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a b s t r a c t 

We document large-scale urban flight in the United States during the COVID-19 pandemic. Regions that saw 

migrant influx experienced greater subsequent new COVID-19 cases, linking urban flight (as a disease vector) 

and coronavirus spread in destination areas. Urban residents fled to socially connected areas, consistent with 

the theory that individuals sheltered with friends and family, or in second homes. Populations that fled were 

disproportionately younger, whiter, and wealthier. The association between migration and subsequent new cases 

persists when instrumenting for migration with social networks. 
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. Introduction 

“Rumors that cholera was moving west and not south from Canada could

not stem the growing panic; mass exodus from the city had already begun.

A hyperbolic and sarcastic observer remarked later that Sunday had seen

‘fifty thousand stout hearted’ New Yorkers scampering ‘away in steam-

boats, stages, carts, and wheelbarrows.’ ” — The Cholera Years: The

United States in 1832, 1849, and 1866 Rosenberg, 1968 . 

Cities are vulnerable to contagious disease due to population den-

ity and international connections, the same qualities that foster human

nteraction and economic activity. The role of cities in pandemics has

een renewed attention in the context of the novel coronavirus disease

019 (COVID-19), especially in the United States where New York City

as an early epicenter, had a high death rate, and experienced massive

rban flight. The behavioral responses of those in cities to mitigate per-

onal disease risk have been studied on the intensive margin, including

heltering in place. However the migratory response of people in cities,

ho employ their resources to mitigate personal disease risk, and the

pillovers of these actions on broader community transmission, remain

nclear. A better understanding of the relationship between migration

nd disease transmission has implications for disease mitigation policy,

ncluding travel restrictions. The possible persistence of moves and the

emographics of movers also has large public finance implications for

ities. 

This paper documents how urban flight seeded the pandemic across

he United States and quantifies the extent of urban flight in response
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o COVID-19 in its initial phase. We use mobile phone geolocation data,

hich allows for a higher frequency analysis than has been possible in

rior studies, to analyze migration in the United States. We find large

utflows from cities early in the pandemic. We use Facebook friendship

ata to establish that migration was high between socially connected

egions, consistent with the idea that urban flight led to sheltering with

riends and family or in second homes. In New York City, we find that a

hange from the bottom decile of tracts by income to the top increases

he likelihood of having left the city from 0.8% to 12%. Regions with

reater flight were generally richer, whiter, and younger, pointing to

mportant disparities in the availability of migration as a risk-mitigating

trategy. 

We identify the association of urban flight and migration on in-

reases in COVID-19 cases in the destination counties with an instrumen-

al variables strategy that leverages social connections between coun-

ies. We use the Social Connectivity Index (SCI) measure from Face-

ook, as discussed in Bailey et al. (2018) , which measures the normal-

zed count of friendships between geographies, as of April 2016, to in-

trument for migration. We find that a one standard deviation increase

n SCI-instrumented per capita inflow is associated with a one standard

eviation increase in new cases per capita. Equivalently, an additional

 travelers per 1000 individuals is associated with 1 additional case

er 1000 individuals. Our estimates are substantial and point to urban

igration as an important link for COVID-19 spread across the United

tates. 

Our results are also relevant to questions surrounding public finance

hocks to local governments, and to questions about the long-term future
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f cities. Because the populations that left urban areas were dispropor-

ionately wealthy, their flight deprives cities of valuable tax revenue in

he short-run. To the extent that urban migration remains persistent,

ities may also face long-term challenges around budget shortfalls, real

state prices, and population size. While our geolocation data end in De-

ember 2020, other data from USPS change of address information indi-

ate persistence in urban migration, suggesting that urban flight-related

isruptions have important repercussions in the wake of COVID-19. 

Additionally, our results have implications for the potential value of

OVID-19 travel restrictions. Virtually every country has put in place

tringent restrictions on international travel, and many countries have

ut further restrictions on regional travel within their own borders.

owever, the potential value of these travel restrictions remains unclear.

ur results suggest that intra-US travel was associated with COVID-

9 spread, and that the existing level of travel restrictions and self-

uggested quarantine orders were insufficient to prevent out-of-state mi-

ration from impacting local spread. 1 

In Florida in March 2020, for which we have data distinguishing

etween travel cases and non-travel cases, as well as the origin of the

ravel, we find that as many as 40% of all cases were directly attributable

o travel, and 10% could be attributed to New York City directly. Inflows

re correlated with cases even after removing travel related cases, sug-

esting the importance of spillovers in cases from infected individuals

ue to travel. 

Our work is closely linked to a rapidly growing literature that uses

obile phone geolocation data to assess the spread of COVID-19. Our

emographic results are related to work by Chiou and Tucker (2020) ,

hich finds that shelter-in-place effects vary by income. This paper dif-

ers by considering the role of leaving the city, connecting mobility with

ctual COVID-19 exposure, and incorporating analysis of other demo-

raphic groups. Couture et al. (2022) uses mobile phone data to examine

obility during the pandemic. Our work differs by focusing on the role

f urban flight in spreading COVID-19. Glaeser et al. (2022) examines

obility changes within regions, while our analysis examines mobility

cross regions. Other work ( Allcott et al., 2020; Barrios and Hochberg,

021; Barrios et al., 2021; Engle et al., 2020; Painter and Qiu, 2021;

ndersen, 2020 ) has looked at political partisanship and COVID-19 re-

ponses. Our work is closely related to Brinkman and Mangum (2022) ,

hich examines the effect of changes in quantity and distribution of

ravel on COVID-19 cases, and Mangrum and Niekamp (2022) , which

tudies the role of college spring break travel on COVID-19 cases. Our

ork differs in its focus on urban flight, as well as the demographics of

he flight. 

