
All libraries were sequenced according to the manufacturer’s protocols on the 
HiSeq 2500 system, using 125-bp paired-end reads at a depth of >200 million  
reads per library.

Comparison to human BrainSpan data. We first identified human orthologs 
of the genes in the mouse shared-early and shared-late gene clusters using the 
Ensembl database. We then examined expression of these orthologs in human 
developing brain transcriptomic data from BrainSpan43; 1,129 out of 1,334 genes in 
the shared-early gene cluster and 1,234 out of 1,446 genes in the shared-late gene 
cluster had orthologs that were expressed in the human data. We then examined 
expression of these genes within four brain regions (primary motor cortex, primary 
somatosensory cortex, amygdaloid complex and striatum) over a time course 
spanning eight (amygdaloid complex) or 12 (all others) post-conceptional weeks 
to 40 years. Z-scores of the bulk RPKM values were plotted as heat maps using the 
‘pheatmap’ package67 version 1.0.12 in R version 3.6.0 (Supplementary Fig. 4).

Comparison to the VISTA enhancer database. We downloaded all enhancers in 
the VISTA enhancer dataset52 from their website (https://enhancer.lbl.gov/) and 
compared their genomic coordinates to our ATAC data to identify tested regions 
that spanned ATAC peaks in our shared-early and shared-late clusters. We selected 
eight representative regions for each cluster and show the ATAC peak signal over 
each region in our data, as well as the expression pattern it drives in E11.5 mouse 
embryos in the VISTA dataset (Extended Data Fig. 7).

scRNA-seq. Mouse. Somatosensory and motor cortex from wild-type animals 
was dissected and dissociated at P1, P7 and P21. For consistency, we collected the 
same cortical regions as described above for the bulk profiling of transgenically 
labeled neurons. Each library was made from tissue pooled from at least eight 
animals, and a balanced sex ratio was used. Tissue dissociation was performed as 
described above, and live cells were isolated by FACS sorting as DAPI-negative, 
Vybrant DyeCycle Ruby (Thermo Fisher Scientific)-positive events. Libraries were 
prepared using the 10x Genomics Chromium Single Cell 3′ kit v2 according to the 
manufacturer’s protocol.

Marmoset. Somatosensory cortex from wild-type animals was dissected and 
flash-frozen in RNAlater (Invitrogen). Each library was made from tissue from 
an independent individual. Nuclei were extracted by a previously published 
protocol68, and debris was removed by FACS isolation of DAPI-positive nuclei. 
In brief, cortical tissue was placed in 1 ml of cold nuclei extraction buffer (0.32 M 
sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2, 0.1 mM EDTA, 10 mM Tris-HCl and 0.1% 
Triton X-100) with 10 μl of protease inhibitor cocktail (Sigma-Aldrich, P8340), 1 μl 
of 100 mM phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich, 78830), 1 μl of 
1 M 1,4-dithiothreitol (DTT; Sigma-Aldrich, D9779) and 3 μl of 40 U μl−1 mRNase 
inhibitor (Promega, N2611). Nuclei were liberated by dounce homogenization 
(Sigma-Aldrich, D9063), using 15 strokes with the loose pestle and 25 strokes with 
the tight pestle. The crude suspension was filtered through a 40-μm nylon mesh 
cell strainer (Thermo Fisher Scientific, 22363547), transferred to a 15-ml conical 
tube and centrifuged at 1,000g for 10 minutes. The supernatant was removed, and 
the cell pellet was gently resuspended in 1 ml of cold nuclei extraction buffer with 
10 μl of protease inhibitor cocktail, 1 μl of 100 mM PMSF, 1 μl of 1 M DTT and 
1.5 μl of 40 U μl−1 RNase inhibitor. The suspension was divided between two 1.5-ml 
microcentrifuge tubes, and each 500-μl sample was gently mixed with 0.75 ml 
of 50% iodixanol, for a final concentration of 30% iodixanol. The 50% iodixanol 
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solution was prepared by adding 0.4 ml of diluent (150 mM KCl, 30 mM MgCl2 
and 120 mM Tris-HCl, pH 7.8) to 2 ml of 60% iodixanol (Sigma-Aldrich, D1556). 
The samples were then centrifuged at 10,000g for 20 minutes, and the pellet was 
resuspended in PBS with 60 U ml−1 of RNase inhibitor for FACS isolation. Nuclei 
were sequenced using the 10x Genomics Chromium Single Cell 3′ kit v2 according 
to the manufacturer’s suggested protocol for nuclei.

scATAC-seq. Mouse. Somatosensory and motor cortex from wild-type animals 
was dissected at P1, P7 and P21. For consistency, we collected the same cortical 
regions as described above for the bulk profiling of transgenically labeled 
neurons. Libraries were prepared as described in LaFave et al.69, a modification 
of Cusanovich et al.70. In brief, cells were fixed with 0.1% formaldehyde and 
incubated at room temperature for 5 minutes. The fixation was stopped by adding 
glycine to the final concentration of 125 mM. The sample was incubated at room 
temperature for 5 minutes and washed in PBS. The cell concentration was counted, 
and approximately 1,600–2,000 cells per well were distributed into each well of a 
96-well plate. Cells were transposed with 96 uniquely barcoded Tn5 at 37 °C for 
30 minutes with shaking at 300 r.p.m. The reaction was stopped by adding 0.5 M 
EDTA and incubated at 37 °C for 15 minutes. All the cells were then pooled, 
and MgCl2 was added to the pooled sample to quench EDTA. The sample was 
re-distributed onto another 96-well plate with 20 cells in each well by FACS sorting. 
Reverse crosslinking buffer and barcode PCR primers were added to each sample. 
The plate was incubated at 55 °C for 16 hours for reverse crosslinking. Tween 20 
was then added to quench SDS before PCR amplification.

The PCR reaction was carried out at the following conditions: 72 °C for 
5 minutes (extension), 98 °C for 5 minutes and then thermocycling at 98 °C for 
10 seconds, 70 °C for 30 seconds and 72 °C for 1 minute for 12–15 cycles. Libraries 
were pooled and purified using Qiagen MinElute PCR purification column. The 
libraries were quantified using KAPA library quantification kit. Libraries were 
sequenced on the Next-seq platform (Illumina) using a 150-cycle kit (Read 1: 47 
cycles, Index 1: 36 cycles, Index 2: 36 cycles, Read 2: 47 cycles).

Marmoset. Somatosensory and motor cortex from wild-type animals was dissected 
and dissociated with the Worthington Papain Dissociation System (Worthington 
Biochemical), and live cells were isolated by FACS sorting as DAPI-negative, 
Vybrant DyeCycle Ruby (Thermo Fisher Scientific)-positive events. Libraries were 
prepared using the 10x Genomics Chromium Single Cell ATAC kit.

Immunohistochemistry. To confirm class specificity of labeling, CRE 
recombination was induced at E17.5 by tamoxifen administration, and mice 
were sacrificed at E18.5, P1, P3, P7, P21 and P48 for co-immunolabelling with 
antibodies against the canonical layer markers CUX1, CTIP2 and SATB2.

