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Abstract
Introduction: Children and adolescents with cancer report increased fatigue and decreased physical activity, introducing
risk factors for chronic disease and suppressed quality of life. Research suggests an inverse relationship between fatigue and
physical activity, but the biological explanation is not well understood. The purpose of this study was to 1) explore
metabolites associated with fatigue or physical activity and 2) to identify any shared metabolomic elements. Methods:
Children, ages 8–17 years, attending a pediatric oncology summer camp provided Patient-Reported Outcome Measurement
System® (PROMIS) Pediatric Fatigue assessments, physical activity data (steps/day), and urine samples pre- and post-camp.
Differences in PROMIS Pediatric Fatigue scores and average daily steps were calculated using paired t-tests. Liquid
chromatography-tandem mass spectrometry was conducted using a targeted metabolomic approach. Results: Thirty-two
enrolled children had complete data. Fatigue scores decreased (pre-camp 45.1; post-camp 42.1; p = 0.04) while steps-per-day
increased (pre-camp 6699; post-camp 16,021; p < 0.001). Twenty-seven metabolites significantly differentiated (false
discovery rate <0.20) between low, medium, or high physical activity, while 8 metabolites discriminated between high and
low fatigue. Indole-3-lactic acid, a tryptophan metabolite, was significantly associated with both physical activity and fatigue.
Conclusion: This study provides evidence of metabolome associations with fatigue and physical activity in children with
cancer. Overlapping metabolomic elements provide evidence of biological inter-connectivity and suggest areas for future
research. Given the known evidence regarding the benefits of physical activity, and the potential interaction with fatigue,
nurses should routinely assess patient reports of these elements and provide patient/family education related to fatigue
management and physical activity goals.
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Fatigue is one of the most predominant and persistent
symptoms during and after childhood cancer therapy occur-
ring in around 68% of children and adolescents with impli-
cations for psychological stress and reduced quality of life
(Hinds et al., 2021). The exact etiology of cancer-related
fatigue remains elusive but is thought to be attributable to
multiple factors, including dysregulation of the hypothalamic-
pituitary-adrenal axis, inflammation (proinflammatory cyto-
kines), and disruption in energy metabolism, as well as other
biological processes (i.e., oxidative stress) altered by the
cancer itself and treatment modalities (Berger et al., 2010;
Xiao, Beitler, et al., 2016).

Physical activity, a broad term that includes movement
activities such as structured exercise, walking, and yoga, has
been associated with reduced cancer-related fatigue in both
adults and, to a lesser degree, children (Hilfiker et al., 2018;
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Huang et al., 2019; Huang & Ness, 2011; Tomlinson et al.,
2014; Withycombe et al., 2018). The biological explanation
for the relationship between fatigue and physical activity may
be explained, in part, by cytokine gene expression changes
that reduce inflammation, mind–body interactions that de-
crease cortisol levels, and maintenance of muscle mass which
assists with production of ATP (Kinney et al., 2019); How-
ever, the precise biological connections between fatigue and
physical activity during and after childhood cancer therapy are
still relatively unknown.

Metabolomics, a method that uses liquid or gas chroma-
tography with mass spectrometry, offers a way to examine
many small molecules to provide insight into complex
physiological pathways associated with disease and/or health
(Li et al., 2016). Combined with computational algorithms to
identify individual metabolites and metabolomic pathways
associated with specified conditions, metabolomic analyses
may be conducted in multiple sample types (e.g., blood, urine,
and tissue) using an untargeted (wide detection of known and
unknown metabolites), targeted (focused detection on select,
identifiable metabolites), or hybrid approach (Wei et al.,
2021).

The use of metabolomics to explore disease changes related
to cancer and cancer treatment is rapidly growing, but few
researchers have used this method to explore the underlying
biological processes of cancer-related symptoms, particularly
in children. One study of childhood acute lymphoblastic
leukemia patients evaluated metabolomic profiles of cerebral
spinal fluid and found associations between fatigue and three
metabolites: gamma-glutamylglutamine, asparagine, and di-
methylglycine (Brown et al., 2021). Another study in children
with cancer foundmetabolites produced in the gut microbiome
to be associated with gastrointestinal and/or psychoneuro-
logical symptoms (including fatigue) (Bai et al., 2018). No
studies have examined metabolomics in relationship to
physical activity in children during or after cancer treatment.

The purpose of this study was to 1) explore urine me-
tabolites associated with fatigue or physical activity in chil-
dren on and off treatment for cancer and 2) identify any
metabolites or pathways that were similar between fatigue and
physical activity.

