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Creating an efficient way to extract large volumes of 
critical information from unstructured radiology 

reports has many potential applications that can ben-
efit patients and providers alike, including improved 
follow-up of abnormal results, assistance in quality im-
provement projects, and facilitation of epidemiologic, 
surveillance, and cost-effectiveness investigations. The 
benefit is eminent in challenging health care environ-
ments where well-trained medical personnel and re-
sources are limited.

Recently, tremendous progress has been made in natu-
ral language processing (NLP) using deep learning. One 
of the advances is contextualized language models based 
on the “transformer” architecture (1), such as bidirectional 
encoder representations from transformers (BERT) (2) 
and robustly optimized BERT pretraining approach (Ro-
BERTa) (3). These models can effectively represent words 
and sentences given their document-level context; that 
is, words can have different representations across varied 
contexts. Compared with noncontextualized models such 

as Word2Vec (4), substantial performance improvements 
have been reported for a broad range of NLP tasks.

Transformer-based language models are appealing for 
clinical NLP because they may be used as a shared layer 
for transfer learning, in which pretraining them with a 
large amount of text data can benefit downstream tasks 
where annotated training data are scarce. In many ap-
plications, we may need to annotate tens of thousands 
of documents to effectively train a classifier. But if our 
classifier includes a transformer layer, then what is al-
ready learned by the transformer can be transferred to the 
classifier via “fine-tuning.” Such classifiers require fewer 
annotated training examples than training from scratch, 
which will greatly lower the hurdle to leveraging the latest 
NLP advances in clinical applications.

A few domain-specific models have been developed, 
such as biomedical text with BioBERT (5) and BioMed-
RoBERTa (6) and clinical text with clinical-BERT (7) 
and BlueBERT (8). However, a model specific to radiol-
ogy text has rarely been explored. Previous work trained 

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Purpose:  To investigate if tailoring a transformer-based language model to radiology is beneficial for radiology natural language process-
ing (NLP) applications.

Materials and Methods:  This retrospective study presents a family of bidirectional encoder representations from transformers (BERT)–
based language models adapted for radiology, named RadBERT. Transformers were pretrained with either 2.16 or 4.42 million radiol-
ogy reports from U.S. Department of Veterans Affairs health care systems nationwide on top of four different initializations (BERT-
base, Clinical-BERT, robustly optimized BERT pretraining approach [RoBERTa], and BioMed-RoBERTa) to create six variants of 
RadBERT. Each variant was fine-tuned for three representative NLP tasks in radiology: (a) abnormal sentence classification: models 
classified sentences in radiology reports as reporting abnormal or normal findings; (b) report coding: models assigned a diagnostic code 
to a given radiology report for five coding systems; and (c) report summarization: given the findings section of a radiology report, mod-
els selected key sentences that summarized the findings. Model performance was compared by bootstrap resampling with five inten-
sively studied transformer language models as baselines: BERT-base, BioBERT, Clinical-BERT, BlueBERT, and BioMed-RoBERTa.

Results:  For abnormal sentence classification, all models performed well (accuracies above 97.5 and F1 scores above 95.0). RadBERT 
variants achieved significantly higher scores than corresponding baselines when given only 10% or less of 12 458 annotated training 
sentences. For report coding, all variants outperformed baselines significantly for all five coding systems. The variant RadBERT–
BioMed-RoBERTa performed the best among all models for report summarization, achieving a Recall-Oriented Understudy for 
Gisting Evaluation–1 score of 16.18 compared with 15.27 by the corresponding baseline (BioMed-RoBERTa, P , .004).

Conclusion:  Transformer-based language models tailored to radiology had improved performance of radiology NLP tasks compared with 
baseline transformer language models.
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An estimation of the distributions of modalities and body parts 
covered in these reports is given in Appendix E2 (supplement).

Pretraining of Transformers
We followed the standard pretraining procedures as used in 
BERT (3) for all RadBERT models. Input texts were tokenized 
with WordPiece (12) as subword tokens and fed into the 
model. The training objective was the masked language model 
introduced in the study by Devlin et al (2). Liu et al (3) re-
ported that skipping the next sentence prediction loss slightly 
improved downstream task performance while substantially 
simplifying pretraining compared with the original pretraining 
algorithm used to pretrain BERT. We followed their sugges-
tion when pretraining RadBERT models. We used the original 
vocabulary of previous BERT-base (2) language models, which 
allows weights pretrained on general domain corpora to be 
reused.

The details of five baseline models and six RadBERT variants 
are shown in Table 1. Appendix E3 (supplement) provides more 
implementation details for pretraining and the three tasks.

Task 1: Abnormal Sentence Classification
The task consisted of identifying sentence-level abnormal findings 
in a radiology report by classifying if a sentence reports normal 
or abnormal conditions. Following the common practice for fine-
tuning transformers for sentence classification, we fed the output 
representation of the first token from the transformer into a single 
linear layer to classify the input sentence (Fig 1B). We used the 
labeled dataset from Harzig et al (13), which is a subset of the 
Open-I chest radiograph radiology report dataset (14) available in 
the public domain, to fine-tune a classifier on top of each trans-
former. The dataset was annotated previously by labeling whether 
a sentence describes abnormality and was readily split into 12 458, 
1557, and 1558 sentences for training, validation, and testing, re-
spectively. We measured the classification performance by using 
F1 score and accuracy, given seven different percentages of train-
ing sentences (from 1% to 100%). To ensure that a reported result 
was not an outlier due to a specific random seed initialization, 
mean and SD results of five runs with different random seed ini-
tializations were reported.

Task 2: Report Coding
The task classified reports into different diagnostic codes (see 
Appendix E4 [supplement]). Unlike abnormal sentence clas-
sification, report coding is a multiclass classification task on a 
report level.