Mice were deeply anesthetized with tribromoethanol and perfused 
transcardially with PBS, followed by 4% paraformaldehyde (PFA) in PBS. 
Brains were post-fixed in 4% PFA overnight, washed in PBS, embedded in 
low-melting-point agar and sectioned at 20 µm using a Leica VT1000 S vibrating 
microtome. Sections were transferred to six-well plates with Netwell Inserts 
(Corning, 3479), washed twice with PBST (1× PBS with 0.2% Triton X-100) and 
then incubated in blocking buffer consisting of PBST with 8% (v:v) normal goat 
serum (Invitrogen, 16210–072) or normal donkey serum (Sigma-Aldrich, D9663). 
Sections were incubated overnight at 4 °C with primary antibodies diluted in 
blocking buffer, washed in PBST and then incubated with Alexa Fluor-conjugated 
secondary antibodies diluted in blocking buffer for 2 hours at room temperature. 
Finally, sections were washed in PBST and mounted with DAPI Fluoromount-G 
(Southern Biotech, 0100-20). Primary antibodies and dilutions were as follows: 
mouse anti-Satb2, 1:50 (Abcam, ab51502); rat anti-Ctip2, 1:100 (Abcam, ab18465); 
and rabbit anti-Cux1 (CDP M-222), 1:300 (Santa Cruz Biotechnology, sc-13024). 
Secondary antibodies were: goat anti-rat Alexa Fluor 488 (Thermo Fisher 
Scientific, A48262), donkey anti-mouse Alexa Fluor 647 (Thermo Fisher Scientific, 
A-31571) and donkey anti-rabbit Alexa Fluor 647 (Thermo Fisher Scientific, 
A-31573). All secondary antibodies were used at 1:1,000 dilution. Imaging was 
performed using a Nikon 90i fluorescence microscope equipped with a Retiga 
EXi camera (QImaging). Analysis was done with Volocity image analysis software 
version 4.0.1 (Improvision).

Enhancer silencing by enCRISPRi. We performed the CRISPRi experiment in 
the mouse neuroepithelial cell line NE4C (American Type Culture Collection 
(ATCC)). We selected three regions predicted to be open around each of Sox4 
and Sox11 in our mouse bulk ATAC dataset. For each of these predicted enhancer 
regions, we designed three single guide RNAs (sgRNAs) using the Benchling 
sgRNA design tool (https://www.benchling.com/crispr/).

NE4C cells were cultured following the supplier’s protocol (ATCC). After 
transfection with the CRISPRi constructs48, neuronal differentiation was induced 
with retinoic acid. Starting 5–7 days after induction of differentiation, doxycycline 
was added to the plates to induce the dCas9 expression and silence the candidate 
regions for 5 days. Cells were then collected, and Sox4 and Sox11 expression was 
quantified by qPCR. Expression was normalized against cells transfected with an 
irrelevant control sgRNA. Each experiment included three biological replicates, 
each with two technical replicates.

sgRNA sequences used:
Sox4:
sgRNA1 AGTTAACTGTTTGAGAAAGATG
sgRNA2 CTAAGGTCTTGAGATAAACAGC
sgRNA3 TTAATATAACATGACAGGCACG
Sox11:
sgRNA1 GTCCAACAGCCAGATCTTATAG
sgRNA2: AGTCCTTGCCCATAGTCCTCAG
sgRNA3: GATTGCCTTGATTCCTAAAACG

Bioinformatics analysis. Data processing. Bulk RNA-seq. Raw reads were trimmed 
using Trimmomatic71 version 0.33, removing 8 bp from the 5′ end and 25 bp from 
the 3′ end. Subsequently, reads were aligned to the Ensembl NCBI37 (mm9) 
genome build (downloaded from the Illumina iGenomes file collection), using 
TopHat2 (ref. 72) version 2.0.13 with default parameters. Subsequently, differential 
gene expression analysis and FPKM quantification was performed using Cuffdiff73 
version 2.2.1 for all pairwise comparisons. Differentially expressed genes were 
defined as all genes that showed a significant (false discovery rate (FDR) ≤ 0.05) 
change in gene expression with ≥1.5 log2 fold change in at least one comparison 
and were expressed at levels greater than 10 FPKM in at least one condition within 
that comparison, resulting in n = 4,419 differentially expressed genes across the 
entire dataset.

Next, genes were clustered using k-means clustering on the log2-transformed 
and Z-scored FPKM values of all differentially expressed genes using 100 
random starts. To determine the number of clusters, we used the gap statistics 
as implemented in the R package cluster74 version 2.0.7 in combination with the 
Tibshirani 2001 method75 based on the standard deviation evaluating k = 2–20, 
identifying 12 clusters in total. Finally, we classified each cluster manually based on 
its expression dynamic into one of five categories: shared developmental clusters 
(1–5), Cux2 CPN-specific (6–8), Tle4 CThPN-specific (9–11) and other (12), as 
shown in Fig. 1c.

Bulk ATAC-seq. ATAC-seq raw reads were aligned to the genome build 
NCBI37 downloaded from the Illumina iGenomes collection using Bowtie2 
(ref. 76) with default parameters. Subsequently, aligned reads were filtered for 
duplicates using MarkDuplicates from the Picard software toolbox version 2.7.1 
(http://broadinstitute.github.io/picard/)77. Next, we performed peak calling for 
each sample group using the irreproducible discovery rate (IDR) framework78 
in combination with the macs2 peak caller (MACS2 version 2.1.1), with two 
independent biological replicates in each group. All peaks detected at IDR ≤ 0.1 
in each group were retained for further analysis. We then performed differential 
peak enrichment analysis across all pairwise group comparisons using the diffBind 
package79,80 in combination with DESeq2 (ref. 81). To that end, we employed 
the DBA_SCORE_TMM_READS_EFFECTIVE score for normalization and 
subsequent differential enrichment analysis. We defined all peaks exhibiting 
significant (FDR ≤ 0.01) differential enrichment above a log2 fold change of 1.5 
and a minimum enrichment ≥1 trimmed mean of M values (TMM) normalized 
reads in at least one condition as differential, resulting in n = 66,784 differentially 
enriched ATAC-seq peaks across the entire dataset. Subsequently, we averaged 
over all replicates for each group and transformed the resulting TMM value to log2 
space. Next, we conducted k-means clustering on Z-scored and log2-transformed 
TMM values on all differentially enriched regions using 100 random starts. We 
again used the gap statistics in combination with the Tibshirani SE method, which 
identified 13 clusters. After inspection of the cluster dynamics, we annotated 
each cluster as shared developmental (split into shared-early and shared-late), 
CPN-specific, CThPN-specific or other.

Finally, we associated each differentially active ATAC-seq peak with the closest 
Ensembl gene TSS using the ChIPpeakAnno package82. Selected gene names 
based on this association are shown in Fig. 1d. We then classified each cluster as 
developmental, neuron class-specific or other according to its dynamic enrichment 
patterns (Fig. 1d).