Prior work by Athey et al. (2021) ; Chen et al. (2020) , and Chen and

ohla (2018) , has used mobile phone geolocation data to examine seg-

egation, racial disparities in voting waiting times, and partisanship. An-

ther use of individual ping-level geolocation data includes research by

hen et al. (2021) , who examine nursing home networks in the wake of

OVID-19. Holtz et al. (2020a,b) also use Facebook data to show that

ocially connected areas have comparable social distancing responses.

hese may arise through a variety of mechanisms including both direct

igration as well as communication. We argue for a specific mechanism

f direct travel, which is complementary to other possible explanations.

. Data and specification 

.1. Data 

Mobile location data were sourced from VenPath–a holistic global

rovider of compliant smartphone data. We obtained unique data on
1 Chandrasekhar et al. (2021) also highlights the importance of regional 

pillovers and network interactions. We contribute to this work by quantifying 

he role of the migration channel in contributing to new cases at an early stage 

n the COVID-19 pandemic. Lee et al. (2021) also finds an association between 

igration and cases in the context of COVID-19 in South Asia. 

c

c

2 
martphone Global Positioning Systems (GPS) signals. Our data provider

ggregates information from approximately 120 million smartphone

sers across the United States. GPS data were combined across appli-

ations for a given user to produce pings corresponding to timestamp-

ocation pairs. Ping data includes both background pings (location data

rovided while the application is running in the background) and fore-

round pings (activated while users are actively using the application).

ur sample period covers the period from February 1, 2020 to July 13,

020, and from October 1, 2020 to December 31, 2020. 

We supplement our mobility data with county-level coronavirus case

ounts from the COVID-19 Data Repository by the Center for Systems

cience and Engineering at Johns Hopkins University. 2 We also incor-

orate nursing home data from the Centers for Medicare and Medicaid

ervices 3 and covid case data from the Florida Department of Health,

hich records whether cases are associated with out-of-study travel. 4 

e join this with a county-to-county Social Connectivity Index (SCI)

easure from Facebook as discussed in Bailey et al. (2018) and applied

n reference to COVID-19 in Kuchler et al. (2022) . We also include demo-

raphic data from the Census American Community Survey, and urban-

ural county classifications from the National Center for Health Statistics

NCHS). 

We isolate the migration behavior of users in the US by identifying

ach user’s modal nightly census tract (6pm–8am), provided they ping

n that tract three or more times that night. We do this each night for a

iven month. If a user’s most frequent modal night tract appears as their

odal night tract on at least five nights in a month, we define it as their

home tract. ” We repeat this process each month to analyze mobility.

e use only one month of data at a time to identify residents’ home

racts. We analyze user data in the month that immediately follows the

onth used to identify home locations. The resulting sample includes

 population of 9 to 11 million unique users per month for our base

nalysis across the United States. In NYC, we observe a 0.89 correlation

etween the population of each zip code and our observed mobile phone

opulation in that area. 

To calculate county-to-county or ZIP code-to-ZIP code flow, we ob-

erve the count of users spending the night in a given census tract and

ggregate up to the county or ZIP level for each date. We aggregate tracts

o counties, and link tracts to ZIP codes using a crosswalk provided by

he Department of Housing and Urban Development. 5 When tracts map

o multiple ZIP codes, we select the ZIP code with the highest number

f residents. We aggregate resident counts to the home geography, cur-

ent geography, and date to see where people from a given geography

re spending the night on each date. After aggregating mobile phone

igration data into county-day information, we sum, for a given day 𝑡 ,

ll net inflows into county 𝑖 . 

.2. Empirical specification 

Our core empirical specifications examine the determinants and con-

equences of urban flight in the context of the COVID-19 pandemic in the

nited States. We use an OLS specification which measures new cases

n a destination county as a function of gross inflow into that county: 

ew Cases 𝑖,𝑡 = 𝛽0 ⋅ Inflow 𝑖,𝑡 + 𝛽1 ⋅ 𝟙 ( High Cases in Originating Counties ) 𝑖,𝑡 
+ 𝛽2 ⋅ 𝟙 ( Far ) 𝑖 + 𝛽3 ⋅ Inflow 𝑖,𝑡 × 𝟙 ( Far ) 𝑖 + 𝛾1 ⋅𝑋 𝑖 + 𝛿𝑠,𝑚,𝑝 + 𝜀 𝑖,𝑡 . (1) 

We are primarily interested in the 𝛽0 coefficient, which measures the

ffect of inflows on new COVID-19 cases. We measure new case activity

oth in levels of inflow and per capita. In addition, we test whether in-

ow from counties which experience high case counts and inflow from
2 Drawn from https://coronavirus.jhu.edu/ on Nov. 2, 2021. 
3 Drawn from https://www.cms.gov/ on Nov. 2, 2021. 
4 Data drawn from https://open-fdoh.hub.arcgis.com/datasets/florida- 

ovid19-case-line-data/about on Nov. 29, 2021. 
5 See: https://www.huduser.gov/portal/datasets/usps_crosswalk.html for the 

rosswalk. 

https://coronavirus.jhu.edu/
https://www.cms.gov/
https://open-fdoh.hub.arcgis.com/datasets/florida-covid19-case-line-data/about
https://www.huduser.gov/portal/datasets/usps_crosswalk.html
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6 Appendix Fig. A7 examines inflow. 
ore distant counties have a differential impact on new cases. The in-

icator for high cases in originating counties is equal to 1 for counties

here the inflow-weighted cases from incoming counties fall within the

op quartile in the current month. We construct 𝟙 ( Far ) by assigning 1 to

ounties where the inflow-weighted distance is at least 500km (roughly

qual to the distance between NYC and Pittsburgh). 