The fine-tuning procedure was similar to that used for the 
abnormal sentence classification (Fig 1B). Average accuracy 
and macro average of F1 scores of multiclass classification for 
each coding system were reported to evaluate the performance 
of each model.

Task 3: Summarization
We applied an extractive summarization method that was 
based on a transformer-based language model (15) for this 
task. We randomly chose 1000 reports and their corresponding 

transformers with the Medical Information Mart for Intensive 
Care (MIMIC-III) database (9), which includes radiology text, 
but they are not sufficient to fully support the radiology domain 
with a limited number of reports. Moreover, the duplicates pres-
ent in the MIMIC-III database reported in a study by Gabriel et 
al (10) may degrade the effectiveness of transformers pretrained 
with it, as suggested in a study by Raffel et al (11) for pretraining 
language models.

In this paper, we present RadBERT, a family of transformer-
based language models adapted to radiology. RadBERT variants 
were pretrained with millions of radiology reports from the U.S. 
Department of Veterans Affairs (VA) health care system nation-
wide on top of a variety of language models as the initialization 
to investigate if tailoring a transformer-based language model to 
radiology is beneficial for radiology NLP applications.

Materials and Methods

VA Radiology Report Corpus
Figure 1 shows an overview of our study design. The study 
team had institutional review board approval for exemption 
from informed consent to use 150 million radiology reports 
from 130 VA facilities nationwide from the past 201 years 
to develop various artificial intelligence applications in radi-
ology. Among these reports, 4.42 million reports with 2.17 
million unique patients, 466 million tokens, and 2.6 GB in 
size were retrieved from the clinical data warehouse of the VA, 
de-identified, and de-duplicated for the study. Appendix E1 
(supplement) describes the details of our preprocessing steps. 

Abbreviations
BERT = bidirectional encoder representations from transformers, 
MIMIC = Medical Information Mart for Intensive Care, NLP = 
natural language processing, RadBERT = BERT-based language 
model adapted for radiology, RoBERTa = robustly optimized BERT 
pretraining approach, ROUGE = Recall-Oriented Understudy for 
Gisting Evaluation, VA = U.S. Department of Veterans Affairs

Summary
Transformer-based language models adapted for radiology had higher 
performance on three radiology natural language processing tasks 
than five intensively studied baseline models.

Key Points
	n Bidirectional transformer-based language models tailored to 

radiology were superior to general domain or biomedical- and 
clinical-specific language models for the radiology natural language 
processing tasks of abnormal sentence classification, report coding, 
and report summarization.

	n Radiology-specialized language models were significantly better 
than baseline models for all five coding systems in the report cod-
ing task, outperformed baseline models for abnormal sentence 
classification when fine-tuned with less than 10% of training 
examples, and achieved Recall-Oriented Understudy for Gisting 
Evaluation–1 score of 16.18 versus 15.27 by the counterpart base-
line model for the report summarization task.

Keywords
Translation, Unsupervised Learning, Transfer Learning, Neural 
Networks, Informatics
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standard performance metrics of automated summarization 
and machine translation in NLP. ROUGE-1 and ROUGE-2 
compute the overlap of n grams (n consecutive tokens) with 
n = 1 and 2, respectively, between a predicted summary and 
the ground truth, while ROUGE-L measures the overlap be-
tween summaries on the basis of the longest common subse-

impressions as evaluation data. Note that the evaluated samples 
were reserved from the radiology corpus and not included in 
the pretraining. The length distributions for the reports and 
impressions are shown in Figure 2. The extracted summaries 
were scored by Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE)–1, ROUGE-2, and ROUGE-L (16), the 

Figure 1:  Overview of our study design, which includes pretraining and fine-tuning of RadBERT. (A) In pretraining, different weight initializations were considered to 
create variants of RadBERT. (B) The variants were fine-tuned for three important radiology natural language processing (NLP) tasks: abnormal sentence classification, report 
coding, and report summarization. The performance of RadBERT variants for these tasks was compared with a set of intensively studied transformer-based language mod-
els as baselines. (C) Examples of each task and how performance was measured. In the abnormality identification task, a sentence in a radiology report was considered 
“abnormal” if it reported an abnormal finding and “normal” otherwise. A human-annotated abnormality was considered ground truth to evaluate the performance of an 
NLP model. In the code classification task, models were expected to output diagnostic codes (eg, abdominal aortic aneurysm, Breast Imaging Reporting and Data System 
[BI-RADS], and Lung Imaging Reporting and Data System [Lung-RADS]) that match the codes given by human providers as the ground truth for a given radiology report. 
During report summarization, the models generated a short summary given the findings in a radiology report. Summary quality was measured by how similar it was to the 
impression section of the input report. AAA = abdominal aortic aneurysm, BERT = bidirectional encoder representations from transformers, RadBERT = BERT-based language 
model adapted for radiology, RoBERTa = robustly optimized BERT pretraining approach.
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BioMed-RoBERTa and RadBERT-RoBERTa, and (e) BioMed-
RoBERTa and RadBERT–BioMed-RoBERTa (see Table 2).

For task 2, the same pairwise comparisons as described above 
were used to verify statistical significance of the results for all five 
coding systems. For task 3, we compared the variant RadBERT–
BioMed-RoBERTa with five baselines over the sum of ROUGE 
scores. Bonferroni correction was used to accommodate multiple 
(five) tests.

Model Availability
RadBERT models can be released upon request with a data 
usage agreement.

Results

Task 1: Abnormal Sentence Classification
Results for abnormal sentence classification are reported in Ta-
ble 2. In general, the performance improved with more train-
ing data used for all models. When fine-tuned with sufficient 
annotated data (eg, thousands of sentences or more), general 
BERT models and those pretrained on the biomedical or clini-
cal domain could achieve strong results, showing the effective-
ness of pretraining. However, when the data for fine-tuning 
became scarce—that is, the number of training data were less 
than a thousand (,5% of training data)—adapting the lan-
guage model to the specific domain was necessary.