Bulk WGBS. Raw sequencing reads were trimmed 8 bp from the 5′ end  
and 40–60 bp from the 3′ end, depending on library quality. Next, reads were 
aligned to the genome build NCBI37 using bsmap83 version 2.9 with parameter 
settings -v 0.1 -s 16 -q 20 -w 100 -S 1 -u –R. Aligned data were then filtered for 
PCR duplicates using the MarkDuplicates function implemented in the Picard 
toolbox. Next, CpG methylation calling was performed on the duplicate filtered 
data using the mcall function implemented in the MOABS suite84 version 1.3.2 
with default parameters.

scATAC. Base calls were converted to FASTQ format using bcl2fastq (Illumina). 
Raw sequencing reads were trimmed using custom Python scripts to remove 
adapter sequences. The data were demultiplexed tolerating one mismatched base 
within barcodes. Mitochondrial, unpaired and low-quality reads were removed 
using SAMtools85 version 1.5 (samtools view -b -q 30 -f 0×2). Duplicate sequences 
were removed using the Picard toolkit77. The reads were aligned to the mm10 or 
CalJac3 genomes using Bowtie2 (ref. 76) version 2.3.2 with maximum fragment 
length set to 2 kb and all other default settings (bowtie2 -X2000–rg-id).
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Data analysis. Identification of DMRs. DMRs were identified using the R package 
DSS86. To that end, we performed all pairwise comparisons across sample groups. 
For each of these pairwise comparisons, we applied the following three functions 
from the DSS package to the appropriate biological replicates. First, we used 
the dmlTest with smoothing=T and smoothing.span=200. Next, we identified 
differentially methylated CpGs using the callDML function with a threshold of 
P = 0.001. Finally, we identified DMRs using the callDMR function directly using 
the posterior probability that the methylation difference exceeds a certain value. 
We set the parameters delta=0.3, p.threshold=0.01, minCG=3 and dis.merge=400; 
all other parameters were left at their default settings. Next, we merged all DMRs 
identified across the pairwise comparisons into one DMR set, collapsing DMRs 
that overlap by at least one base pair into a single DMR. For further downstream 
analysis and visualization, we employed the methylKit package87 version 0.9.5. In 
particular, we computed the methylation level and coverage of each DMR in each 
sample, defined as the weighted average of CpG methylation levels weighted by 
coverage. We then retained only those DMRs that were covered by more than five 
reads in at least three samples. Next, we averaged the methylation levels of each 
DMR across replicates and assigned the DMRs to different groups based on their 
methylation differences between the replicate-averaged, DMR-level methylation 
values. DMRs that exhibited an absolute methylation difference ≥0.3 between any 
pair of samples and exceeded a size of 100 bp were defined as differentiation DMRs.

We then performed clustering using k-means, initially identifying 12 clusters 
that we collapsed upon further inspection into ten distinct clusters. We again 
annotated each cluster according to its dynamic enrichment patterns (Fig. 1e).

We determined global CpG and non-CpG methylation levels as the fraction of 
methylated CpGs over the total number of detected CpGs (and correspondingly 
for non-CpGs) for all ATAC-seq regions overlapping with DMRs and covered by 
at least ten reads in 80% of the samples using the function in the regionCounts 
function in the methylKit package. We report the corresponding feature 
methylation values in Extended Data Fig. 2h.

MDS analysis. We performed MDS using the cmdscale R function with 1 minus the 
absolute Person correlation coefficient as metric, reducing the dimensionality to two 
dimensions. We then computed the distances of individual samples shown in Fig. 1g 
and corresponding text as the two-dimensional (2D) Euclidean distance. As input, 
we used the log2 + 1 transformed FPKM values of all expressed genes (≥10 FPKM in 
at least one condition) (RNA-seq), the log2 + 1 and quantile-normalized ATAC-seq 
TMM values (ATAC-seq) and the methylation level of all 1-kb tiles of the mouse 
genome covered by at least five reads in more than two samples.

Specificity analysis for bulk RNA-seq clusters. We report specificity analysis for 
differentially expressed TFs as well as gene expression clusters. These specificity 
analyses were conducted using three distinct datasets that were processed in the 
following manner:

FANTOM5: Similarly, we computed the expression specificity of TFs in 
each expression cluster, all TFs and all genes across 294 mouse cell types and 
tissues based on CAGE data from the FANTOM5 consortium44. To that end, we 
downloaded the CAGE-tag data for promoter regions from the FANTOM5 cell 
and tissue collection from http://fantom.gsc.riken.jp/5/. We then collapsed all 
CAGE-tag peaks for each gene by summing up the tag counts, including only 
primary cell types. Subsequently, we collapsed replicates for each cell type or tissue 
by averaging.

Allen Brain in situ41,88: The Allen brain data were downloaded from the Allen 
Brain Atlas Developing Mouse Brain website (https://developingmouse.brain-map.
org/). We obtained ISH counts for the developing mouse brain at seven distinct 
fetal timepoints and 11 different brain substructures. We then intersected the 
resulting list of genes with the list of TFs/genes in each expression cluster and 
determined the expression specificity of each TF/gene across the 77 conditions 
(see below for further details) from this atlas. We then plotted the distribution of 
specificities for each cluster in Fig. 2c for control purposes.

Mouse single-cell RNA-seq data: Here, we used the log2-normalized 
expression values averaged over all the cells in a particular cell cluster using 
the AverageExpression() function in Seurat. We then used these pseudo-bulk 
expression values for each gene across all identified cell types as input for the 
specificity analysis.

Similarly, we computed the expression specificity of TFs in each expression 
cluster, all TFs and all genes across 294 mouse cell types and tissues based on 
CAGE data from the FANTOM5 consortium44. To that end, we downloaded the 
CAGE-tag data for promoter regions from the FANTOM5 cell and tissue collection 
from http://fantom.gsc.riken.jp/5/. We then collapsed all CAGE-tag peaks for each 
gene by summing up the tag counts.

We then computed expression specificity for each TF/gene following previous 
approaches using the tau specificity measure89 according to90:

τ =

∑n
i=1(1 − x̂i)
n − 1

;x̂i =
xi

max
1≤i≤n

xi

with n being the number of samples/tissues and xi being the expression of the 
gene in tissue i. We report the result in Fig. 2c.

Specificity analysis for scATAC clusters. To assess the specificity of each ATAC 
peak in the bulk or scATAC dataset, we downloaded pre-computed ATAC peak 
specificity scores computed over more than 80 distinct cell types of an entire 
mouse using scATAC-seq data from Cusanovich et al.17.

We then intersected our peak library with the Cusanovich et al. dataset and 
report the Cusanovich et al. specificity values for all peaks that overlap with at least 
one peak in the Cusanovich et al. dataset.