We further include a number of county-level control variables in our

egression specification to account for sources of new coronavirus cases

rthogonal to inflows from outside counties. Controls include the dis-

ance between the home and destination counties, mean household in-

ome, population density, NCHS urban-rural classification, share of the

opulation above 60 years of age, the share of essential workers, and the

umber of nursing homes. Finally, we sort counties into deciles by pop-

lation and include state by month by population decile fixed effects to

solate the effect of migration from unobservable heterogeneities across

ity size. 

While our specification includes a number of plausible control vari-

bles, an important potential identification concern with Eq. (1) is the

ndogenous nature of migration. If counties that receive higher domes-

ic migration are also more likely to be susceptible to new cases for

ther reasons, a positive 𝛽0 may reflect spurious correlation, rather than

easure the association of migration on new COVID-19 cases. There-

ore, we develop an identification strategy to address endogenous mi-

ration decisions based on Facebook connectivity in order to establish

he link between inflow and new cases. We draw on prior research, as

entioned in Bailey et al. (2018) , that suggests social connectivity is a

river of migration decisions when measured at annual frequencies. Our

nalysis establishes that social connections explain the high-frequency

igration observed during the COVID-19 epidemic. To examine the re-

ationship between migration and social connectivity, we first run a

rst stage regression of migration against social connectivity between

egions: 

nflow 𝑖,𝑡 = 𝛾0 𝑆𝐶𝐼 𝑖,𝑡 + 

10 ∑

𝑑=2 
𝛾𝑑 ⋅ Distance Decile 𝑖,𝑡 + 𝛾1 ⋅𝑋 𝑖 + 𝛿𝑠,𝑚 + 𝜈𝑖,𝑡 . (2) 

The SCI between two counties or ZIP codes 𝑖 and 𝑗 measures the

trength of social connections between them, and is defined (as in

uchler et al., 2022 ) based on the friendship links between two regions

 and 𝑗 and normalized by the number of users in each region: 

𝐶 𝐼 𝑖𝑗 = 

𝐹 𝐵 _ 𝐶 𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑗 

𝐹 𝐵 _ 𝑈𝑠𝑒𝑟𝑠 𝑖 × 𝐹 𝐵 _ 𝑈𝑠𝑒𝑟𝑠 𝑗 
. (3) 

Our primary specification examines social connectivity at the county

evel. We also examine connectivity between ZIP pairs. The coefficient

0 measures the strength of our first stage —the predictiveness of social

onnectivity in a gravity regression on migration, controlling for the

ecile of physical distance and other factors. In order to isolate the ef-

ect of county inflows due to migration, we instrument county-county

ows with the county SCI measure. Our instrumental variables specifica-

ion first instruments for inflow using Eq. (2) and uses predicted inflow

nstead of realized inflow as a covariate in Eq. (1) . We conduct our main

nalysis at the county level, where we have case data nation-wide, but

re also able to establish the relationship between migration flows and

CI at the ZIP code level. Our main focus is on the domestic determi-

ants of transmission. We also explore the initial seeding of cases in

he United States in Fig. A4, which finds that areas with high interna-

ional social connectivity tended to have higher cases earlier on (but not

ater). 

The identifying assumption is that Facebook connections between

ounty 𝑖 and any other county do not correlate with the trajectory of

ew cases, except through the inflow of people into the county. This

s a plausible assumption during the early stage of the pandemic, dur-

ng which most regions were unlikely to see pandemic spread except

hrough the inflow of individuals exposed to COVID-19 from other re-

ions. The remaining threat to identification relates to the precise mech-

nisms of inflow. For instance, regions socially connected to New York
3 
ay indeed see rises in cases arising from an influx of residents; but

he links to New York may simply proxy for links to other destinations

hich were the real source of spread. We further isolate the effect of

pread from the source of travel rather than alternative sources in two

ays: first, by looking at the timing of when inflows are followed by

ase increases, and second by examining travel-related cases in Florida,

here the origins of travel-associated cases can be determined. 

. Results 

.1. Associations of national migration 

We begin by descriptively analyzing the nationwide migration in

he context of COVID-19. Fig. 1 documents the net flow and outflow

f residents across counties in the United States as of the end of each

onth. 6 Map colors indicate the fraction of residents who left or en-

ered the county, while the size of the circles indicate the size of the

ow. 

By the end of March, we document substantial flight out of NYC as

ell as several other metropolitan areas (including Boston, Los Ange-

es, San Francisco, and Phoenix). Travelers went to a mix of interior

ocations, including rural areas across the country and urban areas in

he South. Several cities in the Sunbelt, in particular Atlanta, Houston,

harlotte, and Austin saw substantial net in-migration during this pe-

iod. Some other cities in the North, such as Des Moines, Chicago, De-

roit, Kansas City, and St. Louis, also saw substantial inflow. We also

bserve substantial inflow to numerous smaller counties in the vicinity

f NYC, in the Hamptons and Hudson Valley. Broadly, the pattern of mi-

ration reflects flight away from the initial epicenters of the pandemic,

oastal cities, towards the national interior. 

We observe continued urban flight from NYC, as well as additional

ight away from Phoenix, Florida, and some Californian and Texan

ities in April. By May, we observe substantial inflow into coastal regions

or vacation purposes. Our focus largely centers around the substantial

igratory response in the wake of the first migration event, around mid-

arch of 2020. We have additional data which go through the end of

020. 