One of the best-performing RadBERT variants was Rad-
BERT-RoBERTa-4m, which was initialized with the RoBERTa 

quences appearing in the pair of summaries to be compared. 
Intuitively, ROUGE-1 and ROUGE-2 measure if a predicted 
summary captures information contents similar to the ground 
truth, while ROUGE-L measures fluency and coherence. The 
range of ROUGE lies from 0 to 1 (0%–100%). A higher score 
indicates better quality. A typical ROUGE number for sum-
marization tasks could fall between 0 and 0.3, depending on 
the model and the difficulty of the task.

Statistical Analysis
We conducted bootstrap resampling as the statistical signifi-
cance test for our results, following the methods described in 
the study by Smith et al (17). For task 1, given 1558 predic-
tions from each model on the test set, we randomly sampled 
1558 data with replacements from these predictions. The ac-
curacy and F1 score were computed from the samples. We 
conducted 10 000 repetitive trials. For a pair of models, A 
and B, the proportion of times in these 10 000 trials that the 
F1 score of model A exceeded the F1 score of model B was 
noted. We labeled such pairs statistically significant if this 
proportion was greater than 95% for the predetermined sig-
nificance level at .05.

We considered five pairs of models with different training 
data proportions (10%, 5%, 2%, and 1%) to confirm the sig-
nificance in performance improvement between a RadBERT 
variant and their corresponding baseline models: (a) BERT-base 
and RadBERT–BERT-base, (b) Clinical BERT and RadBERT–
Clinical BERT, (c) BlueBERT and RadBERT–Clinical BERT, (d) 

Table 1: Details of the Five Baseline Models (BERT-base, BioBERT, Clinical BERT, Blue-
BERT, BioMed-RoBERTa) and Six RadBERT Variants

Model Weight Initialization Pretraining Data

BERT-base Random Wikipedia 1 BookCor-
pus

BioBERT BERT-base PubMed 1 PMC
Clinical BERT BioBERT MIMIC
BlueBERT BERT-base PubMed 1 MIMIC
BioMed-Roberta RoBERTa-base BioMed papers
RadBERT–BERT-base BERT-base 2M VA reports
RadBERT–Clinical BERT Clinical BERT 2M VA reports
RadBERT-RoBERTa RoBERTa-base 2M VA reports
RadBERT-RoBERTa-4m RoBERTa-base 4M VA reports
RadBERT–BioMed-RoBERTa BioMed-RoBERTa 2M VA reports
RadBERT–BioMed-RoBERTa-4m BioMed-RoBERTa 4M VA reports

Note.—Bidirectional encoder representations from transformers (BERT) (2) was trained with 16 
GB of English Wikipedia and BookCorpus data. “PubMed” refers to PubMed abstracts (22), and 
“PMC” is PubMed Central (PMC) full-text article text. RoBERTa-base (3) was pretrained on 160 
GB of text containing Wikipedia data, news articles, literacy works, and web context. “MIMIC” 
(Medical Information Mart for Intensive Care) refers to the 2 million clinical notes in the MIMIC-
III version 1.4 database (9). Our RadBERT models were pretrained with either 2.16 or 4.42 
million radiology reports from the Veterans Affairs (VA) health care system (those trained with 4.42 
million radiology reports include “-4m” in their name). RadBERT = BERT-based language model 
adapted for radiology, RoBERTa = robustly optimized BERT pretraining approach.
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model and then pretrained with 4.42 million radiology reports. 
When fine-tuned with 5% of available training data, RadBERT-
RoBERTa-4m performed as well as BioBERT fine-tuned with 
100% of available training data. This is particularly valuable, as 
annotating datasets by experts (ie, radiologists) is expensive and a 
major bottleneck in developing deep learning NLP applications 
in radiology.

Statistical tests on RadBERT variants compared with their 
corresponding baseline models under low percentages of train-
ing data (10% and lower) showed that for all pairs of models 
evaluated, the performance of the RadBERT variant was statis-
tically significantly better than its counterpart baseline model, 
with P less than .05 given for all four different percentages of 
training data. P values were less than .0063 when only 5% or 
less of training data were given, suggesting that the differences 
are statistically significant when accommodating for testing five 
pairs with Bonferroni-adjusted significance level of .01. Given 
10% of training data, the differences are still significant (P  
.0066), except for the pair between BlueBERT and RadBERT–
Clinical BERT (P = .026).

Task 2: Report Coding
Table 3 shows the results of the code classification task. We 
found that all variants of RadBERT models significantly 
outperformed general BERT models or biomedical BERT 
models by a large margin, which further demonstrates the 
benefit of tailoring radiology-specific language models. For 

Figure 2:  Distribution histograms of (A) the length of the entire 
1000 radiology reports evaluated in task 3 and (B) their impression 
sections. Density is the proportion of reports or impressions (ie, docu-
ments) with a certain length. Length is the number of words in a report 
or impression (words per document). (C) The ratio between one re-
port’s length and its corresponding impression mostly lies in the range 
from 2 to 6. The average number of words in a sentence in these 
reports is 11. The histograms may be used to estimate the number of 
sentences that need to be extracted from a report as a summary to 
match the impressions.

all coding systems and all pairs of RadBERT variants and 
their corresponding baseline models, P values were close to 
zero from our statistical tests. The best-overall-performing 
RadBERT variant is RadBERT-RoBERTa, achieving the best 
average accuracy and F1 score for all five coding systems, 
while the worst-overall performer among RadBERT variants 
(RadBERT–BioMed-RoBERTa-4m) still performed better 
than the best-overall baseline models, which are BlueBERT 
in terms of average accuracy over all five coding systems and 
BioMed-RoBERTa in terms of F1 score. In fact, the worst-
performing RadBERT variant outperformed the best-per-
forming baseline for each of the five coding systems in terms 
of both accuracy and F1 score.