Methods

Study Design and Setting

Research participants were children ages 8–17 years, at-
tending a 6-day/5night, summer camp developed for child-
hood cancer survivors or children still receiving active cancer
therapy. Participants were enrolled over two summers (June
2017 and June 2018). Inclusion criteria included: English
speaking, cancer diagnosis or history of childhood cancer, no
history of neurological disorders or syndrome that would
prohibit self-report of symptoms, and no physical limitations
that would interfere with normal physical activity. Parental

consent for study participation was obtained verbally (by
phone) or in writing during in-person events leading up to
camp. Children provided verbal assent. Using a pre-/post-
study design, physical activity and fatigue measurements, and
urine samples were collected at baseline and end of camp.
Height and weight were collected at baseline and used to
calculate body mass index (BMI) percentile scores based on
age and gender per the Center for Disease Control BMI
calculator (Center for Disease Control, 2021).

Physical Activity

Physical activity was measured as steps-per-day and collected
using commercially available, wrist-worn Garmin Vivofit®

accelerometers. This monitor has a long battery life, water-
proof rating, and is validated for measuring step counts in
children across multiple ages (Muller et al., 2018). The av-
erage number of steps-per-day was calculated for 7 days
preceding camp and 5 full days during camp. Intensity levels
of physical activity were not measured due to limitations with
the output algorithm from the commercially available monitor
(i.e., proprietary formula that prohibited benchmarking with
other publications).

Fatigue Assessment

Self-reported fatigue was collected 1–2 days prior to camp
(electronically) and again at the end of camp, using the
Patient-Reported Outcomes Measurement Information Sys-
tem (PROMIS) Peds 37 Profile measuring fatigue, anxiety,
depressive symptoms, pain interference and intensity, physical
function-mobility, and peer relationships. The PROMIS Pe-
diatric instruments were developed by the National Institutes
of Health to provide a domain-based approach for assessing
common symptoms/conditions. These instruments are reliable
(Varni et al., 2014) and validated for use in children with
cancer (Hinds et al., 2013). The recall period for the instru-
ments is the “past 7 days.” For this metabolomics study, only
the symptom of fatigue was included in the analysis. The
PROMIS measures were scored using the free, online
HealthMeasures Scoring Service provided by the PROMIS®

Assessment Center SM (https://www.assessmentcenter.net/ac_
scoringservice) and reported using the T-score metric with a
mean of 50 and a standard deviation of 10 (Varni et al., 2014).

Sample Collection and Processing

Upon checking into camp, and again prior to leaving camp,
children provided single void urine samples. Urine samples
were collected around noon at both time points. As camp is
considered a safe environment free from invasive medical
procedures, children were asked to provide a urine sample
rather than a blood sample. Urine is commonly utilized in
metabolomic analyses and has been well described in the
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literature, including a published reference library of the human
urine metabolome (Bouatra et al., 2013). Collected urine
samples were immediately placed in 2 mL aliquots and frozen
on dry ice prior to transport to the research lab for storage at
-80°C. At the end of data collection, deidentified aliquots were
shipped on dry ice to the Arizona Metabolomics Laboratory
(at Arizona State University) for processing.

Liquid Chromatography-Tandem Mass
Spectrometry (LC-MS/MS)

The targeted LC-MS/MS method in this study was modeled
after that developed and used in a growing number of studies
extracting a detailed list of confirmed metabolites (Jasbi et al.,
2021; Shi et al., 2019; Zhu et al., 2015). Briefly, we included
∼300 metabolites (additional information available from the
authors by request) selected from >35 metabolic pathways of
biological significance to energy expenditure (such as gly-
colysis, TCA cycle, purine metabolism, and amino acid
metabolism). All LC-MS/MS parameters, including
precursor/produce ion transitions, collision energy (CE), and
retention time, were confirmed and validated using metabolite
standards. An Agilent 1290 UPLC-6490 QQQ-MS system
(Santa Clara, CA) was used for the LC-MS/MS experiments
with system control through Agilent MassHunter Workstation
software. Dual sample injection was utilized as follows: 10 μL
for negative ionization analysis and 4 μL for positive ioni-
zation analysis. Chromatographic separations were completed
using hydrophilic interaction chromatography via Waters
XBridge BEH amide column (150 × 2.1 mm, 2.5 μm particle
size, Waters, Milford, MA) with a flow rate of 0.3 mL/min.
The column compartment temperature was maintained at
40°C, while the autosampler temperature was set at 4°C.
Multiple-reaction-monitoring (MRM) mode was utilized for
the targeted data analysis with enhanced sensitivity and
specificity. Agilent MassHunter Quantitative Data Analysis
software was utilized for the MRM extracted peaks.