.2. Spatial, temporal, and demographic patterns of urban flight 

.2.1. Demographic attributes of flight 

We focus on specific cities to further characterize the urban flight

n Fig. 2 , which focuses on the propensity to remain in each of the six

ities sampled (New York City, San Francisco, Los Angeles, Washington

C, Seattle, and Boston; which are chosen to be broadly representative

f major urban areas). We plot background demographic associations at

he ZIP code level against the fraction of the population that stays in the

IP code. Background dots show all data points, while binscatter dots

lot the average population within 25 quantiles. We find that the frac-

ion of residents who remained in cities strongly decreases with higher

ract income, the fraction of the tract that is white, and the proportion

f residents aged 18–45. 

.2.2. Flight from New York City 

We highlight the flight responses of individuals to the COVID-19

risis in New York City specifically in Panel A of Fig. A1. We observe

tark differences in the flight response of individuals along the follow-

ng extensive margin: Manhattan residents are substantially more likely

o leave the city after the crisis, as are individuals in wealthy parts of

rooklyn. We find that as much as 10–15% of the population of Manhat-

an, formerly residing in the city in February, leaves NYC by April 15.

y contrast, residents in Queens —the epicenter of the COVID-19 pan-

emic in New York City —Brooklyn, and the Bronx are overwhelmingly
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Fig. 1. Nationwide migration at the county level. Notes: Outflow is the number of people who were residents of a county in the previous month, who on a given date 

in the current month have a different modal night county. The population change fraction is this number divided by the total number of residents of that county who 

were in the data on that date. Inflow counts the number of people who were not residents in a county in the previous month, who have the county as their modal 

night county on a given date. Net flow is inflow minus outflow. All measures are averaged across the last week of the month. 
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7 See https://www1.nyc.gov/assets/home/downloads/pdf/executive- 
ore likely to stay in the city. This urban exodus continues through the

nd of our sample. By 10 July, we observe about 17% of the popula-

ion of Manhattan remains absent in the city. These shifts in leaving the

ity are concentrated in the higher-income census tracts, suggesting that

icher NYC residents were disproportionately able to take advantage of

he option to flee the city and escape physical COVID-19 exposure. 

We confirm the role of income as a factor in explaining moves away

rom the city in Panel B of Appendix Fig. A1, which shows a heat map of

esponses by tract and date. We find a large break-point in our sample

n 14 March, as reflected in the stark coloration changes on that date in

 number of tracts which correspond to a sharp rise in NYC inhabitants

eparting the city. This break comes just before Mayor Bill de Blasio or-
 o

4 
ered schools, restaurants, bars, cafes, entertainment venues, and gyms

n the city to be closed on 16 March. 7 Following 14 March, we observe

ncreased flight behavior in the highest-income NYC census tracts, ob-

erved as an increase in red colors in the bottom-right corner of the heat

ap. 

.2.3. Urban flight across metropolitan areas 

We examine the spatial distribution of flight patterns in our six city

ample in Fig. 3 , which shows the fraction of residents who leave.
rders/2020/eeo-100.pdf . 

https://www1.nyc.gov/assets/home/downloads/pdf/executive-orders/2020/eeo-100.pdf
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Fig. 2. Demographic association of urban flight. Notes: Panel A shows average household income against the change in the fraction of out of town visits. Panel B 

repeats the exercise for the fraction who are white, and Panel C for the fraction between the ages of 18–45. Data is tract-level and shown only for New York City, San 

Francisco, Los Angeles, Washington DC, Seattle, and Boston. Out of town visits are winsorized at the 5% level. All demographic variables are left un-winsorized, with 

the exception of the fraction between 18 and 45 in Panel C. Panel D show inflows per 1000 people between pairs of ZIP codes against SCI between the two ZIP codes. 

Panel E shows daily inflows against new cases at the county level. Light gray points show 1/100th of the entire sample; for each demographic variable, the data is 

divided into 25 quantiles, and each dark blue dot represents the average fraction of the population sleeping at home and average demographic variable within each 

quantile. Income data are drawn from the IRS SOI Tax Statistics at https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-zip-code-data-soi , and 

demographic data are drawn from the ACS. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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e measure the pre-existing urban population in each tract and plot

he fraction that has left by 29 March 2020, corresponding to height-

ned COVID-19 lockdown restrictions nationwide. New York City expe-

ienced extremely high flight concentrated in Manhattan, with several

ensus tracts seeing over 50% of the resident population leaving by 29
5 
arch. Flight was concentrated in the downtown and midtown regions,

hough we also observe extensive urban flight in the Upper West Side,

pper East Side, and the wealthier regions of Brooklyn. We also ob-

erve distinctive patterns of urban flight in San Francisco (concentrated

n the downtown regions) as well as Boston (high levels of exodus in

https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-zip-code-data-soi
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Fig. 3. Propensity to leave cities by tract. Notes: Flight is at the census tract level and represents the average of the fraction of residents identified in February 2020 

who were not present in their home county in the last week of March 2020. For example, we can think about a person identified in February as having a modal 

night tract in Greenwich Village, Manhattan. If this person on March 28th has more than half of their night pings in a different county, outside of Manhattan, we 

count them as having left. For this tract in Greenwich Village on March 28th, we count the number of February residents present in our data on March 28th who 

are outside of Manhattan on the night of March 28th. We divide this by the total number of February residents who are in the data on March 28th. We average this 

across the last week of March to get the propensity number above. 
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8 https://www.nytimes.com/interactive/2021/04/19/upshot/how-the- 

pandemic-did-and-didnt-change-moves.html 
9 https://www.thecity.nyc/2022/5/31/23145072/nycs-population- 

plummeted-during-peak-covid-and-its-still-likely-shrinking 
ambridge and downtown Boston). These maps suggest that large-scale

rban flight was a major reaction to the COVID-19 pandemic in its early

tages, with responses concentrated in the richer parts of several major

etropolitan areas. 

