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Abstract

Objective: Soft-tissue sarcoma spreads preferentially along muscle fibers. We explore the utility 

of deriving muscle fiber orientations from diffusion tensor MRI (DT-MRI) for defining the 

boundary of the clinical target volume (CTV) in muscle tissue.

Approach: We recruited eight healthy volunteers to acquire MR images of the left and right 

thigh. The imaging session consisted of (a) two MRI spin-echo-based scans, T1- and T2-weighted; 

(b) a diffusion weighted (DW) spin-echo-based scan using an echo planar acquisition with fat 

suppression. The thigh muscles were auto-segmented using the convolutional neural network 

(CNN). DT-MRI data was used as a geometry encoding input to solve the anisotropic Eikonal 

equation with Hamiltonian Fast-Marching method. The isosurfaces of the solution modeled the 

CTV boundary.

Main results: The auto-segmented muscles of the thigh agreed with manually delineated with 

the Dice score ranging from 0.8 to 0.94 for different muscles. To validate our method of deriving 

muscle fiber orientations, we compared anisotropy of the isosurfaces across muscles with different 
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anatomical orientations within a thigh, between muscles in left and right thighs of each subject, 

and between different subjects. The fiber orientations were identified reproducibly across all 

comparisons. We identified two controlling parameters, the distance from the gross tumor volume 

(GTV) to the isosurface and the eigenvalues ratio, to tailor the proposed CTV to the satisfaction of 

the clinician.

Significance: Our feasibility study with healthy volunteers shows the promise of using 

muscle fiber orientations derived from diffusion weighted MRI data for automated generation 

of anisotropic CTV boundary in soft tissue sarcoma. Our contribution is significant as it serves 

as a proof of principle for combining DT-MRI information with tumor spread modeling, in 

contrast to using moderately informative 2D CT planes for the CTV delineation. We expect 

such improvements to have a strong positive impact for the cancer centers with small volume of 

sarcoma patients.

Introduction

Combined surgery and radiotherapy is the primary treatment for soft-tissue sarcoma (STS) 

of the extremities (1–3) and shows improved local control and overall survival as compared 

to surgery alone, however, local tumor recurrence remains common (4–6). Improvement 

of radiotherapy treatment planning of the disease is currently of major consideration. 

Analysis of 459 soft-tissue sarcoma patients revealed that local recurrence rate decreased 

from 39% to 24% with an addition of post-operative radiotherapy. It was concluded that to 

improve the local control it is preferable to increase the use of radiotherapy with adequate 

margins instead of increasing surgical margin which cannot be achieved without increasing 

amputation rate (7).

Compared to the radiographically visible gross tumor volume (GTV), the clinical target 

volume (CTV) includes an additional margin accounting for microscopic disease spread, 

and defines the region receiving a high curative dose of radiation. To delineate the 

CTV, clinicians follow established guidelines for the lower extremities STS by creating 

a geometrical expansion of the GTV by 3 cm in the longitudinal (proximal and distal 

to the GTV) direction. Crosswise expansion of the GTV is smaller and does not exceed 

1.5 cm (8, 9). The expansion is done by dilating the GTV contour and manually editing 

the CTV boundary on the CT scan used for treatment planning. Accuracy of the manual 

CTV delineation is limited by insufficient tissue contrast of the CT scan and limited visual 

perception of the 3D shape of the anatomy when using 2D views (10).

Microscopy studies show that sarcoma cells invade the muscle tissue by spreading 

preferentially along the muscle fibers (11, 12). Therefore, the boundary of the clinical target 

volume (CTV) has to be defined taking into account tissue anisotropy. Diffusion tensor MRI 

(DT-MRI) analysis allows to quantify the anisotropy of muscle structure and to determine 

muscle fiber orientation based on anisotropic diffusion of water molecules in the muscles 

(13).