Data Analysis

Pre-camp versus post-camp differences in PROMIS Pediatric
Fatigue scores and average daily steps were calculated using
paired t-tests. For the metabolomics analyses, physical activity
and fatigue outcomes were grouped into categories based on
published cut points. Fatigue was dichotomized into high
versus low categories, using published reference benchmarks
(high fatigue defined as PROMIS scores >47.5, while low
fatigue were scores of 47.5 and below) (Carle et al., 2021).
Physical activity was grouped into one of three category
levels: High (>15,000 steps/day), moderate (10,000–14,999
steps/day), or low (<10,000 steps/day) (Tudor-Locke et al.,
2011).

Intensities for all 184 reliably measured metabolites (i.e.,
those that had a coefficient of variation <30% among quality

control samples) were log2 transformed and quantile nor-
malized; creatinine levels were examined but not normalized
secondary to no correlation with average daily steps or fatigue
at either data collection time point. We identified differentially
expressed metabolites across the physical activity and fatigue
categories using repeated measures Limma with robust var-
iance estimation (Phipson et al., 2016). Limma is a popular R
package that uses linear models to assess differential ex-
pression of many quantitative biological features simulta-
neously across multifactor designed experiments, like an
ANOVA. As such, also like ANOVA, adjusting for con-
founders is not possible. We therefore examined the possibility
of confounding variables through chi-squared tests exploring
age, sex, race, treatment, and BMI associations with the
outcomes at time 1 or 2. A secondary check was completed
stratifying the metabolic analyses by sex and treatment type.
Based on results from these additional tests, the risk of
confounding variables was felt to be minimal and the whole
sample was retained in the final analyses. Additionally, we
used the Benjamini-Hochberg false discovery rate (FDR) to
correct for multiple comparisons (Benjamini et al., 2001). A
metabolite with an FDR<0.20 was a priori deemed statistically
significant given the discovery-based nature of this study and
prior publications demonstrating acceptability of this practice
(Lyon et al., 2018; Xiao, Beitler, et al., 2016).

Significant metabolites were used to determine pathway
enrichment via MetaboAnalyst v5.0 (Over Representation
Analysis) mapping to the Kyoto Encyclopedia Genes and
Genomes (KEGG) reference library (Pang et al., 2021). En-
richment analysis calculates pathway-specific p-values by
comparing the number of metabolite hits to the number ex-
pected by chance for each referent pathway. We report en-
riched metabolic pathways with at least two metabolite hits
and p < 0.05. Pathway direction and relative magnitude was
obtained by z-score standardizing each significant metabolite
(mean = 0; standard deviation = 1) and summing across the
metabolites that comprise each pathway.

Results

A total of 43 children enrolled in the study and 32 had
complete data (urine samples, self-reports of fatigue, and step
data) for inclusion in the metabolomic analysis. The study
sample demographics were: White (66%), African American
(25%), Asian (6%), and other (3%); Hispanic ethnicity (6%)
(Table 1). The majority were off treatment (84%) and male
(53%). A plurality had a cancer diagnosis of leukemia/
lymphoma (37%).

Fatigue and Physical Activity Changes during Camp

Mean PROMIS fatigue T-scores decreased from pre-camp to
post-camp (45.1 v 42.1, p = 0.04). Lower PROMIS fatigue
scores represent a reduction in symptom experience. A 3-point
change in the PROMIS mean score is considered a “minimally
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important difference” (MID), based on prior research in-
cluding patient and clinician viewpoints, and signifies a
clinically important change (Thissen et al., 2016). Thus, the
observed 3-point reduction in fatigue score was significant
from both a statistical and clinical standpoint. Physical activity
increased more than two-fold during camp with an average of
6,699 steps-per-day the week before camp and 16,021 steps-
per-day the week of camp (p < 0.001). Although not statis-
tically significant, there tended to be an inverse relationship
between fatigue and steps-per-day pre-camp (p = 0.13) and at
the end of camp (p = 0.38).

Metabolites and Physical Activity

Using a targeted analysis, 27 metabolites significantly dif-
ferentiated (FDR < 0.20) between categories of low, medium,
or high physical activity (Table 2). Thirteen of these metab-
olites had an FDR <0.05. Betaine (i.e., N,N,N-
trimethylglycine), and N-acetylneuraminic acid (the pre-
dominant sialic acid found in human cells), yielded the
smallest FDR-correct p-values for the relationship with
physical activity. Some of the metabolite associations with
physical activity showed a linear relationship. For instance,

betaine (a modified amino acid involved in glycine, serine, and
threonine metabolism) had a linear, inverse association with
physical activity. As steps-per-day increased, betaine levels
decreased (low steps = 5.0E+07, medium steps = 2.7E+07,
and high steps = 2.5E+07; FDR Q = 0.001). However, a
different trend is noted with indole-3-lactic acid, a mono-
carboxylic acid tryptophan metabolite, as it displayed a non-
linear U-shaped dose response with steps (low steps =
12.9E+04, medium steps = 9.0E+04, and high steps =
12.1E+04).