We examine the persistence of these moves on the dimension of out-

igration in Fig. A2. In each period, we examine the fraction residents

till present in the city, across the six city sample. This plot measures

or those identified as residents of a city in February, the fraction who

re still present in the city relative to those that have left (and can be

stablished to be present elsewhere in the country). We find that as

any as 15% of the residents in Manhattan were located elsewhere in

he country before the Thanksgiving and Christmas holidays, while up

o 30% are elsewhere in the country at the end of our sample during the

hristmas holiday. These suggest that a substantial component of urban

ight appears persistent, as least through the year of 2020. We observe

imilar declines in the propensity to stay across residents of other cities.

ashington DC, for instance, saw relatively little flight early on —but

ubstantial urban exits over time. 

We also measure the persistence of urban flight in a complemen-

ary dataset, the USPS change of address data, in Fig. A3. This dataset

as been used to measure migration by multiple publications including
6 
he New York Times, 8 and The City. 9 In contrast to the high-frequency

oves corresponding to physical location in the VenPath dataset, the

SPS moves are designated as permanent changes of address, and are

bserved more often in summer months (when residential leases often

nd). The longer time frame of this dataset, July 2018 to June 2022, al-

ows us to compare migration during COVID to baseline migration and

hen assess the persistence of the moves. We observe an elevated rate

f urban moves for several cities in our sample during the start of the

andemic. There is no net inflow at all in 2021 or 2022, let alone an

nflow close to the magnitude of the net outflow during 2020. The more

ermanent nature of these moves and the lack of net inflow suggest that

any moves during 2020 were persistent. 

.2.4. Social connectedness and urban migration 

To further understand the determinants of this pattern of domestic

igration, we examine role of social connections in determining where

https://www.nytimes.com/interactive/2021/04/19/upshot/how-the-pandemic-did-and-didnt-change-moves.html
https://www.thecity.nyc/2022/5/31/23145072/nycs-population-plummeted-during-peak-covid-and-its-still-likely-shrinking
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10 See Horwitz et al. (2021) and Ciceri et al. (2020) on improved mortality 

and Gandhi and Rutherford (2020) who connect the improved mortality to in- 

creased mask adherence. Other explanations for greater mortality at the early 

stage of the pandemic including crowding at hospitals, learning-by-doing in 

medical care, and improved treatments over time. 
11 Coefficients in this table, other than columns 4–6, are scaled by 1 ×10 3 , and 

so correspond to the case increase resulting from an additional influx of 1000 

people. Columns 4–6 are scaled by 1 ×10 6 . 
ndividuals flee to in Fig. 2 . In Panel D of this figure, we plot pre-existing

ocial connections measured using the Facebook SCI variable and migra-

ion between March 1st and July 13th at the ZIP code level across the

ntire United States. Background points show a 1/100th random sam-

le, while dark points show a binscatter of the 25 quantiles. We find

 very strong positive association between higher social connectivity

etween ZIP codes and migration over this period. The strong relation-

hip between inflow and SCI suggests that individuals with the ability

o leave disproportionately went to areas where they had pre-existing

ocial networks, and could take refuge with friends and family. 

We then examine the relationship between migratory inflow and sub-

equent new cases in Panel E of Fig. 2 . In these plots, we move to the

ounty-level, in which we have COVID-19 case information. We plot the

aily new cases against daily inflow for all counties over our entire sam-

le period. Binscatter dots show the 25 quantiles of the distribution, and

uggest a strong relationship between migratory inflows and new cases.

ur graphical evidence suggests that urban migration, directed towards

ocially connected regions, had spillover effects on destination regions

y increasing COVID-19 case counts for destination counties. 

.3. Impact of urban flight on nationwide COVID-19 cases 

Having established the nature of urban flight over the course of the

OVID-19 pandemic, we turn next to an analysis on the implications

f this flight on destination regions. Because coronavirus is a predomi-

antly respiratory disease spread in close contact, direct exposure with

ndividuals formerly living in high-risk areas is a plausible vector for

isease spread. While urban areas with international connections (par-

icularly Seattle and NYC) appear to have been the initial hotspots for

OVID-19, the disease appears to have quickly spread from those areas

o outlying regions through the travel patterns of affected individuals.

e explore the idea that urban flight by individuals avoiding the risk of

ontagion in urban areas may have seeded the pandemic in the rest of

he country. 

We highlight the impact of increased migration on increased COVID-

9 cases in destination counties and focus on migration from NYC to

llustrate our key mechanism and hypothesis ( Fig. 4 ). The city is central

o our analysis, both due to the size of its urban flight as well the its

arly presence of COVID-19. We first separate our analysis into different

ategories of urban areas, based on attributes of the destination regions.

egions differ in their exposure to infectious disease on the basis on

rban features, so we analyze separately the impact of inflows of New

ork City residents to large and medium sized metropolitan areas (NCHS

ategory 1, 2 & 3 in Panel A) as well as micropolitan and non-core areas

NCHS categories 4, 5 & 6 in Panel B). Within each category, we compare

otal cases among counties that received the highest quartile of inflow

f New Yorkers, compared with counties that saw the lowest quartile

f inflow. Left panels show per capita cases in logs, while right panels

how total cases. 

We find sizable impacts of urban inflow from NYC on increasing

OVID-19 cases across regions. In the largest urban areas, we find that

ases start to increase for counties that receive high inflow from NYC be-

inning in March. We plot the log of the seven day average in total cases

or the counties receiving highest and lowest quartile of NYC inbound

esidents, and plot the difference of log(total cases) between these re-

ions in gray bars in the background. Regions that saw high inbound

igration see the greatest relative difference in cases in the beginning

f April, a difference that declines over time. The timing of case growth

atches the period of influx of NYC residents with a lag, consistent with

 channel of direct infection. 