It was established that the cancer is confined within the muscles it originates from. Indeed, 

myectomy, a surgical procedure of removing the entire involved muscle, has been proven to 

decrease local recurrence rate (14). Cancer spread is also confined by the natural anatomical 
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barriers such as bones and fat. It is therefore desirable to segment anatomical images in 

order to identify tissue types and individual muscle boundaries for accurate definition of the 

CTV.

Previous DT-MRI-based methods have been used to define anisotropic CTV boundaries for 

glioma (15). Specifically, they used DTI tractography methods to predict trajectories of the 

tumor cell spread. In muscle tissue, DT-MRI has been extensively used in the context of 

orthopedic and sports medicine (16–18) but, to the best of our knowledge, not for modeling 

of tumor spread in soft tissue. In the present paper, we develop our model based on imaging 

of healthy volunteers to determine the feasibility of the promotion of DT-MRI for the target 

definition in clinical settings.

The innovation of our work lies in the derivation of muscle fiber orientation from DT-MRI 

data directly without mapping muscle fibers with tractography. This way the shortest 

distance in the anisotropic media is calculated directly from the voxel-wise diffusion tensor 

as opposed to the distance along the mapped fibers. We expect that this work will become a 

useful first step towards automated delineation of the CTV in soft-tissue sarcoma.

Materials and methods

Image acquisition

Eight healthy volunteers (five men and three women, age 38 ± 9 years), participated in 

this study which was approved by the Institutional Review Board of Massachusetts General 

Hospital. Written informed consent was obtained from each participant. The volunteers 

were scanned supine, feet first using 3T MRI system (Siemens, Magnetom Prisma, Siemens 

Healthcare, Erlangen, Germany) and an 18-channel phased array coil covering left and right 

thighs. The imaging protocol consisted of (a) two high resolution anatomical scans (spin-

echo, SE), T1- and T2-weighted; (b) a diffusion weighted (DW) spin echo-based scan using 

an echo planar (EP) acquisition with fat suppression. Anatomical and diffusion-weighted 

MRI scans were acquired in the axial plane.

The DW-MRI acquisition consisted of two b0 images with b0=50 s/mm2 and 12 DW 

images with b=400 s/mm2 using 12 gradient directions. A spectral adiabatic inversion 

recovery (SPAIR) fat saturation was used to suppress the fat signal. 12 independent 

acquisitions were performed for each b=400 s/mm2 diffusion gradient acquisition. The 

images without diffusion-weighting were independently acquired two times. T1- and T2-

weighted acquisitions were used to match the anatomical location of the muscles in DW 

images. The other acquisition parameters are compiled in Table 1.

Data processing and image segmentation

The diffusion-weighted series were resampled to an isotropic voxel size of 1.25×1.25×1.25 

mm3 as most of the images were acquired with this planar resolution. For each acquired 

DW-MRI scan, the diffusion tensor was reconstructed from 12 diffusion-encoded gradient 

pulses using imaging Python library DIPY (19) with the tensor model of Basser et al. (20). 

Based on the tensor image, scalar maps of the apparent diffusion coefficient (ADC) and 

fractional anisotropy (FA) were calculated.
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Twelve muscles were manually contoured on T1-weighted MR scans of each left and right 

thigh (see the results in Fig. 1, Panel A). For automated segmentation of the muscles 

we trained the convolutional neural network (CNN) model with 2D U-Net architecture by 

Ronneberger et al. (21) using TensorFlow (22). Input of the network was T1-weighted 

MR volumes, apparent diffusion coefficient (ADC) volumes, and fractional anisotropy (FA) 

volumes (three channels) for 8 subjects (16 sets of 3 images of the thigh) which were 

cropped to the same size and resampled to isotropic resolution of 2×2×2 mm3. The output 

was a mask with one channel for each muscle and one channel for unspecified tissue. In 

the training stage, the output is compared with its corresponding segmentation label with the 

cross-entropy loss for supervised learning (23, 24).