Bulk ATAC peak overlap with DNAse data. To create a catalog of gene regulatory 
elements in the mouse genome, we downloaded a set of DNAse HS I peak tracks 
from the mouse ENCODE consortium46 (Supplementary Table 5). Subsequently, 
we collapsed replicates for each condition and required that each peak was 
present in at least two replicates. This step resulted in DNAse I tracks for 35 
distinct primary mouse cell types and tissues. Next, we merged all DNAse I tracks 
into a union peak set using the reduce() function in the IRanges R package91. 
Subsequently, we size-standardized the resulting union peak set to 350 bp by 
extending 175 bp from the center of each peak. Next, we assigned a binary value for 
each peak in each of the 35 cell types, depending on whether or not the peak was 
present in the individual cell-type-level peak set. We then used this union peak set 
and overlapped all ATAC peaks from the mouse bulk ATAC-seq dataset with this 
library. We report the percent of peaks in each cluster that overlap DNAse I HS 
sites in each cell type.

Definition of genomic features. CGIs were defined as previously described92 
and are listed in Supplementary Table 6. Promoters were defined as all NCBIm37 
Ensembl version 67 TSSs, extended by 1 kb upstream and downstream.

TF binding site density analysis. For each set of regions of interest (DMRs and 
ATAC peaks), we performed motif detection analysis using FIMO93 with a P value 
filter of less than 10−4 and a joint motif database comprising the TRANSFAC 
Professional library (version 2011)94 and a set of previously published motifs by 
Jolma et al.95. All genomic regions were size-standardized (if not already) before 
motif analysis.

Entropy analysis. To compute the Shannon entropy of the size-standardized 
ATAC-seq peak sequence, we used the entropy() function in the sequtils96  
Python package.

Integrative analysis. To evaluate the concordance of changes in the transcriptome, 
open chromatin and DNA methylation landscape, we associated each ATAC-peak 
or DMR with its nearest gene within 100 kb upstream or downstream. Peaks/DMRs 
without any assigned gene were not considered. Subsequently, we performed 
a hypergeometric test between all pairs of ATAC-peak/DMR clusters and bulk 
expression clusters in gene space to assess the significance of overlap. After 
multiple-testing correction using the Benjamini–Hochberg method97, we report the 
odds ratio of associations significant below a q value of 0.001 in Extended Data  
Fig. 5c,d, capping the odds ratio at 10.

Phylogenetic conservation analysis. We performed phylogenetic conservation 
analysis for ATAC-seq cluster groups by computing the average placental  
mammal phyloP scores98 for each region. We then plotted the distribution of  
these mean scores.

Signature gene set analysis. First, we associated each of our consensus DMRs 
with the nearest mouse Ensembl TSS within 100 kb using the ChIPPeakAnno R 
package82,99. Subsequently, we performed gene-set-level analysis and determined 
the mean methylation level of all DMRs associated with a member gene of each 
signature gene set using the aforementioned DMR–gene associations. We used 
signature gene sets for CThPNs, CPNs and SCPNs obtained from the DeCoN 
database12 as well as manually curated gene sets for glial and interneuron cell types 
from published transcriptomic data100,101. We then report the mean methylation 
level of all DMRs associated with each gene set in Extended Data Fig. 2c for each 
timepoint and cell type.

Global methylation level analysis. Global CpG methylation level was defined as 
the total number of detected methylated Cs in CpG context over the total number 
of CpGs sequenced. Similarly, we defined the global non-CpG methylation level 
comprising all other dinucleotide contexts.

scRNA-seq analysis. Mouse scRNA-seq data were processed using Cell Ranger 
version 3.0.1 (10x Genomics) using standard parameters and genome assembly 
GRCm38 downloaded from the 10x Genomics website. After initial alignment and 
processing by cellranger count, all replicates across all timepoints were aggregated 
using the cellranger aggr function, downsampling the individual libraries to a 
similar overall coverage by cell.

All following analyses were conducted in R using the Seurat package (version 
2.3.4). We first filtered the dataset to retain only cells with at least 1,000 genes, a 
mitochondrial read fraction below 10% and not more than 6,000 genes or 15,000 
unique molecular identifiers (UMIs).
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Subsequently, we initially performed cell clustering and subtype identification 
separately for each timepoint P1, P7 and P21. For that purpose, we subsetted the 
data for each timepoint and then applied the following workflow. Expression 
data were normalized using the LogNormalize method, and variable genes were 
identified based on the mean/dispersion relation (initially using the following 
parameters: x.low.cutoff = 0.05, x.high.cutoff = 3, y.cutoff = 0.05).

Next, the data were scaled using the ScaleData function, regressing out 
percentage of mitochondrial reads and UMI count per cell. We then computed 
the first 100 principal components (PCs) and examined the resulting elbow plot 
for variance explained by each PC. Based on that, we selected the first 35–40 PCs 
for subsequent dimensionality reduction by uniform manifold approximation and 
projection (UMAP) (min_dist = 0.2 to 0.5) and cluster identification using the 
Seurat FindClusters (resolution = 0.4 to 0.6, nn.eps = 0.5) function.

We conducted several rounds of principal component analysis (PCA), 
clustering and UMAP embedding, successively removing clear outlier cell clusters 
based on the UMAP (four for P1, two for P7 and two for P21).

After cleanup and cluster identification by timepoint, we analyzed all 
timepoints jointly, assigning the cell original cluster definitions based on the 
individual timepoint analysis. For that purpose, we used as cutoffs in the variable 
gene feature analysis: x.low.cutoff = 0.025, x.high.cutoff = 3, y.cutoff = 0.05, 50 PCs, 
a resolution of 0.9 in the clustering analysis and a min_dist = 0.4 in the UMAP.

Next, we performed cell type identification for each cluster using a set of 
manually curated marker genes for each cell type, identified from previous 
literature, the DeCoN database12 (for projection neuron subtypes) and published 
transcriptomic data for glial and interneuron cell types100,101. To assign identities, 
we examined the expression of all marker genes individually using the UMAP. In 
addition, we computed the AverageExpression for each cluster and examined the 
pseudo-bulk profiles. In particular, we computed joint cell type scores for each 
cluster and potential identity by normalizing the average cell type scores for each 
cluster to the maximum observed score for each cell type separately. Moreover, 
we performed hierarchical clustering, correlation analysis, PCA and MDS 
evaluation of the pseudo-bulk profiles to identify outlier clusters and investigate 
the relationship between cell clusters in more detail. Based on these analyses, 
we were able to assign identities to most cell clusters. For a few clusters that 
appeared to have mixed identities (such as a cluster containing multiple subtypes 
of interneurons), we performed subclustering to refine the identities of these cells. 
We then collapsed subclusters with the same subtype identity into a single subtype 
cluster to reduce the complexity for subsequent analysis (final cluster n = 32).

Differential expression analysis. To identify differentially expressed genes 
between timepoints within distinct cell type classes, we assigned each cell  
cluster to seven sets of general cell classes that we analyzed separately: excitatory 
neurons, inhibitory neurons, astrocytes, oligodendrocytes, neurons, glia and  
all cell types combined.

