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Abstract

Estimates of the sizes of key populations (KPs) affected by HIV, including men who have

sex with men, female sex workers and people who inject drugs, are required for targeting

epidemic control efforts where they are most needed. Unfortunately, different estimators

often produce discrepant results, and an objective basis for choice is lacking. This simulation

study provides the first comparison of information-theoretic selection of loglinear models

(LLM-AIC), Bayesian model averaging of loglinear models (LLM-BMA) and Bayesian non-

parametric latent-class modeling (BLCM) for estimation of population size from multiple

lists. Four hundred random samples from populations of size 1,000, 10,000 and 20,000,

each including five encounter opportunities, were independently simulated using each of 30

data-generating models obtained from combinations of six patterns of variation in encounter

probabilities and five expected per-list encounter probabilities, producing a total of 36,000

samples. Population size was estimated for each combination of sample and sequentially

cumulative sets of 2–5 lists using LLM-AIC, LLM-BMA and BLCM. LLM-BMA and BLCM

were quite robust and performed comparably in terms of root mean-squared error and bias,

and outperformed LLM-AIC. All estimation methods produced uncertainty intervals which

failed to achieve the nominal coverage, but LLM-BMA, as implemented in the dga R pack-

age produced the best balance of accuracy and interval coverage. The results also indicate

that two-list estimation is unnecessarily vulnerable, and it is better to estimate the sizes of

KPs based on at least three lists.

Introduction

Among the 1.7 million new HIV infections globally in 2018, 54% occurred among key popula-

tions (KPs), particularly female sex workers (FSW), people who inject drugs (PWID), men

who have sex with men (MSM), transgender women, clients of sex workers, and sex partners

of other KP members [1]. Even in the generalized HIV epidemics in eastern and southern

Africa where 75% of new infections occurred among the general population, targeted scale-up

of antiretroviral therapy and other interventions among KPs may be the most efficient way to

avert new infections [2, 3]. For those reasons, provision of HIV services to KPs has long been

an important component of the (United States) President’s Emergency Plan for AIDS Relief
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[4] and The Global Fund to Fight AIDS, Tuberculosis and Malaria [5]. Scaling and targeting of

life-saving HIV services to KPs, and evaluating the efficacy of those services requires knowl-

edge about the sizes of KPs [6].

KP members are often adversely affected by discrimination and stigma [7]. Stigma and

criminalization [8] create incentives for key population members to remain hidden, which

challenges both population size estimation (PSE) and provision of HIV services. Therefore

multiple methods of PSE have been recommended [9]. PSE based on the method known by

the monikers “capture-recapture” and the “multiplier method” is a statistically principled

approach which has been widely used to estimate the sizes of KPs [10–20]. Such multiple-list

PSE is commonly based on only two lists, but three-or-more-list estimation [21–24] is becom-

ing increasingly common.

Ratio estimation of population sizes from partial observations from two lists (sources or

sampling events) dates to 1786 [25], and later became known as “capture-recapture” or “mark-

recapture” estimation among animal ecologists [26, 27]. Although early applications and

developments focused heavily on non-human animal populations, the methods have been

applied more broadly including human birth registration [28], census undercount [29], and

epidemiological applications [30–32] which trace back to at least 1968 [33]. “Multiplier” or

“service-multiplier” estimation in the public-health literature [34–37] is a rediscovery of ratio

estimation of population sizes. The essential data are counts of population members that are

recorded on two lists (sources), wherein individuals on the first list can be defined as “marked”

and those on the second list are tabulated as either previously encountered (“recaptured”) or

newly encountered. Estimation from two lists requires the strong assumptions that 1) the pop-

ulation is static over the observation interval, 2) previously encountered individuals are identi-

fied without error, 3) individuals are sampled independently, and 4) all population members

share a common and constant probability of encounter. The first assumption is well-approxi-

mated by sampling over short time intervals. The second and third assumptions remain uncer-

tain in KPs because humans can choose whether or not interview or to disclose a previous

encounter. The fourth assumption is untenable for KPs; it is inconceivable that all KP mem-

bers share a common and constant probability of encounter. Rather, we should expect that

individual KP members are highly inhomogeneous in their encounter probabilities.