From the 27 metabolites associated with steps-per-day,
pathway enrichment analysis identified 10 pathways repre-
sented by two or more metabolites (Table 3). Of these enriched
pathways, 5 had p-values < 0.05: aminoacyl-tRNA biosyn-
thesis; phenylalanine, tyrosine, and tryptophan biosynthesis;
glycine, serine, and threonine metabolism; galactose meta-
bolism; and phenylalanine metabolism; the phenylalanine
pathway consisted of the same metabolites as the phenylal-
anine, tyrosine, and tryptophan biosynthesis pathway. Box-
plots of summed metabolite z-scores were created to show the
direction of change for the top 4 enhanced pathways across the
different categories of physical activity (Figure 1). A U-
shaped dose response change is noted in the aminoacyl

Table 1. Characteristics of Study Participants.

Characteristic N (32) %

Gender
Male 17 53
Female 15 47

Race
White 21 66
African American 8 25
Asian 2 6
Other 1 3

Ethnic group
Hispanic 2 6
Non-Hispanic 30 94

Diagnosis
Leukemia/lymphoma 11 37
Solid tumors 9 28
CNS tumors 7 22
Other/unknown 4 13

Treatment
On 5 16
Off 27 84
Age in years, M (SD) 13.2 (2.6) Median (IQR) 13 (11–15)
Months since Dx, M (SD) 71 (49.6) Median (IQR) 67.5 (33–107)

Body mass index+

Underweight 2 6
Healthy 14 44
Overweight 8 25
Obese 8 25

Note. +Body mass index calculated per Center for Disease Control age and gender percentiles for height and weight. Abbreviations: M, mean; SD, standard
deviation, Dx, diagnosis; IQR, interquartile range.
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Table 2. Metabolites Significantly Associated with Low (<10,000), Medium (10,000–15,000), or High (>15,000) Steps-Per-Day.

Metabolite KEGG ID Lowa Mediuma Higha Raw P FDR Q KEGG-Annotated Metabolic Pathway

Amino acids
Betaine C00719 4.99E+07 2.68E+07 2.52E+07 <0.001 0.001 Glycine, serine, and threonine metabolism
Asparagine C00152 1.33E+05 1.82E+05 2.23E+05 <0.001 0.01 Aminoacyl-tRNA biosynthesis
3-hydroxykynurenine C02794 1.54E+05 2.11E+05 2.28E+05 0.001 0.03 Tryptophan catabolism
Tyrosine C00082 13.4E+05 9.46E+05 1.36E+06 0.002 0.03 Tyrosine metabolism
1-methylhistidine C01152 1.01E+07 1.95E+07 2.08E+07 0.01 0.07 Histidine metabolism
N-acetylornithine C00437 13.2E+04 9.33E+04 10.1E+04 0.01 0.07 Arginine biosynthesis
Phenylalanine C02057 9.85E+06 7.03E+06 9.29E+06 0.01 0.08 Phenylalanine metabolism
Tryptophan C00078 3.24E+06 2.17E+06 3.07E+06 0.01 0.09 Tryptophan metabolism
Methionine C00073 3.31E+05 1.98E+05 2.70E+05 0.02 0.14 Cysteine and methionine metabolism
Valine C00183 2.48E+06 1.72E+06 1.94E+06 0.02 0.15 Valine, leucine, and isoleucine metabolism

Sugars
N-acetylneuraminic acid C19910 1.25E+06 1.03E+06 8.86E+05 <0.001 <0.001 Amino and nucleotide sugar metabolism
Glyceric acid C00258 8.98E+04 11.8E+04 1.31E+05 0.001 0.03 Pentose phosphate pathway
Erythrose C01796 3.27E+05 2.95E+05 4.43E+05 0.002 0.03 Sugar metabolism
Galactose C00124 6.99E+05 9.01E+05 8.60E+05 0.002 0.03 Galactose metabolism
Myoinositol C00137 8.89E+05 6.79E+05 6.01E+05 0.01 0.07 Galactose metabolism
3-phosphoglyceric acid C00197 3.22E+03 6.32E+03 5.66E+03 0.01 0.09 Glycolysis
Ribose 5-phosphate C00117 2.37E+04 1.92E+04 1.28E+04 0.02 0.15 Pentose phosphate pathway
Xylitol C00379 5.98E+05 5.06E+05 4.66E+05 0.02 0.16 Pentose and glucuronate interconversions