We then performed differential expression analysis in pairwise fashion between 
P1 and P7, P1 and P21 and P7 and P21 for each of the aforementioned cell type 
classes using the FindMarker function in Seurat and the MAST method for 
differential expression testing.

In this manner, we obtained seven distinct lists of genes differentially expressed 
across development. Next, we averaged the expression of all cells within one 
cluster using the AverageExpression function in Seurat. To avoid biases driven by 
cluster complexity and cell number, we downsampled each cluster to a maximum 
of 500 cells per cluster before averaging. Next, we performed clustering on 
Z-score-transformed expression values of each of the seven differentially expressed 
gene sets separately. For that purpose, we used the clusGap function in the R 
package cluster74 using kmeans with a maximum of 20 clusters and the B parameter 
set to 60. We then select the final number of clusters based on the Tibshirani 
2001 criterion75 for the standard deviation as implemented in the cluster package. 
Finally, we performed k-means clustering with 100 random starts using the 
identified number of clusters and average over the Z-scored genes in each cluster 
(Fig. 3 and Extended Data Fig. 8).

Lastly, we performed expression specificity analysis for all gene clusters in 
a similar manner as for the bulk data, using the Allen Brain in situ dataset, the 
FANTOM5 and the mouse scRNA-seq low-resolution dataset for comparison for 
all differentially expressed genes as well as for TFs only.

Marmoset snRNA-seq analysis. Marmoset snRNA-seq data were processed using 
Cell Ranger version 2.1.0 and aligned to a pre-mRNA custom build transcriptome 
of assembly version ASM275486v1.93. All replicates were first processed 
independently using cellranger count and then aggregated, downsampling all 
libraries to the same complexity per cell. Subsequently, the data were processed 
using Seurat following a similar workflow as for the mouse scRNA-seq, retaining 
only cells with more than 1,000 genes and genes detected in more than ten cells. 
Initially, variable genes were again identified using the mean/dispersion relation 
with the following parameters: x.low.cutoff = 0.05, x.high.cutoff = 3, y.cutoff = 
0.05. During initial quality control of the five individual marmoset libraries, we 
observed a separation by experimental batch, where all three libraries (D0 and 
Y2) from experimental batch 1 and the two libraries from batch 2 (D0 and Y2) 
grouped together. Given that developmental timepoint and experimental batch are 

not confounded in our experimental design, we performed batch correction using 
CCA as implemented in the Seurat package. Here, we discarded all cells where 
the variance explained by CCA is <2-fold. After correction, a clear separation by 
timepoint and cell type became apparent, as originally observed when processing 
each experimental batch separately. We thus proceeded with the CCA-corrected 
data following the same strategy as for the mouse scRNA-seq data, performing 
PCA and using 20 dimensions in subsequent analyses, identifying clusters with a 
resolution of 1.8 and creating a UMAP embedding with a min_dist of 0.3.

Subsequently, data analysis was conducted similarly to the mouse scRNA-seq 
data, assigning cell types and cell classes, performing differential expression 
analysis between timepoints within each of seven cell classes, collapsing clusters 
with similar subtype identity and performing gene clustering within each cell 
group to identify gene clusters.

scATAC analysis. Read alignment and pre-processing. Base calls were converted to 
FASTQ format using bcl2fastq (Illumina). Raw sequencing reads were trimmed 
using custom Python scripts to remove adapter sequences. The reads were 
aligned to the mm10 or CalJac3 genome using Bowtie2 (ref. 76) with maximum 
fragment length set to 2 kb and all other default settings (bowtie2 -X2000–rg-id). 
The data were demultiplexed tolerating one mismatched base within barcodes. 
Mitochondrial, unpaired and low-quality reads were removed using SAMtools85 
(samtools view -b -q 30 -f 0×2). Duplicate sequences were removed using the 
Picard toolkit77. To counteract differential complexity across the libraries, each 
library was sampled to a similar fragment depth per cell.

Mouse and marmoset libraries were first downsampled to similar overall 
complexity in terms of reads per cell across all conditions. Cleaned data were 
processed with the Scasat102 pipeline using macs2 as peak caller with parameters 
set to -q 0.2–nomodel –nolambda, giving rise to a peak × cell matrix count matrix. 
For genome size, we used -g mm for mouse and -g 2.1e + 9 for marmoset. We then 
size-standardized all peaks to 500 bp and recomputed the peak × cell count matrix, 
considering only reads overlapping the size-reduced peaks.

Only cells with at least 1,000 reads and 300 peaks from the master list 
overlapping with at least one read, but not more than 15,000 reads and 8,000  
peaks, were retained for analysis. In addition, only peaks present in at least  
20 cells were retained.

Subsequently, this matrix was processed using R implementing a custom 
processing pipeline based on the strategy outlined in Cusanovich et al.17 and 
refined by Hill103, following the log-latent semantic indexing (log-LSI) workflow. In 
brief, the count matrix was first binarized and then transformed using the TF-IDF 
method70, log-scaling the results. Next, PCA was performed on the transformed 
matrix using 50 dimensions, after cell cluster identification based on Seurat’s 
FindCluster() function with resolution set to 0.5 and UMAP embedding with 
a min_dist of 0.3. Notably, we split each cluster containing cells from different 
timepoints into separate clusters for each timepoint and then filtered out all 
clusters with fewer than 100 cells.

Cell type identification in scATAC data. To reliably identify distinct cell types, 
we next computed gene activity scores for all genes based on the presence of 
ATAC peaks. To that end, we used the R package Cicero104, because it implements 
an approach considering not only peaks located within the promoter/gene body 
of each gene but also weights the contribution of each peak to the overall gene 
score based on the correlation of the gene peaks with each other. To that end, we 
imported the pre-processed data into a cicero atac_cds object providing the cluster 
ID and UMAP coordinates defined based on the aforementioned LSI analysis. 
Next, we estimated library size factors and reliable peaks using default parameters, 
followed by running Cicero’s main function with default parameters to compute 
the connectivity graph of all peaks. Next, we annotated all peaks with the annotate_
cds_by_site function using the transcription start coordinates for all Ensembl genes 
retrieved from biomaRt, defining the region ±5 kb of each TSS as the promoter 
region. With this annotation in place, we constructed the raw gene activity matrix 
using the build_gene_activity_matrix function, followed by normalizing the 
resulting scores using the function normalize_gene_activities.

Next, we averaged the computed gene scores for each cell cluster and 
normalized the aggregated score for each gene to the maximum across all 
pseudo-bulk cell clusters. We then again computed cell type scores for each 
scATAC cell cluster by averaging a set of known marker genes (the same as used for 
scRNA-seq) for each cluster and plotting results along with hierarchical clustering, 
PCA and MDS analysis of the pseudo-bulk gene scores. Based on these analyses, 
we removed outlier clusters (for example, very low complexity) and assigned a 
final cell type annotation. Based on this cleaned dataset, we performed differential 
accessibility analysis, aggregating the signal of all cells in each cluster using Cicero’s 
aggregate_by_cell_bin function, followed by a negative binomial-based differential 
accessibility test implemented in the differentialGeneTest function using the cluster 
ID as a factor to test. In addition to the cell-cluster-based test, we also performed 
a second test on the timepoint variable to identify specifically those peaks variable 
across distinct timepoints. We then selected all peaks below a q value of 0.5 in 
either of the two analyses as a dynamic peak set for subsequent analysis. The results 
are not particularly sensitive to this threshold, as we tested q value thresholds 
between 0.1 and 0.5. However, given the limited power for each peak, we decided 
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to include all peaks with some evidence for differential accessibility in further 
clustering analysis. We opted to use a 0.5 threshold, as this gave us a similar 
fraction of variable peaks as the bulk ATAC analysis conducted earlier.