Subsequent statistical developments included accommodation of more than two encounter

sources (survey rounds or service rosters) [38], which enables relaxation of the fourth assump-

tion via the development of model-based estimation using distribution mixtures [39, 40] and

loglinear models (LLMs) of observation frequencies [41] or encounter probabilities [42]. Mul-

tiple variations of LLMs which satisfy different assumptions about inhomogeneities in encoun-

ter probabilities are commonly fitted to the data, and then the “best” model by some criterion

(usually Akaike’s Information Criterion, AIC) is selected for estimation of N. That conven-

tional approach is henceforth denoted LLM-AIC. Unfortunately, two or more LLM variations

can fit data equally well and yet produce very different estimates and uncertainty intervals

[43].

Discrepant estimates occur because the population-size parameter N is generally not identi-

fied [40, 44, 45]. Roughly, a parameter is said to be unidentified whenever its true value

remains unknown given an infinite number of observations. Recognition of the unidentifiabil-

ity of PSE parameters seems absent from the epidemiological and public-health literature, yet

it has enormous implications for estimation. The lower bound of population size [46] is identi-

fied [47], but is rarely the desired target for KPs.

More recent Bayesian developments eliminate the need for model selection and may

improve robustness. Bayesian model averaging of loglinear models (LLM-BMA) reduces the

volatility resulting from choice of a single model by properly accounting for model uncertainty
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[48]. The feasible set of LLMs are fitted and N is estimated as the model-probability-weighted

average from those LLMs. Bayesian nonparametric latent-class modeling (BLCM) [49] aban-

dons the LLM framework in favor of estimation from distribution mixtures. Consider that—

with sufficient information—a population that is inhomogeneous with respect to encounter

probability could be correctly stratified into some potentially large number of homogeneous

classes. It that case, a well-informed distribution mixture could be employed to estimate N.

However the number of homogeneous classes is unknown in practice. Instead, BLCM “learns”

the most probable latent classes from the data in a Bayesian way, and prevents over-parameter-

ization by imposing a parsimonious prior distribution.

Public-health scientists who estimate the sizes of KPs need to know the performances of

alternative estimation methods in order to make informed choices. To obtain a more objective

basis for choice, LLM-AIC, LLM-BMA and BLCM were compared using simulated popula-

tions of known size and different patterns of variation in encounter probability. Secondarily,

the frequencies with which LLM-AIC correctly matches the underlying data-generating mod-

els were quantified, and the performance of selected heterogeneity corrections in LLM-AIC

estimation were compared.

Materials and methods

Study design

The numbers of population members in simulated samples from known populations were esti-

mated using LLM-AIC, LLM-BMA and BLCM. The population sizes, inhomogeneities in

encounter probabilities and the number of observation events/lists were varied in the simu-

lated samples to assess the effects of those factors on PSE. The simulated data enabled compari-

son among methods based on their abilities to estimate the true population size.

Sample simulation

Four hundred random samples from populations of size N = 1,000, 10,000 and 20,000, each

including five encounter opportunities, were independently simulated from each combination

of six models of variation in encounter probabilities p, and five expected per-list encounter

probabilities E(p), producing a total of 36,000 samples from which to estimate N based on 2–5

lists. The population sizes were chosen to align with KP size estimates, which commonly fall in

the range of 103–104, and 20,000 was a compromise for computational feasibility in

simulations.

The patterns in encounter probability are standards from the literature [50–52]. The choice

of inhomogeneity patterns was a simplification for comparative purposes; the patterns in KPs

may be nearly infinite. The “heterogeneity” model Mh accommodates encounter probabilities

which vary among individuals. Humans are capable of complex behaviors and preferences,

including variations in propensities to seek social and sexual contacts, attend particular venues,

or seek services from organizations through which encounters may be listed. Therefore we

should not expect KP members to share a common encounter probability. The “temporal”

model Mt allows encounter probabilities to vary over lists/times. Encounter probabilities

might vary with many temporal factors including, weather, economic conditions, day-of-the

week, and variations in law-enforcement efforts. The assumption that KP members have tem-

porally constant encounter probability is extreme and risks biased estimation. The “behav-

ioral” model Mb imposes a common expected probability of first encounter on each

individual and—after the first encounter—that individual’s encounter probability is hence-

