
ARTICLE

FK228 potentiates topotecan activity against small cell lung
cancer cells via induction of SLFN11
Yan-ping Yin1,2,3, Li-ying Ma1,2,3, Guo-zhen Cao1,2,3, Jing-han Hua1,2,3, Xiao-tong Lv1,2,3 and Wen-chu Lin1,3

The response rate of topotecan, as a second-line chemotherapeutic drug for small cell lung cancer, is ~20%. DNA/RNA helicase
SLFN11 (schlafen family member 11), a member of the Schlafen (SLFN) family, is a crucial determinant of response to many DNA
damaging agents, expression of SLFN11 tends to augment the antitumor effects of the commonly used DNA-targeting agents. In
the present study we investigated how SLFN11 expression regulated the sensitivity of small cell lung cancer to topotecan. We
showed that SLFN11 expression levels were positively associated with the sensitivity to topotecan in a panel of seven SCLC cell lines.
Topotecan treatment induced different patterns of the DNA response network in SCLC cells: DNA damage response (DDR) was
more prominently activated in SLFN11-deficient SCLC cell line H82 than in SLFN11-plentiful SCLC cell line DMS273, whereas
topotecan induced significant accumulation of p-Chk1, p-RPA2 and Rad51 in H82 cells, but not in DMS273 cells. We unraveled that
SLFN11 expression was highly negatively correlated to the methylation of the SLFN11 promoter. HDAC inhibitors FK228 and SAHA
dose-dependently increased SLFN11 expression through suppressing DNA methylation at the SLFN11 promoter, thereby sensitizing
SCLC cells to topotecan. Finally, we assessed the methylation status of the SLFN11 promoter in 27 SCLC clinical specimens, and
found that most of the clinical samples (24/27) showed DNA methylation at the SLFN11 promoter. In conclusion, it is feasible to
combine topotecan with FK228 to improve the response rate of topotecan in SCLC patients.
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INTRODUCTION
Small cell lung cancer (SCLC) is an aggressive malignancy with
high metastatic potential and poor prognosis, accounting for
~15% of all newly diagnosed lung cancers [1]. The use of
platinum-based combination regimens remains the state-of-art
first-line treatment for SCLC. Unfortunately, most patients with
SCLC recur within months and become resistant to treatment
despite the dramatic initial response to chemotherapy and
radiation. After disease recurrence, topotecan is the only
chemotherapeutic agent for second-line SCLC until recently
FDA-approved lurbinectedin for metastatic SCLC. Consequently,
the median survival time for SCLC after diagnosis is 10–12 months
[2, 3].
Topotecan, a camptothecin derivative and topoisomerase I

inhibitor, is the primary chemotherapy option for many years at
relapse after first-line therapy, which is routinely administered by
the oral or infusion route. Multiple investigations in clinical trials of
topotecan treatment for relapsed SCLC have demonstrated no
significant difference in clinical efficacy and tolerability between
these two routes of administration [4]. The effective rate and
median survival time of topotecan as a single agent were better
than the cyclophosphamide, doxorubicin, and vincristine regimen
and best support treatment (BSC). However, although single-agent
topotecan significantly improves patient survival, the response

rate of patients with recurrent SCLC to topotecan was ~20%, no
matter whether it is oral or intravenous formulations [4]. The low
clinical effectiveness of topotecan dramatically limits its applica-
tion, and the molecular mechanism leading to the low response
rate to topotecan remains to be determined. Effective target was
an unmet clinical need to optimize the efficacy of topotecan and
improve patients’ quality of life.
DNA/RNA helicase SLFN11 (schlafen family member 11), a

member of the Schlafen (SLFN) family, is a crucial determinant of
response to many DNA damaging agents, such as topoisomerase I
(TOP1) inhibitors (camptothecin, topotecan, and irinotecan),
topoisomerase II (TOP2) inhibitors (etoposide, mitoxantrone, and
doxorubicin), alkylating agents (cisplatin and carboplatin), DNA
synthesis inhibitors (gemcitabine and cytarabine), and PARP
inhibitors [5–9]. Expression of SLFN11 tends to augment the
antitumor effects of these commonly used DNA-targeting agents.
These drugs interfere with the DNA replication process, induce
DNA replication stress, and cause DNA damage. SLFN11 can act as
a factor to monitor the DNA replication process by interacting
with several critical components of the DNA damage response
(DDR) system, such as ssDNA-binding protein RPA and DHX9
[6, 10]. Once endogenous or exogenous impediments stall DNA
replication, SLFN11 immediately irreversibly blocks replication via
activation of the DDR network and induction of cell cycle arrest
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[6, 10]. SLFN11 expression is positively correlated with overall
survival in ovarian cancer, and methylation of SLFN11 at promoter
could be used to predict the prognosis in colorectal cancer
[11, 12].
SLFN11 has been reported as a predictor of response to PARP