The network was trained with the pixel-wise cross entropy loss for 100 epochs, which 

was optimized with the Adam optimizer (alpha=0.001, beta1=0.9, beta2=0.999, and 

epsilon=10−8). Drop-out layers at the end of the contracting path perform further implicit 

regularization as vanilla U-Net. The learning rate was 0.001. We used the typical image data 

augmentations of image crop, horizontal flip, Gaussian blur, and linear contrast change. The 

networks that used only MR image as input or only ADC or FA image as input differed 

from the above specification only by the number of input channels. We used leave-one-out 

validation with 5 subjects (1000 2D slices) for training and validated on 1 subject (200 2D 

slices) in each round, and rotated for 6 rounds. The image sets from 2 subjects (400 2D 

slices) were used for testing.

Modeling CTV

We assume that individual cancer cells propagate at direction-dependent speed outward from 

the GTV surface. As described in Appendix A, under these assumptions, the CTV boundary 

can be thought of as a tumor cell propagating front quantified by surfaces of equal earliest 

arrival time u(x) (isosurfaces) or, equivalently, shortest path distance S(x), whose gradient 

is determined by the spatial distribution of tumor propagation velocities. This is described 

by the Eikonal equation (eqs. A.2, A.3). The distribution of tumor propagation velocities 

can in turn be inferred from the local water diffusion anisotropy. Solving the Eikonal 

equation therefore yields a field u(x) whose isosurfaces reflect tumor propagation through 

the anisotropic environment described by DT-MRI signal. Each isosurface corresponds to 

the same shortest (weighted) distance from the GTV, and is a candidate for the CTV 

boundary.

In anisotropic tissue, such as muscle, we assume that preferential tumor spread occurs along 

muscle fibers. The directionality of the muscles is assessed by the water diffusivity in DW 

imaging which is the largest in the direction parallel to the dominant orientation of the 

fibers.

As a pre-processing step, we transform the diffusion tensors from the DT-MRI by keeping 

their eigenvectors but replacing the eigenvalues (in increasing order) by λ1=λ2=1 and 

λ3=10. One advantage of this approach compared with the direct use of the entire diffusion 

tensor is that by the choice of the λ we can adapt the resulting CTV to clinical experience, 

and account for differences between water diffusivity and tumor cell spread.
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To find the isosurfaces of shortest distances, we numerically solve the Eikonal equation in 

anisotropic media using an open source implementation of the Hamiltonian Fast Marching 

Method (25) (26), see Appendix. To model the GTV we placed a sphere within the DT-MRI 

volume.

Results

Imaging and image processing

The image acquisition parameters and characteristics are listed in Table 1. A qualitative 

comparison of the manually delineated thigh muscles with the structures generated by the 

deep-learning model is shown in Fig. 1, Panels A, B. Quantitatively, the accuracy of the 

model was assessed with the Dice similarity coefficient (DSC) and presented with the 

boxplots in Fig. 2.

To investigate the effect of inclusion of the three imaging modalities (T1-weighted MRI, 

ADC, and FA maps) in the network training on the segmentation accuracy, we trained the 

model with each of these images separately as the input channels. The best accuracy was 

achieved with all three modalities included in the training. The most contributing input was 

from the T1-eighted MRI with the ADC and FA almost equally contributing, see the four 

panels in Fig. 2.

DTI data-driven solution of the anisotropic Eikonal equation in muscles

The voxel-wise diffusion tensors and the muscle masks were used with the Hamiltonian 

Fast-Marching solver to obtain the solution of Eq. (A.4) in the form of isosurfaces of the 

shortest distances when traveling from a point within the muscle.

In Fig. 3, we present the 2D sections of the isosurfaces calculated in the three muscles, 

gluteus maximus, biseps femoris, and vastus lateralis having anatomically different 

orientations with respect to each other in the thigh. Each isosurface corresponds to the 

voxels located at the same shortest distance from the GTV. Specifically, the biseps femoris 

and vastus lateralis are nearly parallel and both of them are nearly perpendicular to the 

gluteus maximus (see illustration in Fig. 3 adapted from (27)). The isosurfaces clearly show 

anisotropy of the muscle tissue which is consistent with the anatomical fiber orientation. 