forth increased or decreased. For this study, the expected encounter probabilities were reduced

by 50% after the first. Behavioral effects can arise when, for example, the first contact tends to
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be either pleasing or displeasing to KP members. For example, FSW might seek out subsequent

contacts with surveyors if the “mark” (typically a uniquely identifiable gift) received during

their first contact was perceived to be desirable. Conversely, MSM and PWID might avoid sub-

sequent contacts with recognizable surveyors in order to minimize their risk of recrimination

or prosecution. Given the complexity of human behavior, we should anticipate combinations

of all three basic patterns of inhomogeneity. Models Mth, Mbh and Mtbh are combinations of

Mh, Mt and Mb.

Individual encounter histories were simulated from beta-Bernoulli distributions given by

yijk* Bernoulli(pijk) and pijk* Beta(θijk), where pijk denotes the encounter probability for

sample i, i = 1, . . ., 400, individual j, j = 1, . . ., N and list k, k = 1, . . ., 5. The θijk are 2 × 1 vectors

of shape parameters (β1, β2) (Table 1), which were chosen to produce expected encounter

probabilities E(p) = 0.025, 0.050, 0.100, 0.150 and 0.200 given a coefficient of variation of 0.85.

The inhomogeneities in encounter probabilities, as measured by the standard deviation of the

Beta distribution, ranged by more than a factor of eight from 0.021 to 0.170 (Fig 1). The com-

plete encounter history for individual j in sample i and lists 1, . . ., k is the k-element vector yijk
of zeros and ones, wherein a one in position k indicates that the individual appears on list k
and a zero indicates absence. Given a total of K lists, there are 2K − 1 observable encounter his-

tories and one unobservable history consisting entirely of zeros. The unobservable encounter

histories were removed from the simulated data prior to estimation.

Table 1. Shape parameters β1 and β2 for the data-generating Beta distributions, expected encounter probabilities E(p), and expected proportions population mem-

bers encountered for the first time on list k = 1, . . ., 5, E[p1 (k)].

β1 β2 E(p) k E[p1 (k)] Cumulative E[p1 (k)]

1.3245 51.6548 0.025 1 0.025 0.025

2 0.024 0.049

3 0.023 0.072

4 0.022 0.094

5 0.021 0.115

1.2649 24.0327 0.050 1 0.050 0.050

2 0.046 0.096

3 0.042 0.138

4 0.039 0.176

5 0.036 0.212

1.1457 10.3111 0.100 1 0.100 0.100

2 0.083 0.183

3 0.070 0.252

4 0.059 0.312

5 0.051 0.363

1.0265 5.8167 0.150 1 0.150 0.150

2 0.111 0.261

3 0.086 0.347

4 0.068 0.415

5 0.055 0.470

0.9073 3.6291 0.200 1 0.200 0.200

2 0.131 0.331

3 0.093 0.424

4 0.069 0.493

5 0.054 0.547

https://doi.org/10.1371/journal.pgph.0000155.t001
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Given encounter probability p and k lists of encounters, the proportion of population mem-

bers observed for the first time from list k is given by p1(k) = p(1 − p)k−1, which has expectation

with respect to the Beta distribution

E p1 kð Þ½ � ¼
Gðb1 þ b2ÞGðb1 þ 1ÞGðb2 þ kþ 1Þ

Gðb1ÞGðb2ÞGðb1 þ b2 þ kÞ
;

where Γ(�) denotes the Gamma function, and β1 and β2 are the shape parameters of the Beta

distribution (S1 Text). Therefore the expected percentages of the populations observed at least

once ranged from 4.9% for two lists with E(p) = 0.025, to 54.7% from five lists with E(p) =

0.200 (Table 1). That may encompass the most likely range of sampling percentages from

encounters within KPs affected by HIV. For example, sampling encountered approximately

10%, 22% and 30% of the estimated sizes of the MSM, PWID and FSW populations, respec-

tively, in Kampala, Uganda [22].

Estimation

The population-size parameter N was estimated from each combination of estimation method,

sample replicate, data-generating model and sequentially cumulative sets of K = 2, . . ., 5 lists.