We also observed that, first, by comparing RadBERT 
variants, models initialized from general, biomedical, or 
clinical domains showed similar performance. The variance 
of accuracy or F1 scores among RadBERT variants is less 
than 0.4% for any coding system, while the variances for the 
baselines can be as high as 2.28% in accuracy and 2.63% in 
F1 score for the coding system “abnormal” (see Appendix 
E4 [supplement]). Overall, the variances are 0.08% in ac-
curacy and 0.06% in F1 score among RadBERT variants, 
suggesting that regardless of weight initialization, after pre-
training with a large corpus of radiology reports, the result-
ing RadBERT language models could reach a similar level 
of performance improvement for a radiology report coding 
task, with slight differences.

Second, models pretrained with a larger dataset of 4 mil-
lion reports did not yield a higher average performance than 
models pretrained with 2 million reports, though the differ-
ences are below 0.5% in either accuracy or F1 score.

We visualized confusion matrices to compare BERT-base 
and RadBERT-RoBERTa as examples, shown in Figure 3. 

http://radiology-ai.rsna.org
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The comparison between Figure 3A and 3B demonstrated 
that the BERT-base model was confused by the categories 
“suspicious nodule-b” and “prior lung cancer,” while our Rad-
BERT-RoBERTa model was able to classify the two categories 
with a lower error rate. Similar results were observed in Figure 
3C and 3D, where the BERT-base model confused the class 
“major abnormality, no attn needed” with other classes often, 
while our pretrained RadBERT-RoBERTa model more accu-
rately distinguished between these classes.

Task 3: Summarization
In this task, we extracted sentence embeddings from the mod-
els directly, without fine-tuning. Because extractive text sum-
marization depends on how well a transformer represents sen-
tences, the results quantitatively measure whether pretraining 
offers contextual sentence embeddings that reflect the seman-
tics of the sentences. In addition to its potential use in radi-
ology reporting, the task provides a useful test to investigate 
if pretraining on the radiology domain is helpful for learning 
better contextual word embeddings.

Table 4 reports the average ROUGE scores. There was a 
clear performance gain between RadBERT models and gen-
eral BERT models (the relative improvement between each 
pair of models, eg, BERT-base and RadBERT-base in terms 
of all three ROUGE scores). The best-performing RadBERT 
variant is RadBERT–BioMed-RoBERTa, which outperformed 
all baseline models. The differences are statistically significant 
compared with BioBERT and Clinical-BERT (P , .05) and 
with BERT-base and BioMed-RoBERTa (P , .004). Other 
RadBERT variants also outperformed all baseline models, ex-
cept RadBERT–Clinical BERT.

Figure 4 shows three high- and three low-scoring examples 
of predicted summarization by the best RadBERT model, along 
with their ground truth.

Discussion
This paper reports our use of 4 million radiology reports from 
the VA nationwide to develop RadBERT, a family of language 
models tailored to facilitate the development of radiology 
NLP applications. RadBERT is based on the transformer ar-

Table 2: Abnormal Sentence Classification Results Using Different Percentages of Available Training Sentences

Model

Percentage of Training Data*

100% 
(12 458/12 458) 

50% 
(6229/12 458)

20% 
(2492/12 458)

10% 
(1246/12 458)

5% 
(623/12 458)

2% 
(249/12 458)

1% 
(125/12 458) 