inhibitor monotherapy in SCLC, and a recent clinical trial has
shown that a high SLFN11 expression level is associated with a
better clinical outcome in recurrent SCLC patients treated with
PARP inhibitor veliparib [13, 14]. Interestingly, the expression of
SLFN11 seems to be epigenetically regulated and induced
expression of SLFN11 by EZH2 inhibitor overcomes the acquired
resistance to chemotherapy in SCLC [11, 15, 16]. However,
whether SLFN11 expression confers sensitivity to topotecan in
SCLC has yet to be fully understood.
In this study, we sought to illustrate the role of SLFN11 in

regulating SCLC cells’ response to topotecan treatment and
develop a strategy to improve the response rate of topotecan
in SCLC.

MATERIALS AND METHODS
Small molecules and antibodies
Topotecan was purchased from Selleck Chemical (Shanghai,
China). FK228 and SAHA were purchased from MedChemExpress
(Concord, CA, USA). Antibodies against SLFN11 (#34858), PARP
(#5625), Chk1 (#2360), p-Chk1 (#12302), RPA2 (#2208), p-RPA2
(#83745), Rad51 (#8875) and γ-H2AX (Ser139) (#9718) were
obtained from Cell Signaling Technology (Danvers, MA, USA).
Antibody against β-Actin (HC201–02) was purchased from
TransBionovo (Beijing, China).

GDSC and CCLE data analysis
Sequencing data (RNA-seq) and methylation status from SCLC cell
lines, and general information for these cell lines, were downloaded
from https://sites.broadinstitute.org/ccle/datasets. The GDSC (Geno-
mics and Drug Sensitivity in Cancer; Massachusetts General Hospital-
Wellcome Sanger Institute) database was downloaded from https://
www.cancerrxgene.org/downloads/anova. The JNCI dataset was
obtained from Polley et al., 2016 [17]. Expression data for SLFN11,
the methylation status of CpG in the promoter region of SLFN11, and
IC50 values from SCLC cell lines were retrieved, analyzed, and
displayed in scatter plots.

Human SCLC tumor specimens and ethics statement
Twenty-seven formalin-fixed, paraffin embedded human primary
SCLC tumor tissue samples were collected. And the study was
conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of Hefei Institutes
of Physical Science, Chinese Academy of Sciences, and written
informed consent was obtained from all patients.

Cell culture and maintenance
The human SCLC cell lines H82, H526, DMS79, DMS273, H196,
H446, and H69, were grown in RPMI-1640 medium with 10% fetal
bovine serum and 1% penicillin/streptomycin (Gibco, Life
Technologies, Carlsbad, CA, USA) in a humidified atmosphere
containing 5% CO2 at 37 °C. Cells were sub-cultured when they
reached 80% of confluence. All cell lines used in this study were
routinely confirmed as being mycoplasma negative.

Cell viability assays
SCLC cells were plated in a 96-well white plate (Costar,
Kennebunk, ME, USA) in 100 μL medium at an initial density of
3000 cells/well and incubated 24 h prior to the treatment. Then,
either vehicle control or different concentrations of topotecan
were added into each well of the plate in triplicate, and the plate
was continued to incubate for 72 h. Relative cell viability was

determined by the CellTiter-Glo Luminescent assay (Promega,
Madison, WI, USA). A multilabel plate reader (Envision PerkinElmer,
USA) was used to collect the luminescent signals.

Protein extraction and Western blotting
After drug treatment, the whole-cell protein was extracted by
resuspending cell pellets in RIPA buffer supplemented with
protease inhibitor cocktail as previously described [18]. Equal
amounts of proteins were subjected to SDS/PAGE and transferred
to PVDF membrane for immunoblotting. Protein bands were
visualized after incubation with primary and secondary antibodies
using ECL Western Blotting Substrate (Thermo Fisher Scientific,
Waltham, MA, USA).