The first estimation method was traditional LLM-AIC estimation as implemented in the Rcap-

ture package [53] for R [54]. This traditional application of model selection to multiple-list

Fig 1. Beta densities for encounter probabilities. Beta densities for list-wise encounter probabilities from data-

generating models Mh, Mb, Mt Mth, Mbh and Mbht.

https://doi.org/10.1371/journal.pgph.0000155.g001
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population-size estimation ignores model uncertainty. The Rcapture package is comprehen-

sive, and was used only to implement estimation of models Mb, Mt , Mh, Mbh and Mth. Mod-

els Mbt and Mbth are not loglinear; the latter cannot be fitted using Rcapture, and estimation

of the former is unstable and was ignored in this study. Fitted models were compared using

AIC, and the model having the smallest AIC was selected for estimation of N.

The Rcapture package enables use of alternative heterogeneity corrections in models Mh,

Mbh and Mth. Use of more than one heterogeneity correction is problematic because estimates

can vary substantially among the correction methods and yet share a common AIC, leaving

the analyst without any objective basis for choice. Estimates from the “Poisson2” heterogeneity

correction for models Mh, Mbh and Mth were used for comparison in this simulation study,

per the demonstration of superiority in S1 Table.

The second method was LLM-BMA [48], as implemented in the dga R package [55], which

accounts for model uncertainty. The dga package is currently limited to 3–5-list sampling. The

set of feasible estimation models is a large superset of our data-generating models, and

increases geometrically in size with the number of lists included in the estimation. Each feasi-

ble model and model probabilities are computed for each. The final PSE estimate is the proba-

bility-weighted average of model-specific estimates. The prior maximum number of

unobserved population members was set to 10N, based on the premise that the true size of KPs

might be known within an order of magnitude. The hyperparameter for the hyper-Dirichlet

prior on list intersection probabilities was set to 2−K, where K = 3, . . ., 5 denotes the number of

lists included in the estimation, as recommended by the package authors. A brief sensitivity

analysis of the prior specification is presented in S1 Text. Estimation of N is based on Laplace

approximation, which nonetheless becomes computationally time-consuming with increasing

K because of the large number of feasible models.

Last, population size was estimated using Bayesian nonparametric latent-class modeling

[49], (BLCM) as implemented in the LCMCR R package. The value for the maximum number

of latent classes was set to 10. The prior distribution for the vector of latent-class probabilities

is a stick-breaking formulation of a Dirichlet process prior having parameter α. That prior

concentrates the probability mass on the first few latent classes to avoid overfitting. The hyper-

prior for α is a Gamma distribution having parameters a and b, which were both set to 0.25 to

provide a reasonably vague specification for the simulations [49]. A brief sensitivity analysis of

the prior specification is presented in S1 Text. Estimation is based on Markov Chain Monte

Carlo (MCMC) simulation. Based on a preliminary analysis, pre-convergence “burn-in” sam-

ples of 500,000 iterations were discarded and the posterior sample consisted of an additional

50,000 iterations out of 5,000,000 after thinning by 100 to reduce autocorrelation. In practice,

far fewer burn-in iterations are typically required. The numbers chosen here assured conver-

gence and stable estimation of posterior quantiles with small Monte Carlo error.

The resulting LLM-AIC, LLM-BMA and BLCM estimates N̂ i were compared using esti-

mated root mean-squared error ( dRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Pm
i¼1

N � N̂ iÞ
2

�q

, bias (¼ E½N̂ i� � N) and the

estimated coverage probabilities of uncertainty intervals (95% profile-likelihood confidence

intervals for LLM-AIC, and Pr = 0.95 credible intervals for LLM-BMA and BLCM). Mean-

squared error is the sum of sampling variance and squared bias, and is an omnibus measure of

accuracy and precision of estimation. LLM-AIC, LLM-BMA and BLCM estimates were com-

pared over the aggregated set of data-generating models in order to assess estimation of real

populations, for which the underlying data-generating processes are never known.

Finally, the unreliability of LLM-AIC to correctly match underlying data-generating models

Mh, Mt, Mb, Mbh and Mth was evaluated to illustrate a consequence of unidentified
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parameters. All computations were performed using R 4.0.3 [54]. R code and population-size

estimates are provided in S1 File.