The difference between areas with high inflow of NYC residents and

reas with low inflow starts to decline in July. We show similar plots

hat depict the rate of change of new cases in Fig. A10, which con-

rm that areas that initially saw higher NYC resident influx later ex-

erienced negative relative growth in new cases into the summer. This

esult suggests that NYC inflow brought forward some cases which may
7 
ave been counterfactually experienced later in the course of the pan-

emic. Urban flight would still be quite important, even if it only accel-

rated case growth, because of steady improvements in treatment, the

xpanded supply of personal protective equipment such as masks which

owered mortality rates among those infected, and the avoidance of hos-

ital overcrowding during the early period of the pandemic. 10 Another

ossibility is that case counts have also converged over time because the

umber of cases in New York declined over time, into the summer. 

We observe that the impacts of NYC influx are increasing in city size.

rban areas which saw higher influx of NYC residents saw the greatest

ncrease in new cases (a representative example would be Atlanta, which

aw substantial case growth in the first wave of the pandemic). Large

ringe and medium metropolitan areas also see substantial increases in

arly cases as a result of New York City inflow, but to a lesser degree

han the largest urban areas. However, micropolitan and non-core areas

ee substantially weaker effects, which also turn negative around mid-

ay. Urban influx could be most related to subsequent case growth in

he largest urban areas due to greater realized population density and

ossibility for individuals to interact in the crowded, indoor environ-

ents which are most conducive to COVID-19 spread. 

.4. OLS and IV 

To expand our focus to migration across the entire United States,

ccount for endogeneity in the migration decision, and control for ad-

itional factors, we turn to our core regression specification in Table 1

hich follows our primary specification in Eq. (1) and covers inflows

nd new cases from March 1, 2020 to July 13, 2020, and from Novem-

er 1, 2020 to December 31, 2020. We first show results for our OLS

pecifications (columns 1–6) and then instrument for migration patterns

ith Facebook friendship linkages (columns 6–10) to confirm a relation-

hip between migration and subsequent new cases. 11 Our IV estimates

uggest statistically significant and economically substantial estimates.

 one standard deviation increase in instrumented per capita inflows

s associated with a one standard deviation increase in new cases per

apita. Alternatively, an additional 7 travelers per 1000 individuals is

ssociated with 1 additional case per 1000 individuals (column 12). 

Inflow per capita is a significant driver of cases per capita through-

ut our sample period in both the OLS and IV specifications, while the

mpact of the level of inflows on new cases in level terms dissipates over

ime as shown in Fig. 5 . In the initial phase in our sample (March 2020–

ay 2020), for every additional 100 people who enter a county, new

ases increase by 0.6, dropping to 0.2 during the summer months, and

ncreasing to 0.9 in November and December, coincident with higher in-

ows during the winter holidays. We consistently observe that migration

rom areas with higher case loads, and influx from areas farther away,

ead to higher infection rates. These results are consistent with long-

istance and inter-state migration trends, especially from NYC, which

lso contribute to the greater spread of COVID-19 around the country.

ue to a gap in our data, we are unable to estimate the association be-

ween inflow and new cases in the second half of July, August, Septem-

er, and October 2020 due to a gap in our data, limiting our ability to

nswer questions about travelers and COVID during those months. 

The difference between the impact of inflows on new cases in level

erms relative to per capita terms is driven in part by geographic varia-

ion in where new cases emerge over different phases of the pandemic.

arly in the pandemic, New York City and other large urban areas ac-
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Table 1 

Impact of migration on new COVID-19 cases . 

Panel A: New COVID-19 Cases Against Inflow 

OLS IV 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Inflow 98.388 ∗∗∗ 6.142 − 8.367 484.466 ∗∗∗ 154.914 ∗∗∗ − 40.224 

(4.654) (4.784) (5.184) (25.060) (19.663) (52.366) 

Per Capita Inflow 177.069 255.225 233.067 750.188 ∗∗∗ 76.223 ∗∗∗ 144.744 ∗∗∗ 

(186.295) (195.587) (200.882) (67.740) (19.096) (20.617) 

High Incoming Cases 11975.997 ∗∗∗ 12314.294 ∗∗∗ 12320.634 ∗∗∗ 13933.822 ∗∗∗ 13166.577 ∗∗∗ 12640.649 ∗∗∗ 

(251.414) (287.118) (289.223) (418.898) (335.291) (393.275) 

High Incoming Cases Per Capita 209.552 ∗∗∗ 211.982 ∗∗∗ 211.981 ∗∗∗ 0.271 ∗∗∗ 0.218 ∗∗∗ 0.223 ∗∗∗ 

(1.279) (1.292) (1.292) (0.008) (0.002) (0.002) 

Far Indicator 24729.038 ∗∗∗ 15438.162 ∗∗∗ − 12824.185 ∗∗∗ 12.105 ∗∗∗ 7.697 ∗ 6.800 27584.627 ∗∗∗ 18805.957 ∗∗∗ − 146091.950 ∗ 0.005 0.025 ∗∗∗ 0.261 ∗∗∗ 

(2296.018) (1924.813) (2364.570) (3.919) (4.050) (4.438) (2666.766) (1982.508) (87068.460) (0.026) (0.007) (0.023) 

Far Indicator × Inflow 103.759 ∗∗∗ 595.945 ∗ 

(9.423) (320.225) 

Far Indicator × Per Capita Inflow 278.969 − 69.070 ∗∗∗ 

(681.191) (6.590) 