Fig. 4 further demonstrates consistency of the DT-MRI in defining directionality of the 

muscle fibers. The examples show the isosurfaces calculated using data obtained from 

three subjects, both left and right thigh, with the isosurface spanning different muscles. 

The images show a high degree of consistency among all comparisons. For example, the 

anisotropy of the vastus lateralis muscle tissue (orange lines) is nearly identical in all six 

shown maps.

To model the CTV in muscle tissue, we started by placing a model spherical GTV of 22.5 

mm radius within vastus lateralis and vastus intermedius muscles. In Fig. 5 Panel A, the 

isosurfaces of shortest distance are shown for three values of the largest eigenvalue λ3. It 

is expected that in the ideal case of a single dominant direction the asymmetry scales as 

λ (see phantom case experiments in Fig. A.1 in the Appendix). However, acquisition noise 

leads to variation of diffusion tensor eigenvalues and direction of its principal axes compared 
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to their true values. As a result, the shape of isosurfaces becomes less elongated compared to 

the expected ratio of λ.

For a given asymmetry, the distance from the GTV models a particular CTV boundary. Fig. 

5 Panel B shows the candidate CTV boundaries obtained by solving Eq. (A.4) with averaged 

eigenvectors and λ3=10, at the increasing distance cutoff. By varying the anisotropy λ3 and 

distance cutoff, it is possible to tailor the shape of the automatically generated CTV to the 

satisfaction of the clinician.

Discussion

In this study, we leverage well established DT-MRI-based microstructural tissue 

characterization (13, 16, 17, 28, 29) combined with deep learning segmentation to 

automatically define potential CTV regions in the thigh muscles. Our method has an 

advantage over a previously developed DT-MRI-based method for defining anisotropic CTV 

boundary for glioma (15) which utilized DTI tractography to predict trajectories of the 

tumor cell spread. Since raw imaging data is used, the CTV definition no longer depends 

on some of the tractography modeling assumptions. Also, since we do not use the tensor 

eigenvalues and only the principal eigenvectors, the only underlying assumption of our CTV 

model is that the tumor cells preferentially spread along muscle fibers, in full agreement 

with recent microscopy experiments (11, 12).

Our approach has certain limitations. In our implementation, we focused on the 

directionality of the tissue and chose the eigenvalue λ3 ≫ λ2, λ3, reflecting the well-known 

difference in tumor propagation speed along and across muscle fibers. Direct use of the 

DT-MRI eigenvalues in the Eikonal equation requires regularization and noise reduction. 

Approaches to reduce noise such as residual deep learning, low rank constraints, and wavelet 

could potentially further improve signal-to-noise ratio of diffusion-weighted images without 

incurring additional scan time and potentially allow for per pixel tensor calculation (30–32). 

Alternatively, this approach can be used to reduce scan time by reducing the number of 

signal averages as the DT-MRI scan time in this study is longer than would be acceptable 

for scanning cancer patient on a routine basis. Future work will include implementing such 

denoising techniques and evaluating its effect on the proposed CTV modeling.

In our model, we introduced a free parameter, the ratio of the eigenvalue corresponding to 

the principal direction to the eigenvalues corresponding to the perpendicular directions (we 

do not distinguish between the two directions across the fibers). This parameter determines 

the non-uniformity of the CTV shape; it can be fitted from clinical data retrospectively, by 

comparing shapes of the proposed CTV and drawn by a radiation oncologist. Another way 

to set the parameter is to perform histopathological examination of the resection margin 

and measure the largest extent of finding tumor cells. The ratio can be estimated in vivo, 

measuring the speed of tumor cell propagation along and across the muscle fibers as 

revealed by microscopy experiments with tumors injected in mice (11, 12). Alternatively, 

the free parameter can be chosen interactively during treatment planning by a radiation 

oncologist to set the patient-specific CTV shape.
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Lastly, since the study is performed on healthy volunteers, the proposed method needs to 

be validated using STS patient data. Specifically, the tissue at the site of the tumor can be 

altered leading to changes in diffusion measurements. Future studies will include analysis 

of clinical imaging data and comparison of the automatically generated CTV with the CTV 

contoured by radiation oncologists specializing in sarcoma.