BERT-base 95.9 6 0.2/
95.3 6 0.2

95.7 6 0.4/
95.1 6 0.4

95.2 6 0.1/
94.5 6 0.1

94.9 6 0.2/
94.1 6 0.2

94.6 6 0.7/
93.7 6 0.9

92.5 6 0.6/
91.4 6 0.6

91.0 6 0.9/
89.6 6 1.2

BioBERT 95.7 6 0.2/
95.0 6 0.3

95.8 6 0.1/
95.2 6 0.2

95.3 6 0.1/
94.6 6 0.1

95.0 6 0.1/
94.2 6 0.2

94.6 6 0.3/
93.8 6 0.4

93.2 6 0.8/
92.1 6 1.1

92.2 6 1.1/
90.9 6 1.4

Clinical BERT 96.0 6 0.1/
95.4 6 0.2

95.7 6 0.3/
95.4 6 0.3

95.4 6 0.2/
94.8 6 0.2

95.0 6 0.1/
94.3 6 0.1

94.0 6 0.5/
92.9 6 0.6

92.9 6 0.5/
91.8 6 0.7

90.6 6 1.6/
88.6 6 2.2

BlueBERT 96.1 6 0.2/
95.5 6 0.2

95.9 6 0.3/
95.3 6 0.3

95.9 6 0.3/
95.3 6 0.2

95.6 6 0.1/
95.0 6 0.1

95.0 6 0.1/
94.4 6 0.2

93.9 6 0.5/
93.1 6 0.6

92.0 6 0.9/
90.7 6 1.0

BioMed-RoBERTa 95.8 6 0.2/
95.2 6 0.3

95.7 6 0.1/
95.1 6 0.2

95.4 6 0.3/
94.7 6 0.3

95.2 6 0.2/
94.4 6 0.2

94.6 6 0.5/
93.7 6 0.6

93.5 6 0.9/
92.6 6 1.0

90.4 6 0.9/
88.6 6 1.1

RadBERT–BERT-base 95.8 6 0.3/
95.2 6 0.3

95.4 6 0.3/
94.7 6 0.4

95.7 6 0.3/
95.0 6 0.4

95.8 6 0.1/
95.3 6 0.1

95.1 6 0.3/
94.4 6 0.4

94.6 6 0.5/
93.8 6 0.5

92.4 6 1.3/
91.1 6 1.6

RadBERT–Clinical 
BERT

95.9 6 0.1/
95.3 6 0.2

96.0 6 0.3/
95.4 6 0.3

95.7 6 0.3/
95.1 6 0.3

95.8 6 0.3/
95.1 6 0.3

95.4 6 0.2/
94.8 6 0.3

94.7 6 0.3/
93.9 6 0.4

93.8 6 1.3/
92.9 6 0.4

RadBERT-RoBERTa 95.9 6 0.2/
95.3 6 0.2

95.7 6 0.3/
95.1 6 0.3

95.7 6 0.1/
95.1 6 0.2

95.6 6 0.3/
95.0 6 0.4

95.5 6 0.3/
94.8 6 0.4

95.1 6 0.3/
94.4 6 0.3

93.5 6 0.3/
92.5 6 0.4

RadBERT-Roberta-4m 96.1 6 0.1/
95.6 6 0.1

95.8 6 0.3/
95.2 6 0.4

95.6 6 0.3/
95.1 6 0.4

95.8 6 0.3/
95.2 6 0.3

95.7 6 0.2/
95.1 6 0.2

95.0 6 0.2/
94.2 6 0.2

94.1 6 0.6/
93.2 6 0.7

RadBERT–BioMed-
RoBERTa

95.8 6 0.2/
95.2 6 0.2

95.9 6 0.3/
95.3 6 0.3

95.9 6 0.2/
95.2 6 0.2

95.8 6 0.2/
95.2 6 0.3

95.5 6 0.3/
94.9 6 0.4

95.0 6 0.2/
94.3 6 0.3

93.6 6 0.2/
92.6 6 0.3

RadBERT–BioMed-
RoBERTa-4m

96.0 6 0.1/
95.5 6 0.1

95.9 6 0.1/
95.3 6 0.2

95.8 6 0.1/
95.2 6 0.2

95.7 6 0.1/
95.1 6 0.2

95.5 6 0.2/
94.9 6 0.2

94.8 6 0.2/
94.0 6 0.3

93.5 6 0.4/
92.4 6 0.5

Note.—Data are shown as means 6 SDs for accuracy/F1 score, averaged over five runs of different randomly seeded initializations (see Ap-
pendix E3 [supplement]). Accuracy and F1 score are presented as percentages. The table shows the results using high percentages (20%–
100%) and low percentages (1%–10%) of training data. See Appendix E3 (supplement) for the calculation of F1 scores. The different 
percentages of training data are processed in order. Models were pretrained with either 2.16 or 4.42 million radiology reports from the U.S. 
Department of Veterans Affairs health care system (those trained with 4.42 million radiology reports include “-4m” in their name). BERT 
= bidirectional encoder representations from transformers, RadBERT = BERT-based language model adapted for radiology, RoBERTa = 
robustly optimized BERT pretraining approach.
*Data in parentheses are numerators/denominators.

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 4: Number 4—2022  n  radiology-ai.rsna.org� 7

Yan et al

chitecture, a breakthrough in NLP. On top of RadBERT, one 
can apply fine-tuning to develop new site-specialized radiol-
ogy NLP applications.

BERT (2) and RoBERTa (3) are language models that use 
pretraining objectives that are based on a “masked language 
model” to train a transformer deep neural network architecture 
(1), enabling the model to learn bidirectional representations 
and scale up with large training corpora. We chose BERT- and 
RoBERTa-based models for adaptation to the radiology domain 
because they provide a strong baseline and were used to train 
previous domain-specific models (eg, BioMed-RoBERTa [6], 
Clinical BERT [7]), making them suitable for fair evaluation 
and comparison of RadBERT performance.

From the results of the three radiology NLP tasks, we found 
strong experimental evidence with statistical significance that 
RadBERT models are superior to the baseline general do-
main or clinical-specific language models for radiology NLP 
tasks, suggesting that pretraining on radiology corpora is 
crucial when applying transformer-based language models to 

this specific domain. We also observed that RadBERT vari-
ants pretrained with different weight initializations from either 
the general domain (ie, models are initialized with BERT-base 
or RoBERTa weights) or biomedical domain (ie, models are 
initialized with Clinical BERT or BioMed-RoBERTa weights) 
performed similarly, suggesting that the performance gains 
were achieved mainly from adapting these models by pretrain-
ing on a large radiology report corpus.

Applying NLP to extract critical information from large vol-
umes of radiology reports offers many opportunities to advance 
radiology and improve quality of care. One of the most clinically 
significant uses of radiology NLP is to identify radiographic ex-
aminations that require follow-up through automated identifi-
cation of relevant abnormal findings and requests for follow-up 
in the radiology reports (eg, see a review in a study by Chen et 
al [18]). Every year, abnormal findings and subsequent recom-
mendations in radiology reports are not acted upon. Inadequate 
follow-up can result in a combination of patient morbidity, pa-
tient mortality, and expensive litigation. One percent missed 

Table 3: Report Coding Results for Five Coding Systems

Model or Coding
AAA
(n = 4000)

BI-RADS
(n = 1191)

Lung-RADS
(n = 1627)

Abnormal
(n = 2694)

Alert
(n = 4000)