Nucleotides
Inosine C00294 5.13E+04 2.04E+04 1.47E+04 0.001 0.03 Purine metabolism
Xanthine C00385 5.05E+04 4.68E+04 3.42E+04 0.01 0.09 Purine metabolism
Cytosine C00380 1.29E+05 1.28E+05 2.77E+05 0.02 0.14 Pyrimidine metabolism

Carboxylic acids
4-hydroxybenzoic acid C00156 1.54E+06 2.12E+06 3.51E+06 <0.001 0.01 Aminobenzoic acid degradation
m-coumaric acid C12621 1.35E+04 1.58E+04 1.93E+04 0.001 0.03 Phenylalanine metabolism
Indole-3-lactic acid C02043 12.9E+04 9.03E+04 12.1E+04 0.002 0.03 Tryptophan metabolism
Glyoxylic acid C00048 6.73E+03 8.46E+03 7.20E+03 0.02 0.16 Purine metabolism

Lipids
Lauric acid C02679 1.80E+06 1.70E+06 1.80E+06 0.001 0.02 Fatty acid biosynthesis

Drugs
2-pyrrolidinone C11118 4.91E+04 6.31E+04 6.20E+04 0.01 0.08 Xenobiotics metabolism

aRaw intensity value across the physical activity groups.

Table 3. Metabolic Pathway Enrichment Analysis using the 27 Differentially Expressed Metabolites Associated with Low, Medium, or High
Physical Activity Categories.

KEGG Metabolic Pathway Total Metabolitesa Hitsb p-value FDR

Aminoacyl-tRNA biosynthesis 48 6 <0.001 0.01
Phenylalanine, tyrosine, and tryptophan biosynthesis 4 2 0.002 0.06
Glycine, serine, and threonine metabolism 33 4 0.002 0.06
Galactose metabolism 27 3 0.01 0.21
Phenylalanine metabolism 10 2 0.01 0.21
Pentose phosphate pathway 22 2 0.06 0.79
Purine metabolism 65 3 0.11 0.96
Glyoxylate and dicarboxylate metabolism 32 2 0.11 0.96
Cysteine and methionine metabolism 33 2 0.11 0.96
Amino sugar and nucleotide sugar metabolism 37 2 0.14 0.96

aTotal number of metabolites included in each KEGG (Kyoto Encyclopedia of Genes and Genomes) referent metabolic pathways.
bNumber of identified metabolites that map to each KEGG pathway. Enrichment determined by 2 or more hits per pathway. Abbreviations: FDR, false discovery
rate.
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Figure 1. Boxplots of metabolic pathway scores (i.e., summed z-scores of pathway metabolites) by average steps-per-day categories (low
<10,000; medium = 10,000–15,000; high >15,000). A) Aminoacyl t-RNA biosynthesis metabolic pathway (asparagine, phenylalanine,
methionine, valine, tryptophan, and tyrosine metabolites). B) Phenylalanine, tyrosine, and tryptophan metabolic pathway (phenylalanine and
tyrosine metabolites). C) Glycine, serine, and threonine metabolic pathway (betaine, 3-phosphoglyceric acid, glyceric acid, and glyoxylic acid
metabolites). D) Galactose metabolic pathway (galactose and myoinositol metabolites). The Phenylalanine metabolic pathway shared the
same metabolites with the phenylalanine, tyrosine, and tryptophan metabolic pathway.

Table 4. Urine Metabolites Significantly Associated with Low (≤47.5) v High (>47.5) Mean PROMIS Pediatric Fatigue Scores.

Metabolite KEGG ID Lowafatigue Highafatigue Raw P FDR Q KEGG-Annotated Metabolic Pathway

Amino acids
Isoleucine C00407 9.62E+06 12.8E+06 0.004 0.14 Valine, leucine, and isoleucine metabolism.
Anthranilic acid C00108 2.69E+04 6.21E+04 0.01 0.18 Phenylalanine, tyrosine, and tryptophan biosynthesis

Sugars
Trehalose C01083 6.67E+05 16.9E+05 0.002 0.11 Starch and sucrose metabolism

Nucleotides
Uridine C00299 9.78E+03 12.4E+03 0.002 0.11 Pyrimidine metabolism

Carboxylic acids
Trimethylamine-N-oxide C01104 13.8E+07 9.35E+07 <0.001 0.02 Microbial gut flora metabolism
Muconic acid C02220 6.47E+03 17.2E+03 0.004 0.14 Tryptophan metabolism
Indole-3-lactic acid C02043 1.08E+05 1.37E+05 0.01 0.18 Tryptophan metabolism