Immunofluorescence staining
SCLC cells (1 × 106 cells per well in a six-well plate) were treated
with topotecan or vehicle control (DMSO) for 24 h. After drug
treatment, cells were fixed with freshly prepared 4% paraformal-
dehyde for 10 min and then subjected to permeabilization with
0.01% Triton X-100 in TBS for 5 min. The permeabilized cells were
then incubated with primary rabbit anti-phospho-histone H2AX
(Ser139) antibody (1:200) or anti-Rad51 antibody (1:500) at 4 °C
overnight, followed by the anti-rabbit-FITC secondary antibody
(Thermo Fisher Scientific, Waltham, MA, USA) for 1 h at room
temperature. After washing, samples were stained with DAPI for 1
min, mounted, and examined by Leica fluorescence microscopy
(Leica, Wetzlar, Germany). Cells with more than 5 foci were
considered positive, and at least 50 cells for each condition were
scored.

Measurement of SLFN11 mRNA expression
The cellular RNA of the treated cells was prepared using the
RNeasy Mini Kit (Qiagen, Hilden, Germany). cDNA was reverse
transcribed from total RNA using the Transcriptor First Strand
cDNA Synthesis Kit (Roche, Mannheim, Germany) following the
manufacturer’s instructions. For reverse transcriptase-polymerase
chain reaction analysis, PCR amplification was carried out in
triplicate using FastStart Essential DNA Green Master Mix (Roche,
Mannheim, Germany) on the Roche LightCycler 96 Real-Time
PCR System. β-Actin was utilized as the internal control. The
primers for SLFN11 [19] and β-Actin were as follows. SLFN11-F: 5′
-ATTATTAGTAGCGTGACGGTTATC-3′; SLFN11-R: 5′-CGACAAATATA
CAAATTAAACCGCG-3′; Actin-F: 5′-CATGTACGTTGCTATCCAGGC-3′;
Actin-R: 5′-CTCCTTAATGTCACGCACGAT-3′.

Cell apoptosis assay
After 48 h topotecan exposure, cells were harvested and then
stained with FITC Annexin V and PI using a FITC Annexin V
Apoptosis Detection Kit (BD Pharmingen, San Diego, CA, USA)
following the manufacturer’s instructions. Next, the stained cells
were subjected to flow cytometry analysis by FACSCalibur (BD
Pharmingen, San Diego, CA, USA). Then, the data were analyzed
using FlowJo software (BD Pharmingen, Ashland, OR, USA).

Virus production and establishment of SCLC cells with stable
knockdown of SLFN11
Three lentiviral shRNAs (shSLFN11-1: 5′-CGACTGGTTGTATCTC
TTTA-3′; shSLFN11-2: 5′-ATCCAATAGCCAAGTACTTA-3′; shSLFN11-
3: 5′-CCAGAATACGTCCCTGCATT-3′) targeting human SLFN11 were
cloned into the pLKO.1 vector. The SLFN11 shRNA-containing
pLKO.1 vector was co-transfected with psPAX2 and pMD2.G into
HEK-293T cells using Effectene Transfection Reagent (QIAGEN,
Hilden, Germany). Viral supernatant was recovered 48 h after
transfection. DMS273 cells were infected with lentiviral particles in
the presence of 8 μg/mL polybrene (Sigma-Aldrich, Steinheim,
Germany). Puromycin (Solarbio, Beijing, China) at 1 µg/mL was
added to the medium for selection at 48 h post-infection.
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Ectopic expression of SLFN11 in SCLC cells
The entire length of SLFN11 was cloned into vector pCMV-3-flag
with primer pair SLFN11-F (5′-CGCGGATTCATGGAGGCAAAT
CAGTGCCC-3′) and SLFN11-R (5'-GGGAAGCTTCTAATGGCCACCC
CACGGAA-3′). The resulting vector was confirmed by DNA
sequencing. Then, the resulting vector was transfected into H82
cells using Effectene Transfection Reagent (QIAGEN, Hilden,
Germany). The efficiency of overexpression was determined by
Western blotting [20].

Chromatin immunoprecipitation (ChIP) assays
SCLC cells were treated with DMSO or 2 nM FK228 for 48 h. The
cells were cross-linked for 10 min with 1% formaldehyde in the
medium at room temperature and then lysed in lysis buffer (1%
SDS, 10mM EDTA, 50mM Tris-HCl pH 8.0) with proteasome
inhibitor cocktail. The lysates were sonicated to shear the DNA to
an appropriate size of between 100 and 1000 bp. The sonicated
chromatin was then incubated with 2.5 μg H3K9Ac antibody (Cell
Signaling Technology, Danvers, MA, USA) or with equal amounts
of immunoglobulin G (IgG) as a negative control at 4 °C overnight.
After reversing cross-link and proteinase K treatment, the
immunoprecipitated genomic DNA was purified for quantitative-
PCR (qPCR) detection. Primer pairs were designed against the
SLFN11 CpG promoter region [19].