Conclusion

We proposed and demonstrated preliminary feasibility of a novel approach of combining 

DT-MRI acquisition of the lower extremities with a CNN-based automatic segmentation 

to further refine proposed CTV boundaries on soft-tissue sarcoma. Future studies will be 

focused on the clinical validation and efficacy of the proposed technique in soft-tissue 

sarcoma patients.
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Appendix

We model the boundary of the CTV as propagating front on the image voxel grid. In the 

isotropic case, the time u to arrive from the surface of the GTV to a given point x along a 

path C(r), assuming scalar front propagation speed v(r) is given by the line integral

u(x) = ∫
C

1
v(r)ds . (A.1)

The earliest arrival time u(x) along the shortest path C0(r) is obtained by solving the Eikonal 

equation,

∇u(x) = 1
v(x) , u(x) ∂Ω = 0, (A.2)

where u(x) is the front arrival time when traveling from the boundary ∂Ώ (the surface of the 

GTV) to the point x with the speed v(x), and ∥·∥ is the Euclidean norm. In the context of the 

CTV, it is more natural to think of shortest distances S(x) rather than earliest arrival times 

u(x). By multiplying both sides of Eq. (A.2) with v0 defined as a reference speed of tumor 

cell propagation in soft tissue we arrive at the equation

∇S(x) = v0
v(x) , S(x) ∂Ω = 0. (A.3)

The parameter v0 can be adjusted to fit tumor progression data as it becomes available.

Shusharina et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2023 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In an intrinsically anisotropic case the front propagation speed is not only spatially variable, 

but also depends on the direction of propagation. Front propagation is then described by 

a positive definite matrix M, or Riemannian metric (33, 34). In the basis that diagonalizes 

the matrix M, its diagonal elements (eigenvalues λ1, λ2, λ3) are inversely proportional to 

the squares of the propagation speed along the principal directions. As a consequence, the 

iso-distant surfaces of S(x) scale with 1/ λ. In this anisotropic case the shortest distance S(x) 

is given by the solution of the anisotropic Eikonal equation,

∇S(x) M−1(x)
2

= ∇T S(x) ⋅ M−1(x) ⋅ ∇S(x) = 1, S(x) ∂Ω = 0. (A.4)

In our model, we expect that larger water diffusivity corresponds to earlier arrival times and 

smaller values of S(x). Thus, we use the tensor of water diffusivity D as M−1 when solving 

(A.4). Here the iso-distant surfaces of S(x) scale with the squareroot of the eigenvalues of D.

We tested the method using a phantom case simulating a voxel volume of size 256×256×256 

by reproducing simple geometrical shapes. The voxel values are 3×3 diagonal tensors with 

eigenvalues λ1, λ2 and λ3 and eigenvectors V 1, V 2, and V 3 aligned with the voxel volume’s 

axes X, Y, and Z as illustrated in Fig. A.1. The relative values of λ1, λ2, and λ3 determine 

directional properties of the media within the volume. In isotropic media, λ1=λ2=λ3=1 and 

the calculated map of the shortest path lengths is a series of spherical surfaces (Panel A in 

Fig. A.1). We introduce anisotropy by weighting voxel-wise Z-direction such as λ1=λ2=1 

and λ3=5. In this case, the calculated iso-distance surfaces are ellipsoids (Panel B in Fig. 