Drugs
Acetohydroxamic acid C06808 5.83E+05 3.67E+05 <0.001 0.02 Xenobiotics metabolism

aRaw intensity value across the fatigue groups.
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t-RNA biosynthesis pathway (Figure 1A) as well as the
phenylalanine, tyrosine, and tryptophan pathway (Figure 1B)
where pathway activity is relatively high among children with
low steps-per-day (<10,000), decreases among children with
medium physical activity (10,000–15,000 steps-per-day), but
returns to higher levels among children with high (>15,000)
steps-per-day. Of the metabolic pathways related to physical
activity, the glycine, serine, and threonine pathway (Figure 1C
and D) is the only one to display a linear relationship with
pathway activity increasing as steps increase. The galactose
pathway Figure 1D displays an inverted U-shaped dose re-
sponse with greater pathway activation associated with me-
dium step numbers, compared to low or high steps.

Metabolites and Fatigue

Eight metabolites were identified to discriminate between high
vs low fatigue (FDR<0.20). Among those, two metabolites
had an FDR <0.05: acetohydroxamic acid (a urease inhibitor),
and trimethylamine-N-oxide (a metabolite produced by gut
microbiota from choline and carnitine) (Table 4). Due to the
small number of significant metabolites, no enrichment
pathways were identified for metabolites related to fatigue.

Assessment of potential confounders

As adjustment for confounders is not possible utilizing
LIMMA models, additional analyses were performed. Bi-
variate associations between age, gender, race, BMI, and
treatment type were explored using chi-squared tests, in re-
lationship to physical activity (Supplemental Table 1) and
fatigue (Supplemental Table 2) at both time points (pre-camp
and during camp). Age, sex, race, treatment, and BMI were
not associated with our outcomes at time 1 or 2 (physical
activity, Supplemental Table 1; or fatigue, Supplemental Table
2). The exception was sex as girls were less active (p = 0.02)
than boys during camp (T2). A secondary check was com-
pleted stratifying the metabolic analyses by sex (Supplemental
Table 3 for boys and Supplemental Table 4 for girls) and
treatment type (Supplemental Table 5). In all instances, me-
tabolite and metabolic pathway results were similar, therefore
suggesting that potential confounding variables were a min-
imal risk.

Intersection of Metabolites and Pathways

Indole-3-lactic acid, a tryptophan metabolite originating from
the gut-microbiome, was the only metabolite significantly
associated with both physical activity and fatigue. Lower
levels of indole-3-latic acid were associated with both de-
creased fatigue and moderate steps-per-day. Higher indole-3-
latic acid levels were associated with higher fatigue and two
categories of physical activity (low and high steps-per-day).

In evaluating potential overlap between the enriched
KEGG-annotated metabolomic pathways related to fatigue or

physical activity (Tables 2 and 4), five overlapping metab-
olomic pathways were observed: 1) phenylalanine, tyrosine,
and tryptophan biosynthesis; 2) pyrimidine metabolism; 3)
tryptophan metabolism; 4) valine, leucine, and isoleucine
metabolism; and 5) xenobiotics metabolism, involving me-
tabolites significantly associated with fatigue and physical
activity in our analyses (Table 5). These intersecting elements
may offer additional insight into understanding a potential
biological interaction between fatigue and physical activity.

Discussion

This is one of the first studies to measure metabolomic
changes related to fatigue and physical activity in children
during and after cancer treatment. This study demonstrates
that metabolomic profile distinctions can be observed between
categories of differing physical activity levels and between
low versus high fatigue. This study also offers preliminary
evidence related to pathways of interest which may intersect in
relationship to fatigue and physical activity.

Research studies support “moderate to high intensity”
physical activity as a cancer-related fatigue intervention for
adult oncology patients (American College of Sports
Medicine, 2019; Cramp & Byron-Daniel, 2012; Tomlinson
et al., 2014). In our study, children increased their physical
activity level during camp by an average of 10,000 steps-per-
day, more than doubling their baseline activity levels. Dif-
ferences were observed in 27 metabolites and three enriched
metabolic pathways (FDR ≤0.20) between categories of low,
medium, and high steps-per-day. Our findings related to
indole-3-lactic acid are in line with emerging research which
suggests that the human gut microbiota may be influenced by
physical activity (Dorelli et al., 2021).