All subsequent analyses were conducted on this dynamic peak set, after 
excluding all cells of unassigned identity. Next, we normalized the read counts for 
each cell by the respective size factor and averaged the resulting values across all 
cells within one cluster, giving rise to pseudo-bulk profiles. Next, we normalized 
these profiles for each peak across all pseudo-bulk clusters by dividing each row 
(corresponding to peaks) by the 95th quantile across all cell clusters, capping all 
values at 1. This gave rise to a normalized accessibility score in the unit interval. 
These values were then used for clustering analysis, following the same strategy as 
for the scRNA-seq, again assigning each cell cluster to one of seven categories and 
then performing k-means with 100 random starts and clustering on the respective 
subset of cell clusters for all peaks in the dynamic peak set. Again, the cluster 
number was determined using the clusGap function in the R package cluster and 
Tibshirani 2001 SE criterion. The resulting peak clusters were then subjected to the 
same characterization as the peak clusters from the bulk ATAC analysis. For the 
specificity analysis, the cluster coordinates were lifted from mm10 to mm9 using 
the USCS liftover tool (http://genome.ucsc.edu/)105.

Defining early, late and cell-type-specific clusters. To assign clusters to a 
particular activity pattern to individual region clusters, we predefined a set of 
patterns according to possible dynamics of interest. These included temporal 
neurons (for example, specific to P1, P7, P21 or P1_P7 or Y0 and Y2), excitatory 
neurons and inhibitory neurons as well as specific to a particular cell cluster. These 
patterns were summarized in a prototype binary indicator matrix of dimensions 
number of cell clusters times number of patterns. For each pattern and cell cluster, 
the indicator matrix cell was set to 1 if that cell cluster was associated with that 
pattern—for example, setting the indicator variable for P1_CPN_1 and P1_CPN_3 
both to 1 in the P1 pattern definition.

We then computed the cosine similarity between each of these pattern vectors 
with the normalized accessibility score vector for each region cluster, taking the 
average of accessibility score for all regions within one region cluster for each 
cell cluster separately. This analysis gave rise to a similarity measure of each 
cluster’s dynamic to a predefined set of temporal/cell type dynamics. Based on 
the maximum observed similarity to a predefined pattern, we then assigned the 
pattern label to the corresponding cluster.

Mouse single-cell ATAC peak methylation analysis. Before DNA methylation 
analysis, we performed a liftover of the size-standardized (500-bp) scATAC peaks 
from mm10 to mm9 using the UCSC liftover tool. Next, we computed DNAme 
levels in a similar manner as for the bulk data, using the scATAC peaks instead of 
the DMR regions as input, considering only regions that were covered by at least 
five reads in at least eight of the 12 WGBS samples. We report the distribution of 
methylation levels for each of the scATAC region clusters across CPN and CThPN 
neurons at P1, P21 and P48.

Similarity in cell types across ages. To compute the similarities among cell 
types within each age group and compare them, we first merged single-cell data 
into pseudo-bulk by computing the average expression for each cell type at each 
timepoint (using the AverageExpression function from Seurat package version 
3.1.0 in R version 3.6.3). We then performed PCA (using the prcomp function 
included in R as its base package), taking the top ten PCs (ordered by the fraction 
of total variance explained), to project the data onto the two dimensions using the 
UMAP algorithm (umap package version 0.2.4.0 in R).

GO enrichment analysis. We prepared two input gene lists for each organism 
(shared-early and shared-late in the neuronal cell population) based on our gene 
module clustering. To query marmoset genes, we first converted them into human 
(GRCh38.p13) orthologous genes (using the Ensembl database). Enrichment 
analysis was done using the Panther overrepresentation test available through the 
Gene Ontology Consortium106–108 web interface. Test type was set to Fisher’s exact 
test, and FDR was computed for each term. Selected GO terms for the shared 
developmental clusters are presented in Supplementary Table 4.

Computation of mouse/marmoset gene and open chromatin cluster similarity. 
To determine overlap of mouse and marmoset gene clusters with each other, mouse 
Ensembl gene IDs were mapped to marmoset gene IDs using the Ensembl homolog 
database, and only mappable genes with known homologs were retained for further 
interspecies analysis. With this mapping in hand, we determined the overlap of all 
mouse and marmoset gene clusters, determining significance and odds ratio using 
Fisher’s exact test with the union of all mappable and clustered genes (containing 
only genes differentially expressed in each dataset) as background set. These results 
are shown in Fig. 4g.

Open chromatin cluster overlap based on scATAC-seq between mouse and 
marmoset clusters was determined by first mapping size-standardized (500-bp) 
clustered marmoset open chromatin peaks to the mouse genome using bnMapper 
from the bx-python software suite (https://github.com/bxlab/bx-python) and 
mapping file calJac3ToMm10.over.chain.pkl downloaded from the UCSC genome 

browser website. Subsequently, the resulting mapped regions were filtered to be at 
least 100 bp in size and showing a ratio of mapped region size to original region 
size of less than 1.2. All regions fulfilling these criteria were used for further 
analysis. We then compared the pairwise overlap in terms of genomic regions for 
each mouse and marmoset open chromatin cluster and report the percentage of 
overlap in Fig. 4f.

Similarly, we computed the overlap with open chromatin regions in human 
fetal cerebrum from ref. 58 (downloaded from https://descartes.brotmanbaty.org/) 
for mouse and marmoset scATAC-based clusters, mapping them to hg19 analogous 
to the strategy described above. Although this dataset is not restricted to the cortex, 
at the time of this study comparably large single-cell ATAC datasets for the human 
fetal cortex were not available.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated in the current study are available through the Gene 
Expression Omnibus (GEO SuperSeries GSE204851).
The following publicly available datasets were used:
Mus musculus Ensembl genome build NCBIM37 (mm9); Callithrix jacchus 
(common marmoset) genome assembly version ASM275486v1.93; human 
developing brain transcriptomic data from BrainSpan43 (http://brainspan.org/
rnaseq/search/index.html); mouse enhancer data from the VISTA enhancer 
database52 (http://enhancer.lbl.gov/); mouse CAGE-tag data from the FANTOM5 
database44 (https://fantom.gsc.riken.jp/5/); mouse ISH expression data from the 
Allen Brain Atlas Developing Mouse Brain database (http://developingmouse.
brain-map.org/); mouse single-cell ATAC-seq data from Cusanovich et al.17 (GEO: 
GSE111586); DNAse HS I peak tracks from the mouse ENCODE consortium46 
(www.encodeproject.org); and human fetal cerebrum single-cell ATAC-seq data 
from Domcke et al.58 (https://descartes.brotmanbaty.org/).

