TABLE 2.
Models | AUROC | MCC | Accuracy | Sensitivity | Specificity | PPV | NPV | F1 |
CatBoost | 0.796 | 0.448 | 0.746 | 0.783 | 0.674 | 0.825 | 0.614 | 0.803 |
XGBoost | 0.796 | 0.399 | 0.724 | 0.767 | 0.641 | 0.807 | 0.584 | 0.786 |
LightGBM | 0.789 | 0.403 | 0.724 | 0.761 | 0.652 | 0.811 | 0.583 | 0.785 |
Random forest | 0.742 | 0.413 | 0.728 | 0.761 | 0.663 | 0.815 | 0.587 | 0.787 |
Gradient boost | 0.732 | 0.371 | 0.710 | 0.750 | 0.630 | 0.799 | 0.563 | 0.774 |
Linear SVM | 0.721 | 0.373 | 0.699 | 0.706 | 0.685 | 0.814 | 0.543 | 0.756 |
MLP | 0.728 | 0.379 | 0.710 | 0.739 | 0.652 | 0.806 | 0.561 | 0.771 |
CAD consortium clinical | 0.727 | 0.313 | 0.676 | 0.706 | 0.620 | 0.784 | 0.518 | 0.743 |
CAD consortium basic | 0.715 | 0.223 | 0.559 | 0.444 | 0.783 | 0.800 | 0.419 | 0.571 |
Diamond-Forrester score | 0.687 | 0.271 | 0.706 | 0.933 | 0.261 | 0.712 | 0.667 | 0.808 |
K-nearest neighbor | 0.704 | 0.313 | 0.676 | 0.706 | 0.620 | 0.784 | 0.518 | 0.743 |
AUROC, area under the receiver operating characteristics; CAD, coronary artery disease; GBM, gradient boosting machine; MCC, Matthews correlation coefficients; NPV, negative predictive value; PPV, positive predictive value; SVM, support vector machine; XG, extreme gradient. The bold values indicate the best performance of the 11 models.