Bisulfite modification and methylation-specific PCR (MSP)
After 24 h of treatment with DMSO and FK228/SAHA, genomic
DNA was extracted and treated with sodium bisulfite as
previously described [19]. Briefly, 2 μg of DNA was denatured
by 3 M sodium hydroxide in a volume of 50 μL for 10 min at
37 °C. Freshly prepared hydroquinone (20 mM, 30 μL) and 520 μL
of 3.6 M freshly prepared sodium bisulfite were mixed with the
denatured DNA and incubated at 42 °C for 30 min. The reaction
mixture was incubated at 50 °C in the dark for 16 h. After
that, the modified DNA was purified and recovered. The purified
modified DNA was detected by MSP (methylation-specific PCR).
The primers used for MSP detection were as follows [19].

Me-SLFN11-F: 5′-ATTATTAGTAGCGTGACGGTTATC-3′; Me-SLFN
11-R: 5′-CGACAAATATACAAATTAAACCGCG-3′; UnMe-SLFN11-F:
5′-TATATTATTAGTAGTGTGATGGTTATT-3′; UnMe-SLFN11-R: 5′-
ATACAACAAATATACAAATTAAACCACA-3′.

Statistical analysis
Prism 6 software (GraphPad Software, Inc., La Jolla, CA, USA) was
used for data processing and statistical analyses. The differences
were considered statistically significant using a two-tailed
unpaired t-test when the P value is <0.05.

RESULTS
The sensitivity of topotecan is positively correlated with the
expression of SLFN11 in SCLC
A panel of SCLC cell lines were treated with different concentra-
tions of topotecan, and the sensitivity of the SCLC cell lines was
characterized using the CellTiter Glo assay. Based on the
difference of the half-maximal inhibitory concentration (IC50)
values in seven SCLC cell lines, the seven cell lines were
designated as either belonging to a topotecan-sensitive group,
consisting of DMS273, DMS79, H526, and H446, or a topotecan-
insensitive group, comprising of H82, H69, and H196 (Fig. 1a).
Next, the levels of PARP cleavage were examined by Western
blotting after the cells were treated with 50 or 100 nM topotecan
for 48 h; the results demonstrated that the accumulation of
cleaved PARP was only observed in topotecan-sensitive cells, but
not in topotecan-insensitive cells (Fig. 1b). Accumulating evidence
showed that SLFN11 expression is associated with the sensitivity of
DNA damage reagents in various cancers [5–8]. We extracted the
SLFN11 expression data and IC50 values of topotecan from the
CCLE (Cancer Cell Line Encyclopedia) database, JNCI and GDSC2
(Genomics of Drug Sensitivity in Cancer 2) datasets [17],
respectively, and analyzed the correlation by Pearson correlation.
The results showed that the expression level of SLFN11
was significantly negatively correlated with the IC50 values of
topotecan in SCLC cells (Fig. 1c, n= 36 for the JNCI dataset; n= 28
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Fig. 1 The sensitivity of topotecan is positively correlated to SLFN11 expression in SCLC. a The IC50 values of topotecan in a panel of SCLC
cell lines. The SCLC cells were incubated with different concentrations of topotecan for 72 h. The cell viability was determined by the CellTiter
Glo assay. bWestern blotting analysis of PARP cleavage in SCLC cells treated with different concentrations of topotecan. The cells were treated
with a range of concentrations of topotecan for 24 h. β-Actin was used as a loading control. c IC50 to topotecan is negatively correlated with
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GDSC2 dataset (right panel). d, e RT-qPCR (d) and Western blot analysis (e) showing the expression levels of SLFN11 across seven SCLC
cell lines.
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for the GDSC2 dataset). To further confirm the correlation
between the sensitivity of topotecan and SLFN11 expression, we
performed RT-qPCR assays to examine SLFN11 expression in the
panel of SCLC cell lines. The results demonstrated that the
topotecan-sensitive SCLC cell lines indeed tended to have a high
level of SLFN11 expression (Fig.1d). Moreover, Western blot
analysis of SLFN11 expression in all topotecan-sensitive cell lines
showed high expression. In contrast, a very low or undetectable
level of SLFN11 was observed in topotecan-insensitive cells
(Fig.1e). Altogether, SLFN11 expression has a strong positive
association with the sensitivity of topotecan in SCLC cells.