Results

Comparative performance of LLM-AIC, LLM-BMA and BLCM estimation

Population-size estimates from all methods exhibited at least some evidence of multiple modes

across expected encounter probabilities and numbers of encounter events over the mix of

data-generating models (Fig 2). The LLM-AIC estimates exhibited the largest ranges, usually

spanning more than seven orders of magnitude. The distributions of LLM-AIC estimates were

Fig 2. Distributions of estimates the sizes of populations consisting of 1,000 (left) and 20,000 (right) members. Estimation was

based on 2–5 encounter event-histories generated from models Mh, Mb, Mt , Mbh, Mht , and Mbht for expected encounter

probabilities of 0.025, 0.050, 0.100, 0.150 and 0.200 (right margins). LLM-AIC denotes selection of the single best LLM based on AIC,

LLM-BMA denotes Bayesian model-averaging of loglinear models, and BLCM denotes nonparametric Bayesian latent-class model

estimation. Estimates larger than 107 are heaped at that value. Results for N = 10, 000 were similar to those for N = 20, 000.

https://doi.org/10.1371/journal.pgph.0000155.g002
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reasonably compact for estimating populations of 1,000 only where the per event expected

encounter probability was 0.2 over five sampling events. LLM-BMA and BLCM modeling per-

formed nearly equally, but BLCM estimation produced distributions having longer lower tails.

LLM-BMA and BLCM estimation outperformed LLM-AIC estimation in terms of both root

mean-squared error (RMSE) and bias (Table 2). The estimated RMSEs and bias of the

LLM-AIC estimates were effectively infinite for all combinations of population size and

expected encounter probability when estimating from two lists, and estimates sometimes

exceeded 1019, which is a manifestation of unidentified parameters. LLM-AIC estimation

became moderately reliable in terms of RMSE and bias from three-event sampling only where

the expected per-event encounter probabilities were at least 0.150. In contrast, RMSEs and bias

Table 2. Root mean-squared error (RMSE) and bias of estimators of the sizes N of simulated populations.