All Controls N Y Y N Y Y N Y Y N Y Y 

State × Month × Population Decile FE Y Y Y Y Y Y Y Y Y Y Y Y 

N 595,945 573,968 573,968 595,945 573,968 573,968 595,945 573,968 573,003 595,945 573,968 573,968 

Panel B: First Stage Estimates of Inflow on SCI 

Weighted SCI 42277.757 ∗∗∗ 32742.431 ∗∗∗ 34931.996 ∗∗∗ 0.009 ∗∗∗ 0.015 ∗∗∗ 0.013 ∗∗∗ 

(592.704) (625.707) (678.997) (0.001) (0.001) (0.001) 

F 5088 2738 1490 150 297 171 

Columns 1–3 show our main regression specification (1) . Columns 4–6 repeat the exercise using inflow per capita as the explanatory variable. Columns 7–12 repeat the exercise for columns 1–6, where inflow is 

instrumented with the weighted SCI, as in (2) . The sample period is March 1, 2020 through December 31, 2020. Standard errors are in parentheses, and ∗ denotes 10% significance, ∗ ∗ denotes 5% significance, ∗ ∗ ∗ 

denotes 1% significance. Note that all coefficients and standard errors in Panel A are scaled up by 1 × 10 3 , with the exception of columns 4–6, where coefficients and standard errors are scaled up by 1 × 10 6 . All 

coefficients and standard errors in Panel B are scaled up by 1 × 10 6 . The indicator for high cases in originating counties is equal to 1 for counties where the inflow-weighted cases from incoming counties fall within 

the top quartile in the current month. We construct 𝟙 ( Far ) by assigning 1 to counties where the inflow-weighted distance is at least 500km (roughly equal to the distance between NYC and Pittsburgh). 

8
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Fig. 4. March inflows from NYC vs. log total cases. Notes: Counties are split into quartiles based on total inflows from New York City during the month of March. 

The two charts on the left show log(total cases per capita) over time for counties in the fourth quartile and the first quartile of inflows. The two charts on the right 

show log(total cases). Urban classification based on the NCHS urban-rural classification scheme: large central metros, large fringe and medium metropolitan areas 

(categories 1, 2, & 3) and micropolitan and non-core areas (categories 4, 5 & 6). 
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ounted for the majority of new cases. In the summer and fall months,

ther regions of the country such as the Midwest and southern states

ccounted for the bulk of new cases. Consistent with our observation

hat counties which received more inflow from New York City experi-

nced new cases earlier in the year, the Midwest and southern states

re regions which saw lower inflows from New York City in the initial

tages of the pandemic and correspondingly saw new cases arise rel-

tively later during the year. Other possible explanations for regional

ariation in when the bulk of new cases emerge include increased com-

unity transmission. We note that counties which experience new cases

uring the summer and fall months tend to be smaller in terms of pop-

lation, which is a contributing factor to higher new cases per capita,

nd helps explain why per capita inflow remains a significant driver

f new cases per capita throughout the sample. As an illustrative ex-

mple, consider Kings County, NY and Kings County, CA, which both

aw an average per capita inflow of approximately 900 individuals per

00 K people. New cases per capita in Kings County, New York, the most

opulous county in the state, reached a high of 737 cases per 100 K in-

ividuals in our sample; in contrast, Kings County, California (located

oughly halfway between San Jose and Los Angeles) saw a high of 2655

ases per 100 K individuals in late November, despite the level of new

ases remaining an order of magnitude lower than that of its New York

ounterpart. 
9 
We also examine the relative importance of raw inflow as compared

o inflows from high-case areas and inflow from distant counties. These

onsiderations may be relevant to policymakers when exploring possible

ravel restrictions. Table A2 shows a standardized version of Table 1 ,

ith all non-indicator variables standardized to have zero mean and

nit variance. In terms of relative magnitudes, we show that inflows

rom distant counties have the largest impact on the number of new

ases in levels, whereas raw inflows have the largest impact on new

ases per capita. 

Our IV estimates are larger than our OLS estimates, since raw in-

ow tends to overweight areas which exhibit lower new cases relative

o the SCI-instrumented inflow. This appears likely because a substan-

ial component of urban flight was motivated by fleeing to geographi-

ally remote areas where new cases were more likely to be low. These

emote regions tend to be places where travellers do not have many ex-

sting social connections (e.g. renting a temporary property in upstate

ew York, or visiting a second home in a region where individuals have

ewer contacts). Our IV, by contrast, identifies a LATE based on migra-

ion to socially connected regions. Migration towards these areas, which

s instead highlighting the flow based on the migration towards friends

nd families, appears to be more conducive to COVID-19 case transmis-

ion. Our IV, additionally, cleans up potential measurement error in our

easurement of migration. 
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Fig. 5. Dynamic impact of inflows on new cases. Notes: This figure shows the impact of inflows on new cases in levels (left panel) and in per capita terms (right). 

We plot the coefficient on inflows and per capita inflows from our IV specification —columns (9) and (12) in our main regression specification (1) over rolling 60 

day periods. 