A.1). The degree of anisotropy defined as a ratio of the principal axes of the ellipsoid is 

a = 5 ≈ 2.24. With increasing anisotropy, for λ3=50, the degree of anisotropy increases, 

a = 50 ≈ 7.1, approaching a thin “cigar” shape (Panel C in Fig. A.1).
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Figure A.1. 
Schematic representation of the image volume with the coordinate axes, X (anterior-

posterior), Y (left-right), Z (inferior-superior) and voxel-wise diagonal tensor with 

eigenvalues λ1, λ2 and λ3 and eigenvectors V 1, V 2, and V 3 along the image axes. Lateral 

cross-sections of the iso-surfaces in the X-Z plane, and 3D renderings of a representative 

iso-surface are shown for λ1=λ2=1 and λ3=1,5,50 (left to right).
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Figure 1. 
Representative T1-weighted MR anatomical image of the thigh, axial (left) and sagittal 

(right) views. The 12 muscles are: sartorius SAR, vastus medialis VM, vastus intermedius 

VI, vastus lateralis VL, rectus femoris RF, biceps femoris short head BFS, biceps femoris 

long head BFL, semitendinosus ST, gracilis GRA, semimembranosus SM, adductor longus 

AL, adductor magnus AM. Panel A: Manually segmented tissues and individual muscles. 

Panel B: results of automated segmentation of individual muscles.

Shusharina et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2023 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Boxplots of the Dice similarity coefficient (DSC) for automated segmentation as compared 

to the manual delineation. The inputs are A: three modalities, B: T1-weighted MR image 

only, C: ADC only, and D: FA only.
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Figure 3. 
Top: muscles of the thigh, gluteus maximus, biseps femoris, vastus lateralis. (Adapted from 

(27)). Middle: sagittal view of the T1-weighted MRI with isosurfaces of shortest distance 

calculated within the gluteus maximus (orange) and biseps femoris (blue) muscles starting 

from a point in the center. Bottom: axial view with the isosurfaces calculated within gluteus 

maximus (orange) and vastus lateralis (green) muscles.
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Figure 4. 
Isosurfaces of the shortest distance calculated with λ1=λ2=1 and λ3=10 within five muscles 

starting from a point in the center of vastus lateralis (orange), vastus intermedius (blue), 

vastus medialis (light blue), sartorius (green), and adductor longus (pink). Anisotropy of the 

isosurfaces is consistent in the left-right thigh and between three subjects.
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Figure 5. 
Panel A: isosurfaces of the shortest distance calculated in three muscles, vastus lateralis 

(blue shade), vastus intermedius (green), and rectus femoris (dark red) starting from 

the surface of modeled GTV with λ3=10, λ3=20, and λ3=40. The outermost contour 

corresponds to the largest value of λ3. Panel B: three levels of isosurfaces of shortest 

distance with λ3=10. The boundary of the fat, femur, and non-involved muscles completes 

the modeled CTV.
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Table 1.

Characteristics of MR Imaging, parameter (number of cases)

Sequence TR ms/TE ms Spatial resolution, mm3 Number of slices Reconstruction matrix Acquisition time

DWI: EP 7900/54 (3)
7900/78 (2)
10900/87 (1)
1600/46 (1)
3800/43 (1)

1.25×1.25×6 (6)
3.125×3.125×5 (1)
1.5625×1.5625×1.6 (1)

40 (6)
35 (1)
128 (1)

980×2240 (6)
1320×3840 (1)
264×384 (1)

22 min 33 s (5)
16 min 5 s (1)
30 min 42 s (1)
45 min 53 s (1)

T1-: SE 218/17 (4)
9350/8.1 (2)
253/17 (1)
13670/9.2 (1)

1×1×6.5 (7)
1×1×2 (1)

32 (4)
30 (2)
40 (1)
100 (1)

192×256 (5)
156×192 (3)

T2-: SE 250/8.5 (2)
9350/73 (2)
250/8.5 (2)
157/8.5 (1)
13670/74 (1)

1×1×6.5 (7)
1×1×2 (1)

32 (4)
30 (2)
40 (1)
100 (1)

192×256 (5)
156×192 (3)
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