Topotecan induces different patterns of the DNA response
network in SCLC in a dose-dependent manner
We then sought to investigate the mechanisms underlying the
different effects of topotecan in SCLC cells. Given that topotecan
treatment tends to cause double-strand breaks (DSBs). Topotecan-
sensitive DMS273 and topotecan-insensitive H82 were chosen to
assess the changes in the DDR network. Both DMS273 and H82
were incubated with 50 nM topotecan for 24 h and subjected to
immunofluorescence staining for γ-H2AX and Rad51. The immu-
nofluorescence test indicated that topotecan led to the substantial
accumulation of γ-H2AX in the nucleus of DMS273 but not in H82
cells. On the contrary, prominent nuclear Rad51 foci were seen in
H82, while no noticeable nuclear Rad51 signals were detected in
DMS273 cells (Fig. 2a). These results suggested that the DNA
damage repair system is activated in topotecan-insensitive cells,
but not in topotecan-sensitive cells in the presence of 50 nM
topotecan. Next, p-Chk1, a replication stress response (RSR)
marker, and p-RPA2 and Rad51 were chosen to evaluate the RSR
and homologous recombination (HR) repair pathways’ changes.
Western blot results showed that topotecan treatment induced
dose-dependent accumulation of p-Chk1, p-RPA2, and Rad51 in
insensitive cell lines H82 and H69. In contrast, a dose-dependent
accumulation pattern was not seen in the SCLC cells with high
SLFN11 expression (Fig. 2b). We also examined the effect of
topotecan on the DDR network using time-course analyses. The
accumulation of p-Chk1, p-RPA2, and Rad51 were gradually
increased over time in H82 and H69 cells, but not in DMS273
and H526 cells (Fig. 2c). Concomitantly, the accumulation of γ-
H2AX, a well-established DSB sensor, was significantly increased as
early as 12 h in DMS273 and H526 cells with high SLFN11
expression, but not in H82 and H69 cells without SLFN11
expression. In conclusion, these data suggest that the DDR
network is quickly activated upon topotecan treatment in SLFN11-
deficient SCLC cells, and the DSBs are repaired promptly; in
contrast, the DSBs are accumulated due to the failure to evoke the
DDR network in SLFN11-proficient cells.

The maintenance of the DNA damage checkpoint and HR repair is
suppressed in the presence of SLFN11
Previous studies have shown that SLFN11 suppresses the
maintenance of Chk1 phosphorylation in response to camptothe-
cin treatment in several types of cancer cells [21]. To test whether
a similar phenomenon occurs in SCLC, the cells were incubated
with 50 nM topotecan, a camptothecin derivative, for 24 h and
subsequently topotecan was withdrawn from the cultured
medium. Western blot analysis showed that Chk1 phosphorylation
was expressed at similar levels in all four cell lines regardless of
SLFN11 status after topotecan treatment. Notably, Chk1 phosphor-
ylation diminished in DMS273 and H526 cells, as early as 12 h
upon topotecan withdrawal. In contrast, Chk1 phosphorylation
exhibited a marked decline at 36 h post-withdrawal in H82 and
H69 cells (Fig. 3). Thus, we concluded that SLFN11 plays a vital role
in maintaining Chk1 phosphorylation in SCLC cells. Moreover, p-
RPA2, a well-recognized marker for ssDNA from DNA end
resection, was induced in all cell lines tested, suggesting that
the formation of ssDNA, a prerequisite for efficient HR repair, was

not changed. Following the results of RPA2 phosphorylation,
Rad51 expression was induced in all four cell lines, indicating that
SLFN11 is not involved in the initiation of HR repair. However, the
expression level of Rad51 was quickly declined only in SCLC cells
with high SLFN11 expression (Fig. 3). These results suggested that
SLFN11 is required for maintenance rather than the initiation of
the RSR and HR repair pathways.