BERT-base 94.0 6 0.2/
94.0 6 0.2

94.1 6 0.6/
93.6 6 0.6

68.7 6 0.9/
68.7 6 1.3

79.9 6 1.0/
78.0 6 1.1

86.3 6 0.9/
86.3 6 0.9

BioBERT 93.2 6 0.4/
93.1 6 0.4

94.5 6 0.8/
94.0 6 0.8

70.2 6 2.1/
69.9 6 1.8

80.2 6 1.0/
78.0 6 0.9

85.9 6 0.4/
85.9 6 0.4

Clinical BERT 93.2 6 0.4/
93.2 6 0.4

93.6 6 0.2/
93.1 6 0.2

69.8 6 2.1/
70.2 6 2.0

78.8 6 1.3/
76.5 6 1.7

85.4 6 1.1/
85.3 6 1.1

BlueBERT 93.8 6 0.5/
93.8 6 0.5

94.4 6 0.5/
93.9 6 0.6

70.1 6 2.6/
70.0 6 2.6

82.7 6 0.6/
80.7 6 0.8

86.5 6 0.6/
86.5 6 0.6

BioMed-RoBERTa 94.5 6 0.4/
94.4 6 0.4

93.3 6 0.8/
92.9 6 0.8

72.7 6 1.6/
73.0 6 1.5

81.5 6 0.9/
79.6 6 1.0

85.1 6 1.0/
85.1 6 1.0

RadBERT–BERT-base 95.1 6 0.6/
95.1 6 0.6

95.8 6 0.5/
95.5 6 0.6

78.3 6 0.5/
78.3 6 0.5

86.3 6 0.8/
85.7 6 0.9

88.1 6 0.7/
88.0 6 0.7

RadBERT–Clinical BERT 95.2 6 0.7/
95.2 6 0.7

96.5 6 0.5/
96.3 6 0.5

79.1 6 0.5/
78.8 6 0.6*

85.8 6 0.8/
85.1 6 0.7

88.9 6 1.0/
88.8 6 1.0*

RadBERT-RoBERTa 96.0 6 0.7/
95.9 6 0.7

96.7 6 1.0/
96.5 6 1.0*

78.7 6 1.0/
78.3 6 0.9

86.8 6 0.8/
85.3 6 1.1

88.6 6 1.0/
88.6 6 1.0

RadBERT-RoBERTa-4m 95.7 6 0.6/
95.7 6 0.6

96.6 6 0.9/
96.3 6 1.0

78.1 6 2.1/
78.0 6 2.3

87.1 6 0.6/
85.6 6 0.5*

88.0 6 1.1/
88.0 6 1.1

RadBERT–BioMed-RoBERTa 95.4 6 0.3/
95.4 6 0.3

96.2 6 0.1/
96.0 6 0.1

78.1 6 1.8
78.0 6 1.8

86.7 6 0.6/
85.7 6 0.5

88.7 6 0.7/
88.6 6 0.7

RadBERT–BioMed-RoBERTa-4m 96.1 6 0.2/
96.0 6 0.2*

96.4 6 1.0/
96.1 6 1.2

77.6 6 2.6/
77.6 6 2.6

85.7 6 0.8/
84.3 6 1.1

87.2 6 1.3/
87.2 6 1.3

Note.—Data are shown as means 6 SDs for accuracy/F1 score. Accuracy and F1 score are presented as percentages. Macro average was 
applied to calculate the mean of F1 scores, while the mean of accuracy was calculated by using micro average. See Appendix E3 (supple-
ment) for the definitions of macro and micro averages. Means and SDs were averaged over five runs of different randomly seeded initial-
izations (see Appendix E3 [supplement]). Sample sizes for each coding system are provided in parentheses in the column heads. Samples 
were split by a ratio of 0.6:0.2:0.2 for training-to-validation-to-test. Models were pretrained with either 2.16 or 4.42 million radiology 
reports from the U.S. Department of Veterans Affairs health care system (those trained with 4.42 million radiology reports include “-4m” 
in their name). More details of the five coding systems are given in Appendix E4 (supplement). AAA = abdominal aortic aneurysm, BERT 
= bidirectional encoder representations from transformers, BI-RADS = Breast Imaging Reporting and Data System, Lung-RADS = Lung 
Imaging Reporting and Data System, RadBERT = BERT-based language model adapted for radiology, RoBERTa = robustly optimized 
BERT pretraining approach.
* Denotes the highest results among all models for the same coding system.
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follow-ups over 10 000 cases amounts to 100 patients’ health. In 
some cases, their lives could be on the line if the abnormalities 
are life-threatening.

Effective radiology NLP may provide a solution of automated 
follow-up tracking by reliably minimizing missed follow-ups. How-
ever, the need for a large number of manually annotated training 
examples has long been a costly hurdle to applying deep learning 
to exploring radiology report documents, because the annotations 
would require substantial medical expertise. As a result, NLP still 
faces considerable challenges to being explored at scale and having 
its potential unleashed. However, RadBERT is particularly helpful 
when human-annotated data are scarce. Our results showed that 
with less than 5% of training data available, the performance gains 
between RadBERT and baseline models were greater than the re-
sults from training on 100% data, demonstrating the effectiveness 

in reducing the need for expensive human annotation by applying 
RadBERT. An effective radiology-specialized language model will 
expedite the development of deep learning–based radiology NLP 
applications that are cost affordable for medium-size nonresearch 
health care facilities, because a new application can be created by 
domain experts annotating a small number of radiology reports as 
training examples to fine-tune the pretrained radiology-specialized 
language model. Annotation and fine-tuning can be integrated 
into an easy-to-use tool to streamline the whole development pro-
cess without programming. Such tools have been developed and 
commercialized for other domains (eg, Prodigy [19]). Adapting 
such tools to radiology will require enhanced data security and 
regulatory compliance.