Code availability
All custom scripts are available from the corresponding authors upon reasonable 
request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Isolation of genetically-labelled CPNs and CThPNs. a, Representative coronal sections (n ≥ 3 biological replicates) showing correct 
laminar location of tdTomato+ cells in the somatosensory cortex at the different developmental stages. Upper panels, scale bar 500 μm. Lower panels, 
scale bar 100 μm. b, Representative FACS results for purification of Cux2 CPN and Tle4 CThPN populations at the different developmental stages. Boxed 
areas indicate tdTomato+ cells collected for profiling. The GFP channel (empty) is used for evaluation of background signal. c, Representative images of 
pre-and post-sorting Tle4 and Cux2 neuronal populations at P48, showing good purity and viability even at this older age (n ≥ 3 biological replicates). 
Scale bar, 50 μm.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | DNA methylation at dynamic loci. a, Global DNA methylation levels at CpG (left) and non-CpG sites (right) across ages.  
b, Average expression of differentially expressed DNA methyltransferases across ages. c, Median methylation levels of all DMRs within 100 kb of signature 
genes for the specified cell types at each age. Boxes indicate gene sets corresponding to earlier ages of the same cell fate. d, Normalized gene expression 
patterns, shown as Z-scores, for the sets of signature genes used in panel c. e, Size distribution of DMRs within each cluster. Bar: median; box: 25–75th 
quantile; whisker: 1.5 x inter-quartile range. For size of clusters, see Supplementary Fig 3c. f, Average CpA methylation levels across 11,150 CpA DMRs 
clustered into 5 distinct clusters across developmental time and PN subtypes. g, Average methylation levels for ATAC-seq regions with overlapping 
DNAme data for each ATAC-seq cluster (y axis) across developmental time and neuronal subtype (x-axis) based on bulk ATAC-seq data. h, Methylation 
level distribution (y axis) for ATAC-seq regions with overlapping DNAme data for each ATAC-seq cluster (x axis) across developmental time and neuronal 
subtype (colored boxplots) based on bulk ATAC-seq data. Box and midline: 25th, 50th and 75th percentiles; whiskers: 1.5 interquartile range from box. 
Dots indicate data points outside this range.
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Extended Data Fig. 3 | Validation of temporal patterns of early gene expression using external datasets. a, Expression of selected genes in the 
shared-early cluster at (from top to bottom) E18.5, P4, P14, P28 and P56, in the mouse brain in situ hybridization (ISH) database from the Allen Institute, 
showing the whole brain and an enlargement of the cortex. b, Gene expression values for the corresponding genes in the Cux2-CPN (red) and Tle4-CThPN 
(blue) RNA-seq data. Units: fragments per kilobase of exon per million reads mapped (FPKM). c, Gene expression level in P1 and P60 mouse cortex by 
Slide-seq42.
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Extended Data Fig. 4 | Validation of temporal patterns of late gene expression using external datasets. a, Expression of selected genes in the shared-late 
cluster at (from top to bottom) E18.5, P4, P14, P28 and P56, in the mouse brain in situ hybridization (ISH) database from the Allen Institute, showing 
the whole brain and an enlargement of the cortex. b, Gene expression values for the corresponding genes in the Cux2-CPN (red) and Tle4-CThPN 
(blue) RNA-seq data. Units: fragments per kilobase of exon per million reads mapped (FPKM). c, Gene expression level in P1 and P60 mouse cortex by 
Slide-seq42.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Characterization of RNA-seq and ATAC-seq clusters by cluster. a, Expression specificity of genes in each RNA-seq cluster as in 
Fig. 2c, for each individual cluster. Box and midline: 25th, 50th and 75th percentiles; whiskers: 1.5 interquartile range from box. b, Analyses of ATAC peak 
clusters as in Fig. 2e and H-K, for each individual cluster. Boxplot as in a. c, Overlap between individual RNA-seq and ATAC clusters. Color scale for top-
right panel: odds ratio, Fisher’s exact test, only results with odds ratio >1, BH corrected P value ≤0.001, and more than 50 overlapping regions are shown. 
d, Overlap between individual DNAme and ATAC clusters. Color scale for top-right panel: odds ratio, Fisher’s exact test. e, Fraction of DMRs in the ATAC 
clusters that are dynamic versus static over time as in as in Fig. 2f, for each ATAC cluster. f, Overlap of early and late shared ATAC clusters with DNAse I 
hypersensitivity sites in a panel of tissues and cell types from the ENCODE database, by tissue. g, Percentage of overlapping ATAC-seq regions for each 
bulk ATAC-seq cluster for CPN and CThPN (y axis) with genomic features derived from E14 whole mouse brain and adult cortex H3K27ac and polymerase 
2 ChIP-Seq from ENCODE as well as enhancers defined by CAGE-Seq from the FANTOM5 consortium (x axis), excluding all ATAC-Seq regions overlapping 
with annotated Ensembl promoters.
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Extended Data Fig. 6 | Validation of Sox4 and Sox11 enhancers. a, Schematic of enCRISPRi system48. b, Predicted novel enhancer regions for Sox11 in 
the mouse bulk ATAC-seq dataset, and location of selected sgRNAs. c, Relative Sox11 expression by qPCR after silencing the indicated putative enhancer 
regions for 5 days (n = 3 biological replicates, each performed in duplicate, normalized to an irrelevant control sgRNA). d, Predicted novel enhancer regions 
for Sox4 in the mouse bulk ATAC-seq dataset, and location of selected sgRNAs. e, Relative Sox4 expression after silencing the indicated putative enhancer 
regions for 5 days.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Validating specificity of shared-early and shared-late accessible chromatin sites in the VISTA enhancer dataset. a, Example 
enhancer regions in the VISTA database that span ATAC peaks in the shared-early ATAC cluster, overlaid with ATAC peak accessibility in our data at each 
age. Top row shows the position of the region on the chromosome. b, Expression patterns driven by that DNA segment in E11.5 mouse embryos, from the 
VISTA dataset. Two examples are shown for each. c, Example enhancer regions in the VISTA database that span ATAC peaks in the shared-late ATAC 
cluster, overlaid with ATAC peak accessibility in our data at each age. Top row shows the position of the region on the chromosome. d, Expression patterns 
driven by that DNA segment in E11.5 mouse embryos, from the VISTA dataset. Two examples are shown for each.
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Extended Data Fig. 8 | Gene cluster specificity. a, Mouse neuronal gene clusters, repeated from Fig. 3 for ease of reference. b, Cell-type specificity of all 
genes in the Allen (left) and FANTOM5 (right) datasets, for each gene cluster. Box and midline: 25, 50 and 75 percentiles; whiskers: 1.5 interquartile range 
from box. c, Cell-type specificity of transcription factors (TFs) in the Allen (left) and FANTOM5 (right) datasets, for each gene cluster. Boxplot as in b.  
d, Marmoset neuronal gene clusters, repeated from Fig. 3 for ease of reference. e, Cell-type specificity of all genes in the Allen (left) and FANTOM5 (right) 
datasets, and in our mouse scRNA-seq dataset for each gene cluster. Boxplot as in b. f, Cell-type specificity of transcription factors in the Allen (left) and 
FANTOM5 (center) datasets, and in our mouse scRNA-seq dataset (right), for each gene cluster. Boxplot as in b.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Specificity analyses of mouse and marmoset scATAC peak clusters. a, Mouse ATAC peak clusters, reproduced from Fig. 4 for ease 
of reference (left), and correlation with age versus cell type for each cluster (right). b, Mouse ATAC cluster characteristics as in Fig. 4, for each individual 
cluster, and number of regions per cluster (cluster sizes). Box and midline: 25th, 50th and 75th percentiles; whiskers: 1.5 interquartile range from box.  
c, Summary of characteristics for each cluster in mouse. Each arm of the plot represents an individual metric (center = low, edge = high). Boxplots as in b.  
d, Marmoset ATAC peak clusters, reproduced from Fig. 4 for ease of reference (left), and correlation with age versus cell type for each cluster (right).  
e, Marmoset ATAC cluster characteristics as in Fig. 4, for each individual cluster, and number of regions per cluster (Cluster sizes). Boxplots as in b.  
f, Summary of characteristics for each cluster in marmoset. Each arm of the plot represents an individual metric (center = low, edge = high). g, Percentage 
of overlapping ATAC-seq regions for scATAC-seq based clusters for all neuronal cell types (y axis) with genomic features derived from E14.5 whole 
mouse brain and adult mouse cortex H3K27ac and polymerase 2 ChIP-Seq from ENCODE as well as enhancers defined by CAGE-Seq from the FANTOM5 
consortium (x axis), excluding all ATAC-seq regions overlapping with annotated ensemble promoters. h, Previously defined average open chromatin signal 
for neuronal mouse scATAC clusters (x axis) shown in a across all neuronal cell types and developmental stages assessed (y axis).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Correlation of mouse versus marmoset gene and ATAC clusters. a, Overlap between mouse and marmoset gene clusters for 
neuronal cell types only (as presented in text), showing the top 4 pairs. b, Overlap between mouse and marmoset gene clusters for neuronal and glial 
cell types taken together (for comparison as a control), showing the top 6 pairs. c, Overlap between mouse and marmoset ATAC clusters for neuronal 
cell types only, showing the top 5 pairs. Color scale: average peak normalized read count. d, Overlap between mouse and marmoset ATAC clusters for 
neuronal and glial cell types taken together, showing the top 4 pairs. Color scale: average peak normalized read count. e, Methylation of ATAC peaks in 
each mouse shared-developmental neuronal ATAC cluster in the mouse bulk DNAme dataset in Fig. 1. Box and midline: 25th, 50th and 75th percentiles; 
whiskers: 1.5 interquartile range from box. Color scale for ATAC: average peak normalized read count. f, Methylation of ATAC peaks in each mouse shared-
developmental neuronal and glial ATAC cluster, determined from the mouse bulk WGBS dataset presented in Fig. 1. Boxplots as in e. Color scale for ATAC: 
average peak normalized read count.
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Randomization For mouse experiments, animals were randomized during sample collection where possible. For marmoset experiments, sample selection was 
dictated by tissue availability; all tissue was collected from healthy, un-manipulated individuals.