Knocking-down/overexpression of SLFN11 could decrease/
increase the sensitivity of topotecan in SCLC
We hypothesized that SLFN11 is a key determinant for an efficient
DDR and the response to topotecan. To test this hypothesis, the
knockdown and overexpression approaches were employed to
address the role of SLFN11 in topotecan-treated SCLC cells. First,
we generated two SLFN11 stable-knockdown DMS273 cells
showing significant down-regulated in both mRNA and protein
expression levels (Fig. 4a). Furthermore, the depletion of SLFN11
suppressed apoptosis in DMS273 cells while SLFN11 overexpres-
sion induced programmed cell death (Supplementary Fig. S1). We
next examined the effect of SLFN11 knockdown on DDR using
time-course analyses. As shown in Fig. 4b, Knockdown of SLFN11
recovered robust Chk1 phosphorylation and Rad51 with the
prolongation of topotecan treatment time compared with the
scramble control. We also assessed the effects of exogenous
overexpression of SLFN11 in SCLC cells showing minimal expres-
sion of SLFN11. As depicted in Fig. 4a, the expression of wild-type
SLFN11 was strongly induced by transient transfection. Interest-
ingly, H82 cell overexpressing wild-type SLFN11 caused apparent
defects in Chk1 phosphorylation and Rad51 induction upon
topotecan treatment (Fig. 4c). Importantly, SLFN11 overexpression
caused accumulation of γ-H2AX while SLFN11 knockdown
suppressed H2AX phosphorylation (Fig. 4b, 4c). Taken together,
our data indicate that SLFN11 exerts a suppressive role in the
maintenance of DNA damage checkpoint signals.
Given that SLFN11 is a central player in the DDR network, we

evaluated the effect of SLFN11 knockdown or overexpression on
cell viability. As seen in Fig. 4d, depletion of SLFN11 in DMS273
cells resulted in a less sensitive phenotype to topotecan (IC50 of
shCtrl: 0.04 μM, IC50 of shSLFN11-2: 0.12 μM, IC50 of shSLFN11-3:
0.21 μM). On the contrary, ectopic expression of SLFN11 in H82
cells remarkably re-sensitized the cells to topotecan (IC50 of
vehicle: 0.90 μM, IC50 of SLFN11 OE: 0.03 μM). At the same time, we
examined the effect of SLFN11 expression on the cell cycle. It was
found that the cell cycle did not change significantly upon SLFN11
knockdown (Supplementary Fig. S2a), while SLFN11 overexpres-
sion in H82 cells led to G0-G1 phase arrest (Supplementary
Fig. S2b).

HDAC inhibitor FK228 sensitizes SCLC cells to topotecan via
epigenetic induction of SLFN11 in SCLC
FK228, an HDAC inhibitor, has been reported to induce SLFN11
expression in human fibrosarcoma and erythroleukemia cells [15].
We sought to determine whether HDAC inhibitors induced SLFN11
in SCLC cells. SLFN11-deficient H82, H69 cells and SLFN11-
proficient H526, DMS273 cells were incubated with 1 nM and 2
nM FK228 for 24 and 48 h, and the cells were then harvested for
protein detection. Western blot analysis showed that SLFN11
expression was markedly increased in the FK228-treated cells
versus DMSO-treated cells at 24 and 48 h post-treatment (Fig. 5a).
Strikingly, an apparent increase in SLFN11 expression was also
observed in SLFN11-proficient cells at 24 and 48 h post-treatment.
Notably, the induction of SLFN11 was stable and dose-dependent
in the presence of FK228 (Fig. 5a). To rule out the possibility of
PI3K inhibitor’s contribution to SLFN11 induction since FK228 is a
dual HDAC and PI3K inhibitor, pan-HDAC inhibitor SAHA was also
employed to treat SCLC cells [22, 23]. As shown in Fig. 5b, SAHA
treatment also substantially increased SLFN11 in H82 and
H69 cells 24 h after treatment. Consistent with the results in
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FK228-treated experiments, the level of SLFN11 was markedly
increased in SLFN11-proficient DMS273, H526 cells following SAHA
treatment (Fig. 5b). Concomitantly, a dose-dependent induction of
SLFN11 at the mRNA level was observed upon FK228 (Fig. 5c) or
SAHA (Supplementary Fig. S3a) treatment. These data suggested
that HDACi transcriptionally regulates SLFN11 expression in SCLC

cells. Next, we sought to investigate whether HDACi-induced
SLFN11 could enhance the activity of topotecan to SCLC cells.
Different concentrations of FK228 were incubated with H82, H69,
H526, and DMS273 cells to induce SLFN11 expression and
subsequently withdrawn from the medium 16 h (for H69) or
24 h (for H82 and H526) post-incubation. The cells were then
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and Rad51 in SCLC cells treated with different doses of topotecan. c Western blotting analysis of Chk1 and RPA2 phosphorylation, and Rad51
expression in SCLC cells treated with 50 nM topotecan at indicated time points. β-Actin was used as a loading control.
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treated with a range of concentrations of topotecan for 48 h. Cell
viability assays demonstrated that FK228 pre-incubation augmen-
ted the sensitivity to topotecan in SCLC cells (Fig. 5d). Importantly,
pretreatment with FK228 for 16 or 24 h had minimal effect on cell
viability in four cell lines examined (Supplementary Fig. S3b).
These results confirmed that the reactivation of SLFN11 by HDAC
inhibitor is responsible for the increased activity of topotecan in
SCLC cells.