There were still limitations to this study. First, the study 
did not exhaustively compare all possible transformer weight 

Figure 3:  Confusion matrices for report coding with two language models (BERT-base and RadBERT-RoBERTa) fine-tuned to assign 
diagnostic codes in two coding systems (Lung Imaging Reporting and Data System [Lung-RADS] and abnormal) (see Appendix E4 [supple-
ment]). (A, B) The Lung-RADS dataset consisted of six categories: “incomplete,” “benign nodule appearance or behavior,” “probably 
benign nodule,” “suspicious nodule-a,” “suspicious nodule-b,” and “prior lung cancer,” denoted as numbers 1 to 6 in the figure. (C, D) The 
abnormal dataset also consisted of six categories: “major abnormality,” “no attn needed,” “major abnormality, physician aware,” “minor ab-
normality,” “possible malignancy,” “significant abnormality, attn needed,” and “normal.” The figures show that RadBERT-RoBERTa improved 
from BERT-base by better distinguishing code numbers 5 and 6 for Lung-RADS and making fewer errors for code number 1 of the abnormal 
dataset. BERT = bidirectional encoder representations from transformers, RadBERT = BERT-based language model adapted for radiology, 
RoBERTa = robustly optimized BERT pretraining approach.
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initializations. Because of the restrictions of our computational re-
sources, we only trained BERT-base models with 110 million pa-
rameters. The BERT-large model with 340 million parameters was 
not tested, which could have potentially led to better performance 
with a larger architecture when trained with more data. Second, 
though we pretrained RadBERT variants with corpora containing 
either 2 million or 4 million radiology reports, the study did not 
reveal how many radiology reports are sufficient or whether there 
is an optimal amount for specialization pretraining, rather than 
“the more the better.” It is also interesting to investigate more fine-
grained pretraining within the radiology domain, for example, 
focusing on specific modalities or body parts.

We presented RadBERT and demonstrated its effective-
ness compared with five existing general or biomedical do-
main language models on performing three radiology NLP 
application tasks. These applications can save substantial 
time, ease the workload of radiologists and clinicians, and 
benefit patients. Abnormal sentence classification can help 
identify missed follow-ups. Report coding can standardize 
documentation for disease tracking and surveillance. Report 
summarization helps reduce radiologist workload and burn-
out. There are other radiology NLP tasks that may become 
feasible to explore in the future with RadBERT, for example, 
automated radiology report generation (eg, see studies by Ni 
et al [20] and Yan et al [21]).

Author contributions: Guarantors of integrity of entire study, A.Y., X.L., A.G., 
C.N.H.; study concepts/study design or data acquisition or data analysis/interpreta-
tion, all authors; manuscript drafting or manuscript revision for important intellec-
tual content, all authors; approval of final version of submitted manuscript, all au-

thors; agrees to ensure any questions related to the work are appropriately resolved, 
all authors; literature research, A.Y., X.L., J.D., A.G., C.N.H.; clinical studies, X.L., 
A.G.; experimental studies, A.Y., X.L., E.Y.C., C.N.H.; statistical analysis, A.Y., 
X.L., C.N.H.; and manuscript editing, all authors

Disclosures of conflicts of interest: A.Y. No relevant relationships. J.M. No rel-
evant relationships. X.L. No relevant relationships. J.D. No relevant relationships. 
E.Y.C. No relevant relationships. A.G. Department of Defense grant paid to UCSD 
(covers a small percentage of the author’s salary). C.N.H. No relevant relationships.

References
	 1.	Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. In: Ad-

vances in Neural Information Processing Systems 30 (NIPS 2017), 2017; 
5998–6008. https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fb
d053c1c4a845aa-Abstract.html.

	 2.	Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pretraining of deep 
bidirectional transformers for language understanding. arXiv:1810.04805 
[preprint] https://arxiv.org/abs/1810.04805. Posted October 11, 2018. 
Accessed June 7, 2022.

	 3.	Liu Y, Ott M, Goyal N, et al. RoBERTa: A robustly optimized BERT pretrain-
ing approach. arXiv:1907.11692 [preprint] https://arxiv.org/abs/1907.11692. 
Posted July 26, 2019. Accessed June 7, 2022.

	 4.	Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word rep-
resentations in vector space. arXiv:1301.3781 [preprint] https://arxiv.org/
abs/1301.3781. Posted January 16, 2013. Accessed June 7, 2022.

	 5.	Lee J, Yoon W, Kim S, et al. BioBERT: a pre-trained biomedical lan-
guage representation model for biomedical text mining. Bioinformatics 
2020;36(4):1234–1240.

	 6.	 Gururangan S, Marasović A, Swayamdipta S, et al. Don’t stop pretrain-
ing: Adapt language models to domains and tasks. arXiv:2004.10964 
[preprint] https://arxiv.org/abs/2004.10964. Posted April 23, 2020. 
Accessed June 7, 2022.

	 7.	Alsentzer E, Murphy JR, Boag W, et al. Publicly available clinical BERT 
embeddings. arXiv:1904.03323 [preprint] https://arxiv.org/abs/1904.03323. 
Posted April 6, 2019. Accessed June 7, 2022.

	 8.	Peng Y, Yan S, Lu Z. Transfer learning in biomedical natural language pro-
cessing: An evaluation of BERT and ELMo on ten benchmarking datasets. 

Table 4: Report Summarization Results for 1000 Reports

Model ROUGE-1 ROUGE-2 ROUGE-L Sum

BERT-base 14.89 5.94 14.06 34.89*
BioBERT 15.67 6.73 14.78 37.18**
Clinical BERT 15.66 6.66 14.87 37.19**
BlueBERT 15.85 6.70 15.01 37.56
BioMed-RoBERTa 15.27 6.43 14.45 36.15*
RadBERT–BERT-base 15.91 6.89 15.14 37.94
RadBERT-RoBERTa-2m 16.02 6.68 15.11 37.81
RadBERT-RoBERTa-4m 15.84 6.74 15.10 37.68
RadBERT–Clinical BERT 15.20 6.42 14.58 36.20
RadBERT–BioMed-RoBERTa 16.18*** 6.94*** 15.30*** 38.42***
RadBERT–BioMed-RoBERTa-4m 16.05 6.72 15.08 37.85