Our dose-related findings for physical activity are in
agreement with other studies showing biological gradient
differences in metabolites in response to physical activity
intensity and duration (Kelly et al., 2020; Xiao et al., 2016).
For three, out of four, enhanced pathways (Figure 1), we
observed similar directions for pathway activity associated
with both low and high levels of physical activity, while the
moderate level of physical activity (defined for 10,000–15,000
steps-per-day for this study) was associated with pathway
changes in the opposite direction, displaying a U-shaped
curve. Of interest, the top three pathways in our enrichment
analysis of metabolites associated with physical activity
categories (aminoacyl-tRNA biosynthesis; phenylalanine,
tyrosine, and tryptophan metabolism; and glycine, serine, and
threonine metabolism) were recently reported in another study
of metabolite changes occurring after an acute exercise bout in
healthy athletes (Tabone et al., 2021).

It is important to note that inconsistent results have been
reported, in the pediatric oncology literature, regarding ef-
fectiveness of physical activity interventions on cancer-related
fatigue (Wurz, McLaughlin, Lategan, Ellis, et al., 2021). To
date, no consensus has been reached to specify the best
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intervention (walking, resistance exercises, etc.) or the
intensity/duration needed to improve fatigue during childhood
cancer, although the general consensus is that physical activity
is generally of benefit (Malysse et al., 2021; Wurz et al.,
2021b). Commonly, discussions related to appropriate levels
of physical activity intensity to induce change in patient-
reported outcomes (i.e., fatigue) have cited dose response
U-shaped curves to depict “low” intensity physical activity as
ineffective, “moderate” levels of physical activity as optimal,
and “high” levels of physical activity as aversive (Ekkekakis
et al., 2005). The pitfall with dose response theory is defining
low, moderate, and high levels of physical activity as one-size
fits all (or one physical activity intensity recommendation for
all) as this may not account for inter-personal variations. This
may be particularly true of individuals with cancer as the
treatment for cancer and/or the cancer itself can impact
patient-reported outcomes such as fatigue.

Additionally, when examining fatigue as an outcome of
physical activity, it should be noted that other elements such
as sleep and/or depression may influence fatigue presence
and severity. While ongoing research is needed to develop
evidence-based guidelines for beneficial physical activity
levels (frequency, intensity, and duration) during childhood
cancer therapy (Wurz, McLaughlin, Chamorro Vina, et al.,
2021), studies such as this one may help to provide insight
into the relationship between metabolomic pathway varia-
tions and possible dose response curves with differing levels
of activity.

Our study additionally identified 8 metabolites that dis-
tinguished between low versus high fatigue (Table 4). A
recent exploratory, untargeted metabolomics study found
that fatigue was associated with asparagine, dimethylglycine,
and gamma-glutamylglutamine levels in children undergo-
ing treatment for leukemia (Brown et al., 2021) with the
authors attributing these metabolites to central nervous
system oxidative stress and cancer treatment with aspar-
aginase. The results of our study differed, but the differences
in study design should be noted. First, the majority of our
participants were off therapy; second, we conducted a tar-
geted metabolomic analysis; and third, we analyzed urine
samples rather than cerebral spinal fluid. Our findings in-
dicate that fatigue may be associated with compounds de-
rived by or related to gut microbial metabolism including
trimethylamine-N-oxide, a carboxylic acid associated with
poor cardiometabolic outcomes, and several metabolites

involved in tryptophan metabolism (indole-3-latic acid,
muconic acid, and anthranilic acid). Acetohydroxamic acid,
a compound derived from xenobiotic metabolism, was also
linked to changes in fatigue in this study.

An exciting, yet preliminary finding of this study relates to
the identification of indole-3-latic acid and additional ex-
panded metabolomic pathways (phenylalanine, tyrosine, and
tryptophan biosynthesis; pyrimidine metabolism; tryptophan
metabolism; valine, leucine, and isoleucine metabolism; and
xenobiotics metabolism) associated with both different levels
of fatigue and physical activity. Indole-3-latic acid is a
tryptophan catabolite produced primarily in the gut micro-
biota. This metabolite, and other tryptophan catabolites, is
suggested to have multiple functions, including anti-
inflammatory and anti-oxidative effects in humans (Roager
& Licht, 2018).

Tryptophan was also identified in two of the five over-
lapping KEGG-annotated metabolic pathways (Table 5) with
fatigue and physical activity (phenylalanine, tyrosine, and
tryptophan biosynthesis; tryptophan metabolism). Tryptophan
pathways are involved in the production of neurotransmitters
such as serotonin and melatonin which are important to sleep
and have also been linked to fatigue (Zhao et al., 2020). A
previous study demonstrated increased tryptophan levels after
exercise in healthy controls and suggested that elevated
tryptophan may be linked with fatigue by serving as a pre-
cursor for 5-hydroxytryptamine (Castell et al., 1999). These
shared pathways (phenylalanine, tyrosine, and tryptophan
biosynthesis; tryptophan metabolism) offer evidence sup-
porting the potential biological mechanisms through which
cancer-related fatigue and physical activity may be
interrelated.