 

a  

v  

i  

g  

s  

o  

v  

m  

a  

r  

c  

t  

c

 

r  

P

3

 

e  

i  

t  

b  

t  

m  

o  

B  

a  

i  

c

 

b  

p  

e  

t  

q  

e  

t

 

c  

a  

W  

i  

C  

b  

u  

p  

t

 

t  

m  

t  

I  

t  

o  

c  

t

 

w  

t  

a  

l  

c  

e  

c  

F  

c  

c  

m  

c  

c  

a  

d  

w  

s  

W  

o  

t  

l  

s  

m

4

 

1  

o  

w  

Y  

m  

w  

a  
To provide a descriptive sense for the differing changes in sample

nd provide further support for why we see larger IV estimates, we pro-

ide some evidence in Appendix Fig. A8. We show that instrumented

nflow tends to be higher in regions with fewer new cases. These re-

ions tend to have lower population density and a higher proportion of

easonal homes. In short, our OLS estimate underestimates the impact

f inflow on new cases, because inflow is positively correlated with a

ariable which drives lower new cases (a characteristic which naturally

akes these regions more desirable destinations for those fleeing urban

reas). Our focus on the SCI measure effectively picks a different set of

egions across the United States based on predicted inflows due to so-

ial connections, rather than realized migration activity. Raw inflows

end to pick up coastal and rural areas, in particular, relative to more

onnected urban areas in the SCI measure. 

Finally, we find a strong and statistically significant first stage, and

eport the coefficient and F-statistic from the first stage regression (2) in

anel B of Table 1 for the IV regressions. 

.5. Robustness 

We perform several key robustness tests on our primary sample. We

xamine specifications that restrict on flight from New York City specif-

cally. New York City’s large exodus, substantial case load, and early

iming in the pandemic make it an ideal focus for our analysis. In Ta-

le A3, we regress new local cases against an indicator for counties in

he top quartile of those receiving inflows from NYC in March, which is

ost comparable with our graphical evidence. In Table A4, we repeat

ur full analysis but subset to include inflows from NYC specifically.

oth specifications reveal large and statistically significant effects. An

dditional robustness table, A5 clusters standard errors at the Commut-

ng Zone-level. While we lose significance in our per capita results, our

ore inflow measure remains statistically significant. 

These results suggest that urban flight, and specifically the large ur-

an exodus from NYC, was important in the spread of the COVID-19

andemic across the United States. Our findings also potentially help

xplain the result in Kuchler et al. (2022) , that greater social connec-

ions with Westchester (another pandemic hub) helps to predict subse-

uent COVID-19 deaths. A plausible transmission mechanism which we

xplore here, is the refugee behavior of NYC residents who migrate into

hese socially connected regions. 

We connect the cross-sectional evidence with information on the spe-

ific timing of case growth, in Appendix Fig. A5 we examine a projection

pproach which looks at when new cases increase after migration flows.

e find that new cases and deaths tend to increase two weeks after the

nitial migration event, consistent with the typical incubation times for

OVID infection ( Wilson, 2020 ). While we have assembled evidence in

oth the cross section and the time series on the associations between
10 
rban flight and new cases, without more exogenous variation it is not

ossible to disprove that an alternative variable like low COVID restric-

ions causes new cases and is correlated with inflows. 

A key underlying assumption in our analysis is that social connec-

ivity between areas drives inflows between these specific places, ulti-

ately driving case growth. A potential concern is that social connec-

ivity simply proxies for inflows from a variety of destinations instead.

n order to address this possibility, and to further descriptively analyze

he role of travel on spread, we turn data from the Florida Department

f Health, which notes whether a recorded case was travel-related. A

ase is defined as travel-related if there is a known history of exposure

o COVID associated with travel outside of Florida. 

We find that many cases in Florida in March came from travelers

ho were possibly exposed while outside of Florida. Fig. A6 shows that

ravel-related cases account for 40% of all new reported cases in March,

nd 10% of all cases are attributed to travel from New York State: high-

ighting again the importance of New York. By contrast, the majority of

ases after March were non-travel related, and were not associated with

xposure to COVID due to travel outside of Florida. To clarify, these

ases could come from contact with those who were exposed outside of

lorida. In Panel B, we show that social connections between Florida

ounties and originating states predict the number of travel-associated

ases from that state specifically, highlighting how travel during COVID

oved along social networks. A traveler with COVID-19 can cause new

ases to increase in the destination region in two ways. Cases mechani-

ally increase by the traveler’s presence in the new county. Cases could

lso increase through that traveler spreading COVID-19 to those in the

estination region. This spillover, not the mechanical increase, is what

e are interested in. To examine the impact of inflow on COVID-19

pillovers, in Panel C we remove the mechanical travel related cases.

e show that the impact of the SCI-instrumented inflows on cases with-

ut the mechanical travel related cases is not significantly different from

he impact on total cases. The implication is that the role of inflows is

argely felt on community transmission in affected areas in the form of

pillovers, not just on the direct infections by individuals through the

echanical channel. 

. Conclusion 

We document substantial urban flight in the wake of the COVID-

9 pandemic and find large effects of this migration on the spread

f COVID-19 elsewhere in the country. Migration responses were

idespread among individuals living in major urban areas, such as New

ork City. As much as 15–20% of Manhattan’s population had fled by the

iddle of the summer in 2020. These individuals came from areas which

ere disproportionately wealthy, white, and young. These individuals

ppear to have left for regions with a high degree of social connections
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o NYC, suggesting that individuals took shelter with friends and family.

e then use the social networks structure to develop an estimate of the

mpact of migration on new cases. 

We find that instrumented migration patterns predict subsequent

ise in cases in destination counties, suggesting that urban flight con-

ributed to the pandemic, changing it from an initially urban disease

o a more widespread, nationwide pandemic. These results demonstrate

hat a relationship exists between urban flight, as a massive response

o the pandemic in its initial phase, and the spread of COVID-19 to

ity dwellers’ socially-connected friends, families and host regions of

he United States. 

Our work has implications for public policy in the wake of the dis-

ase. First, it highlights an important feature of urban flight. Wealthy

ndividuals, who contribute disproportionately to the local revenue and
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nd has implications for the future of cities. Second, our work highlights
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ork suggests the possible value of travel restrictions —in the form of
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