Epigenetic modulation is responsible for FK228-induced SLFN11
and SLFN11 promoter methylation is prevalent in clinical SCLC
samples
To explore the molecular mechanism of FK228-induced re-
expression of SLFN11, we assessed the possible epigenetic
regulation of SLFN11 by FK228. SLFN11 expression varies across
human cancer cell lines. We first retrieved SLFN11 expression data
from the CCLE database and compared SLFN11 expression in SCLC
cells to lung adenocarcinoma (LUAD) cells. The results showed
that SLFN11 expression was much higher than that in LUAD
(Fig. 6a). We next evaluated the methylation status in the
promoter of SLFN11 using the methylation data from CCLE. The
majority (34/49) of SCLC cell lines demonstrated a high methyla-
tion level at the promoter of SLFN11, even though some SCLC cells
show high SLFN11 expression. We wondered whether SLFN11
expression was associated with the methylation level at the
promoter of SLFN11. Pearson correlation analysis showed a
negative correlation between these two factors (Fig. 6b, n= 49),
suggesting that SLFN11 expression is suppressed by promoter
methylation in SCLC. Interestingly, we noticed a strong positive
correlation between SLFN11 promoter methylation and the IC50
values of topotecan from the JNCI dataset (Fig. 6c, n= 36). Similar
results were observed in the GDSC2 dataset (Fig. 6c, n= 27). We
then hypothesized that FK228-induced SLFN11 might involve
epigenetic modulation. First, MSP analysis confirmed that
methylation at the promoter of SLFN11 existed in all cell lines
tested. FK228 treatment completely abrogated the methylation
signals (Fig. 6d). Similar results were also observed in the cells
treated with SAHA (Supplementary Fig. S4a). To further elucidate
the mechanism leading to SLFN11 re-expression by FK228, ChIP-
PCR was employed to examine the changes of histone acetylation
at the promoter of SLFN11 upon FK228 treatment. The results
demonstrated that histone acetylation was significantly increased
(Fig. 6e, 6f). But the status of histone methylation was not
influenced by FK228 (Supplementary Fig. S4b). These data
indicated that a FK228 induced-increase of histone acetylation
causes a striking reduction of DNA methylation at the promoter of
SLFN11, thereby leading to the reactivation of SLFN11. Given that
FK228 facilitates the sensitivity of topotecan in SCLC cellular
models and the methylation status in the promoter region of
SLFN11 might be informative for using FK228 to potentiate the
therapeutic efficacy of topotecan, we extended our investigation
to SCLC patient samples. The methylation status in the promoter
region of SLFN11 in 27 human primary SCLC was examined by

MSP. Among 27 cases of SCLC, complete methylation was
observed in 2 cases of samples; 22 cases exhibit partial
methylation; unmethylation was only found in 3 cases of SCLC
samples. Together the promoter of SLFN11 was methylated in
88.89% (24/27) of primary SCLC specimens (Fig. 6g). These results
suggest that the promoter of SLFN11 is frequently methylated, and
FK228 might have a much broader application to overcome
topotecan’s resistance in SCLC.

DISCUSSION
The second-line therapeutic options for small cell lung cancer are
limited after relapse. Topotecan has long been considered the
only second-line drug for refractory SCLC until the recent approval
of lurbinectedin by the FDA. Unfortunately, the topotecan’s
response rate is so low that less than one-quarter of SCLC
patients can benefit from this treatment [24]. Thus, the develop-
ment of small molecules to broaden the therapeutic potential of
topotecan is urgently needed. This study used cellular models to
investigate the signal pathways leading to differentiated topote-
can sensitivity in SCLC cells. Our data demonstrated that
topotecan-insensitive cells unleashed the DNA damage check-
point and induced Rad51 expression in response to topotecan in
the absence of SLFN11, whereas SLFN11 expression in topotecan-
sensitive cells blocked the maintenance of DNA damage
checkpoint and HR repair, leading to striking DSBs and
subsequent cell death. Furthermore, SLFN11 knockdown and
ectopic overexpression in SCLC cells could reverse the sensitivity
to topotecan. We further confirmed that SLFN11 expression was a
critical factor in determining the differentiated phenotypes.
Importantly, SLFN11 expression was epigenetically controlled,
and HDAC inhibitors FK228 and SAHA epigenetically induced
SLFN11 expression, rendering the cells sensitive to topotecan. Our
investigation unveils a strategy to render SCLC cells more sensitive
to topotecan.
Previous studies have shown that expression of SLFN11

