Skip to main content
. 2022 Jun 28;38(15):3802–3811. doi: 10.1093/bioinformatics/btac403

Table 1.

Performance evaluation of identifying significant time intervals from simulated features

σ = 5
σ = 1
Sensitivity Specificity Sensitivity Specificity
Pattern_1
(early change)
OmicsLonDA (SSANOVA) 0.976 0.998 0.982 0.993
OmicsLonDA (GAMM) 0.945 0.991 0.965 0.990
MetaLonDA 0.993 0.833 0.992 0.881
splinectomeR 1 0.698 1 0.735
Pattern_2
(middle change)
OmicsLonDA (SSANOVA) 0.924 0.999 0.952 0.998
OmicsLonDA (GAMM) 0.948 0.995 0.963 0.997
MetaLonDA 0.991 0.818 0.991 0.818
splinectomeR 0.999 0.682 1 0.699
Pattern_3
(late change)
OmicsLonDA (SSANOVA) 0.906 0.999 0.921 0.999
OmicsLonDA (GAMM) 0.934 0.995 0.957 0.998
MetaLonDA 0.984 0.805 0.991 0.876
splinectomeR 0.965 0.804 1 0.772
Pattern_4
(very late change)
OmicsLonDA (SSANOVA) 0.870 0.998 0.902 0.999
OmicsLonDA (GAMM) 0.725 0.999 0.774 0.999
MetaLonDA 0.926 0.795 0.932 0.829
splinectomeR 0.995 0.729 1 0.765
Pattern_5
(no change)
OmicsLonDA (SSANOVA) 0.982 0.983
OmicsLonDA (GAMM) 0.989 0.994
MetaLonDA 0.972 0.981
splinectomeR 0.959 0.962