Note—Data are average ROUGE-1, ROUGE-2, and ROUGE-L scores summarized over 1000 
reports, presented as percentages, and the sum of the scores. The scores summed by the baseline 
models were compared with the highest score. Models were pretrained with either 2.16 million 
(include “-2m” in their name) or 4.42 million (include “-4m” in their name) radiology reports 
from the U.S. Department of Veterans Affairs health care system. BERT = bidirectional encoder 
representations from transformers, RadBERT = BERT-based language model adapted for radiology, 
RoBERTa = robustly optimized BERT pretraining approach, ROUGE = Recall-Oriented Under-
study for Gisting Evaluation.  
* P , .01, the Bonferroni-adjusted significance level accommodating for five pairs of tests.
** P , .05, the predetermined significance level.
*** Denotes the highest results among all models under the same score, achieved by the RadBERT–
BioMed-RoBERTa model.

http://radiology-ai.rsna.org
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2004.10964
 https://arxiv.org/abs/1904.03323


10� radiology-ai.rsna.org  n  Radiology: Artificial Intelligence Volume 4: Number 4—2022

RadBERT: Adapting Transformer-based Language Models to Radiology

Figure 4:  Examples of (A) three high-scoring predicted summarizations and (B) three low-scoring predicted summarizations by RadBERT–
BioMed-RoBERTa, the best-performing RadBERT model, and their corresponding ground truths (the impression section of input reports). BERT = bidi-
rectional encoder representations from transformers, RadBERT = BERT-based language model adapted for radiology, RoBERTa = robustly optimized 
BERT pretraining approach.

arXiv:1906.05474 [preprint] https://arxiv.org/abs/1906.05474. Posted June 
13, 2019. Accessed June 7, 2022.

	 9.	 Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible 
critical care database. Sci Data 2016;3:160035.

	10.	Gabriel RA, Kuo TT, McAuley J, Hsu CN. Identifying and character-
izing highly similar notes in big clinical note datasets. J Biomed Inform 
2018;82:63–69.

	11.	Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning 
with a unified text-to-text transformer. J Mach Learn Res 2020;21(140):1–67. 
https://jmlr.org/papers/v21/20-074.html.

	12.	Wu Y, Schuster M, Chen Z, et al. Google’s neural machine translation system: 
Bridging the gap between human and machine translation. arXiv:1609.08144 
[preprint] https://arxiv.org/abs/1609.08144. Posted September 26, 2016. 
Accessed June 7, 2022.

	13. 	Harzig P, Chen YY, Chen F, Lienhart R. Addressing data bias problems for 
chest x-ray image report generation. arXiv:1908.02123 [preprint] https://
arxiv.org/abs/1908.02123. Posted August 6, 2019. Accessed June 7, 2022.

	14.	Demner-Fushman D, Kohli MD, Rosenman MB, et al. Preparing a collection 
of radiology examinations for distribution and retrieval. J Am Med Inform 
Assoc 2016;23(2):304–310.

	15.	Miller D. Leveraging BERT for extractive text summarization on lectures. 
arXiv:1906.04165 [preprint] https://arxiv.org/abs/1906.04165. Posted  June 
7, 2019. Accessed June 7, 2022.

	16.	Lin CY. ROUGE: A package for automatic evaluation of summaries. In: Text 
Summarization Branches Out, Barcelona, Spain, July 2004. Association for 
Computational Linguistics, 2004; 74–81.

	17.	 Smith L, Tanabe LK, Ando RJ, et al. Overview of BioCreative II gene men-
tion recognition. Genome Biol 2008;9(Suppl 2):S2.

	18.	Chen MC, Ball RL, Yang L, et al. Deep learning to classify radiology free-text 
reports. Radiology 2018;286(3):845–852.

	19.	Prodigy Web site. https://prodi.gy/. Published 2017. Accessed October 
8, 2021.

	20.	Ni J, Hsu CN, Gentili A, McAuley J. Learning visual-semantic embed-
dings for reporting abnormal findings on chest X-rays. arXiv:2010.02467 

http://radiology-ai.rsna.org
https://arxiv.org/abs/1906.05474
https://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1908.02123
https://arxiv.org/abs/1908.02123
https://arxiv.org/abs/1906.04165
https://prodi.gy/


Radiology: Artificial Intelligence Volume 4: Number 4—2022  n  radiology-ai.rsna.org� 11

Yan et al

[preprint] https://arxiv.org/abs/2010.02467. Posted October 6, 2020. 
Accessed June 7, 2022.

	21.	Yan A, He Z, Lu X, et al. Weakly supervised contrastive learning for chest 
x-ray report generation. arXiv:2109.12242 [preprint] https://arxiv.org/
abs/2109.12242. Posted September 25, 2021. Accessed June 7, 2022.

	22.	Fiorini N, Leaman R, Lipman DJ, Lu Z. How user intelligence is improving 
PubMed. Nat Biotechnol 2018;36(10):937–945.

	23.	Neamatullah I, Douglass MM, Lehman LW, et al. Automated de-identification 
of free-text medical records. BMC Med Inform Decis Mak 2008;8(1):32.

	24.	Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and 
PhysioNet: components of a new research resource for complex physiologic 
signals. Circulation 2000;101(23):E215–E220.

	25.	VA Office of Information and Technology. VA technical reference model 
v 22.5. https://www.oit.va.gov/Services/TRM/TRMHomePage.aspx. Pub-
lished 2021. Accessed June 23, 2022.

	26.	Kingma DP, Ba J. Adam: A method for stochastic optimization. 
arXiv:1412.6980 [preprint] https://arxiv.org/abs/1412.6980. Posted De-
cember 22, 2014. Accessed June 7, 2022.

http://radiology-ai.rsna.org
https://arxiv.org/abs/2010.02467
https://arxiv.org/abs/2109.12242
https://arxiv.org/abs/2109.12242
https://arxiv.org/abs/1412.6980