sensitized the cells to many DNA damage agents, including
camptothecin, topotecan, hydroxyurea, and cisplatin [5, 12, 25].
Furthermore, SLFN11 has been shown to preferentially associate
with euchromatin and be recruited to stalled replication fork by
several replication factors upon DNA damage. SLFN11 acts as a
reader of ATR-CHK1 activation, thereby persistently blocking DNA
replication and DNA repair [5, 6, 21]. Our study showed that Chk1
phosphorylation was rapidly and robustly induced in the absence
of SLFN11, but not in the presence of SLFN11 in SCLC cells.
Concomitantly, Rad51, a key HR factor, was also strongly induced
in SLFN11-proficient cells compared with SLFN11-deficient cells.
Our data suggest that SLFN11 works as an executioner to maintain
the DDR signals, amplify the DNA damage checkpoint signals, and
stimulate HR repair.
The re-expression of SLFN11 has been reported to be induced

by several types of small epigenetic molecules. Although a recent
investigation demonstrated that SLFN11 expression could be
induced by FK228 and other HDAC inhibitors in several cancer
cells, no SCLC cells have ever been tested. In this study, we
demonstrated that FK228 removed the DNA methylation mark via
the promotion of histone acetylation. These data confirmed
coordinated crosstalk between DNA methylation and histone
acetylation [26, 27]. Notably, DNA methylation inhibitor 5-Aza did
not induce SLFN11 expression in partial SCLC cell lines, which
could be induced by EZH2 inhibitor [16], suggesting that other
epigenetic events besides DNA methylation might be involved in
the suppression of SLFN11. Our study confirmed that FK228 could
trigger SLFN11 expression as long as CpG island methylation exists
in the promoter of SLFN11, no matter whether the cells are
SLFN11-deficient or SLFN11-proficient. The increased histone H3
acetylation by FK228 treatment in the SLFN11 promoter region
might reverse SLFN11 methylation in the CpG island, thereby
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reactivating SLFN11 expression. Based on these observations, we
speculate that histone modifications might play a more critical
role than DNA methylation in the regulation of SLFN11. Overall,
these lines of evidence prompted us to speculate that the status
of SLFN11 promoter CpG island methylation could be used as a
predictive biomarker for choosing FK228 to sensitize SCLC tumors
to topotecan.
SLFN11 has been reported to be inactivated in a significant

fraction of tumors [10]. Detection of SLFN11 promoter methylation
by MSP has shown that more than half of colorectal cancer

samples display SLFN11 methylation. Our investigation also
showed that more than 80% of SCLC specimens had either
complete or partial methylation. These studies suggest that
SLFN11 promoter methylation might be more prevalent than
initially estimated. More efforts might be needed to investigate
the SLFN11 promoter methylation pattern across cancer types. On
the other hand, re-expression of SLFN11 by epigenetic inhibitors
or other small molecules might have more clinical significance.
Furthermore, given that SLFN11 expression is critical for multiple
DNA damage agents, it is worth further illustrating whether
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Fig. 6 FK228 induces SLFN11 by decreasing the methylation of the SLFN11 promoter. a The comparison of SLFN11 expression between
lung adenocarcinoma cell lines (LUAD, n= 59) and SCLC cells (n= 49). b The expression level of SLFN11 correlates to the methylation level of
SLFN11 in 49 SCLC cell lines. c IC50 to topotecan is positively correlated with SLFN11 promoter methylation. Pearson correlation analysis of
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re-expression of SLFN11 by epigenetic inhibitors such as FK228
augments the sensitivity/overcomes the resistance of other DNA
damage agents besides topotecan [16].
In conclusion, SLFN11 could determine the activation strength

of the DDR network and repair efficacy in SCLC. SLFN11 promoter
is frequently methylated, and induction of SLFN11 by epigenetic
inhibitor FK228 could enhance the sensitivity of SCLC cell lines to
topotecan. A clinical trial to test the sensitizing role of FK228 to to
potecan in SCLC might be an important future consideration
to translate these promising findings into a clinical setting.
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