Blinding No blinding was performed as the identity of the samples was central to the analysis. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used rat anti-CTIP2 antibody, 1:1,000 (Abcam ab18465) 

rabbit anti-CUX1 (CDP M-222), 1:100 (Santa Cruz sc-13024) 
mouse anti-SATB2, 1:50 (Abcam ab51502) 
Goat anti-rat Alexa 488, 1:1000 (ThermoFisher A48262) 
Donkey anti-mouse Alexa 647, 1:1000 (ThermoFisher A-31571) 
Donkey anti-rabbit Alexa 647, 1:1000 (Thermo-Fisher A-31573)

Validation Validation data for Abcam ab51502 is available on the manufacturer’s website (https://www.abcam.com/satb2-antibody-satba4b10-
c-terminal-ab51502.html), for immunocytochemistry (HT10180 cells), Western blot (NIH/3T3 and HT1080 whole cell lysates), and 
immunoprecipitation (HeLa cell lysate). 
 
Validation data for Abcam ab18465 is available on the manufacturer’s website (https://www.abcam.com/ctip2-antibody-25b6-
ab18465.html), for flow cytometry (Jurkat cells), immunocytochemistry (neonatal mouse hippocampal cultured neurons), and 
Western blot (Jurkat cell nuclear extract; mouse brain tissue lysate). 
 
Validation data for Santa Cruz sc-13024 is available in the manufacturer's product datasheet (https://datasheets.scbt.com/
sc-13024.pdf), for Western blot (K-562 and BJAB nuclear extracts) and immunocytochemistry (HeLa cells and human urinary bladder 
tissue).

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mouse, male and female, E18.5 to P48; C57BL/6J (JAX 000664) WT, tamoxifen-inducible tdTomato reporter Ai14 (JAX 007914) 
heterozygous, Cux2-CreERT2 (MMRRC 032779-MU) heterozygous, and Tle4-2A-CreERT2 (JAX 036298) heterozygous.

Wild animals No wild animals were used in the study.

Field-collected samples No field-collected samples were used in the study.

Ethics oversight Experiments using mice were conducted under protocols approved by the Harvard University Institutional Animal Care and Use 
Committee and followed the guidelines set forth in the National Institute of Health Guide for the Care and Use of Laboratory Animals. 
All marmoset experiments were approved by the Institutional Animal Care and Use Committee of Massachusetts Institute of 
Technology and followed the guidelines from the National Institute of Health’s Guide for the Care and Use of Laboratory Animals.  

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Fresh mouse somatosensory and motor cortex was dissociated by papain digestion at 37°C in medium containing 0.8 mM 
kynurenic acid and 0.05 mM APV. Digestion was stopped with room-temperature medium containing 10 mg/ml each of 
ovomucoid protease inhibitor and BSA, and tissue was mechanically dissociated by gentle trituration in ice-cold medium with 
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0.4 mM kynurenic acid and 0.025 mM APV. For full details, see Methods.

Instrument BD FACSAria II+

Software BD FACSDiva, FloJo

Cell population abundance Abundance was between 0.5% and 8.5%, depending on sample. Purity was evaluated by fluorescence imaging of sorted cells 
(Extended Data Fig 1), and by single-cell sequencing of sorted populations (Supplementary Fig 1).

Gating strategy DAPI-negative, Vybrant DyeCycle Ruby-positive events were gated on tdTomato fluorescence vs GFP-channel 
autofluorescence as shown in Extended Data Fig 1b.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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