Of note, three other metabolic pathways intersected with
fatigue and physical activity: pyrimidine metabolism (related
to ATP and energy production); valine, leucine, and isoleucine
metabolism (branched chain amino acids necessary for energy
production and muscle health); and xenobiotic metabolism
(work to excrete foreign items such as drugs or environmental
chemicals). These shared metabolic pathways are worthy of
consideration in future research studies evaluating fatigue and
physical activity connections.

We found only one other study that explored metabolomic
associations between “moderate-to-high” intensity exercise
and fatigue (Kucharski et al., 2019). This study reports de-
creased physical fatigue and depression after an intervention

Table 5. Shared metabolites and Pathways Between Fatigue and Physical Activity.

Individual Metabolites KEGG-Annotated Metabolic Pathways

Indole-3-lactic acid Phenylalanine, tyrosine, and tryptophan biosynthesis
Pyrimidine metabolism
Tryptophan metabolism
Valine, leucine, and isoleucine metabolism
Xenobiotics metabolism
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of aerobic and resistance exercise in older adults with rheu-
matoid arthritis. The study also reported a dose response
interaction with moderate-to-high exercise being associated
with greater decreases in fatigue and depression, and without
the effect being observed with lower-level intensity exercise
(Kucharski et al., 2019). Changes in multiple serum metab-
olites were also reported after the exercise intervention, in-
cluding changes in indole-3-acetic acid and N-acetylglutamic
acid, which were also metabolites associated with physical
activity in our study. In the Kucharski (2019) study, agmatine
was identified as the only metabolite significantly associated
with changes in both aerobic exercise and fatigue. Our study
included agmatine but did not find significant association with
either physical activity or fatigue in children.

Study Limitations

The findings of this study are limited by the small sample size
and the heterogeneity of the sample characteristics (large
standard deviation in age, BMI, cancer treatment, and cancer
diagnosis). Although the children were offered the same foods
during camp, no effort was made to control for differences in
nutritional intake either prior to or during camp which could
have influenced metabolomic findings. Our study data was
collected around the time of summer camp attendance which
allowed changes in physical activity to be observed in this
patient population, yet limited data collection as camp is
considered a “safe” space and purposeful efforts are taken to
protect children from medical interventions during this time.
As such we did not collect data related to current medications
or diet and did not perform venipunctures to collect serum
samples for metabolomic analysis. Although the majority of
patients (27 out of 32; 84%) were off treatment and not re-
ceiving chemotherapy during data collection, five children
were on-therapy at the time of camp. Although it is possible
that received medications could have influenced the observed
urine metabolites, this was of lesser concern secondary to the
small number of patients on active therapy and the fact that
only oral medications were administered during camp (no
intensive treatment). Additionally, camp check-in occurred
on a Sunday allowing for a minimum of 72 hours between
any intravenous chemotherapy and the first urine sample
being provided. We did attempt to consolidate the time of
urine sample collection (occurring around noon at both time
points). An additional limitation is that other elements of
camp attendance may have influenced perceptions of fatigue
(such as socialization with peers) which were unrelated to
physical activity and not captured in this analysis. This study
does not seek to imply a causal relationship but instead
identifies metabolomic pathways found to be related to both
fatigue and physical activity in this sample and setting. This
study was also limited in defining physical activity as the
commercially available monitor did not provide useful in-
tensity measures which could be easily benchmarked. As a
surrogate measure for physical activity intensity, steps-per-

day were collected and categorized based on published
literature.

Conclusion

This study provides beginning evidence of metabolome dif-
ferences associated with varying levels of fatigue and physical
activity in children during and after cancer treatment. Me-
tabolomic pathway associations with physical activity cate-
gories varied in their dose response, with observed U-shaped
and linear associations between metabolites and differing
categories of physical activity. Overlapping metabolomic
pathways were noted between fatigue and physical activity
providing further evidence for potential inter-connectivity in
children treated for cancer; however, these findings should be
interpreted with caution as a causal relationship cannot be
inferred. Additional research is needed, and this study sug-
gests that indol-3-lactic acid and/or the tryptophan pathways
may be potential targets for future studies with a goal of further
evaluating interactions between fatigue and physical activity
during childhood cancer therapy. As these elements are related
to the gut microbiome, future metabolomics research in this
area may benefit from the inclusion of a multi-omics approach
which integrates gut microbiome data, to further explore bi-
ological connections between physical activity and fatigue.
Given the known evidence regarding the benefits of physical
activity during and after cancer therapy, and the potential
interaction with fatigue, nurses should routinely assess patient
reports of these elements throughout the cancer continuum and
provide patient and family education related to fatigue
management and physical activity goals.
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