N Performance

measure

Expected Pr

(encounter)1
Number of encounters or lists

2 3 4 5

LLM-AIC BLCM LLM-AIC LLM-BMA BLCM LLM-AIC LLM-BMA BLCM LLM-AIC LLM-BMA BLCM

1,000 RMSE 0.025 > 109 692 > 109 543 506 > 109 557 423 > 109 618 376

0.050 > 109 404 > 109 716 390 > 109 633 424 > 109 572 417

0.100 > 109 491 > 109 630 541 > 109 531 478 2,005 466 432

0.150 > 109 566 > 109 537 502 > 109 452 433 276 396 381

0.200 > 109 508 > 109 464 447 > 109 389 373 190 335 322

Bias 0.025 > 109 -680 > 109 -31 -468 < −109 44 -356 > 109 109 -279

0.050 > 109 -307 > 109 220 -42 > 109 194 26 > 109 175 56

0.100 > 109 55 > 109 251 179 > 109 203 163 -22 173 148

0.150 > 109 135 > 109 203 182 > 109 162 158 -38 136 138

0.200 > 109 120 < −109 165 164 > 109 128 139 -49 102 115

10,000 RMSE 0.025 > 109 4,215 > 109 7,386 2,874 > 109 6,303 4,316 > 109 5,794 5,334

0.050 > 109 3,533 > 109 6,173 5,626 43,319 5,551 5,355 > 109 5,294 5,155

0.100 > 109 5,336 11,655 5,318 5,246 2,872 4,860 4,777 2,092 4,520 4,423

0.150 > 109 4,953 3,603 4,766 4,701 2,002 4,235 4,179 1,544 3,798 3,751

0.200 > 109 3,929 2,511 4,290 3,432 1,479 3,662 2,948 1,178 3,141 2,583

Bias 0.025 > 109 -3,932 > 109 2,888 28 > 109 2,496 1,644 > 109 2,333 2,457

0.050 > 109 117 > 109 2,663 2,275 -391 2,386 2,229 > 109 2,264 2,171

0.100 > 109 1,733 71 2,265 2,290 -269 2,001 2,091 -321 1,820 1,945

0.150 > 109 1,557 -19 1,901 2,084 -173 1,685 1,880 -326 1,475 1,691

0.200 > 109 182 -6 1,639 829 -294 1,407 763 -475 1,162 643

20,000 RMSE 0.025 > 109 8,679 > 109 13,859 6,127 57,543 12,382 9,052 31,361 11,618 10,649

0.050 > 109 7,622 > 109 11,758 11,443 52,505 11,007 10,828 8,080 10,548 10,418

0.100 > 109 10,366 19,729 10,395 10,300 4,825 9,640 9,480 3,736 8,971 8,791

0.150 > 109 9,731 5,732 9,413 9,326 3,285 8,345 8,294 2,650 7,490 7,489

0.200 > 109 9,188 4,558 8,473 8,479 2,646 7,191 7,274 2,270 6,112 6,254

Bias 0.025 > 109 -7,897 > 109 5,791 524 -613 5,277 3,121 1,275 4,964 4,267

0.050 > 109 1,214 > 109 5,284 5,035 -836 4,883 4,781 -194 4,621 4,598

0.100 > 109 3,447 574 4,434 4,643 -188 4,012 4,308 -388 3,670 4,065

0.150 > 109 3,117 50 3,772 4,186 -370 3,436 3,886 -729 3,037 3,557

0.200 > 109 2,671 23 3,318 3,769 -707 2,830 3,359 -972 2,340 2,859

1 For first encounters in data-generating models Mb, Mbh and Mtbh.

LLM-AIC denotes selection of the AIC-best loglinear model, LLM-BMA denotes Bayesian model-averaging of loglinear models, and BLCM denotes nonparametric

Bayesian latent-class model estimation.

https://doi.org/10.1371/journal.pgph.0000155.t002
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from both BLCM and LLM-BMA estimation indicated that those methods produced estimates

within the correct order of magnitude across all expected encounter probabilities and three or

more sampling events, and BLCM estimation produced similarly reasonable estimates from

two sampling events.

Uncertainty intervals from LLM-AIC and BLCM estimation almost always failed to achieve

nominal coverage, and produced intervals which were too narrow (Table 3). In contrast, the

credible intervals from LLM-BMA estimation tended to be too wide, with coverage probabili-

ties frequently larger than 0.98.

Relative RMSE was largely constant across true population sizes (Fig 3), indicating that the

results of of this study apply at least over the range of simulated population sizes. Relative

RMSE was also independent of the expected encounter probabilities.

Ability of LLM-AIC to match the data-generating models

Loglinear model selection offers the hope of inferring the type of variation in encounter proba-

bilities. For example, if the AIC-best fitting model happens to be Mh, then one might hope

that encounter probabilities differed among individuals, but not over time, and similarly there

would be no behavioral effect. That would be more than one should hope for because the

parameter N is almost always unidentified. The simulation results provide a concrete illustra-

tion of the consequences of unidentifiability. No more than 8.1% of the replicate data sets gen-

erated by Mth and no more than 24.8% of the replicates generated by Mbh were correctly

identified by the AIC-best model in populations of size 1,000 and 20,000 (Table 4). Correct

matching of Mb and Mh data and models increased with increasing expected detection proba-

bility and, less distinctly, with the number of sampling lists. Matchings by data-generating

model are shown in S2 Table.

Table 3. Coverage of uncertainty intervals (95% confiddence intervals for loglinear model selection LLM-AIC, and Pr = 0.95) credible intervals for Bayesian model

averaging LLM-BMA and latent-class modeling BLCM).

N Expected Pr(encounter)1 Number of encounters or lists

2 3 4 5

LLM-AIC BLCM LLM-AIC LLM-BMA BLCM LLM-AIC LLM-BMA BLCM LLM-AIC LLM-BMA BLCM

1,000 0.025 0.975 0.201 0.693 1.000 0.658 0.699 1.000 0.687 0.687 1.000 0.688

0.050 0.831 0.832 0.627 1.000 0.828 0.559 1.000 0.756 0.508 1.000 0.682

0.100 0.688 0.853 0.444 1.000 0.588 0.501 1.000 0.493 0.509 0.999 0.475

0.150 0.496 0.836 0.498 0.997 0.503 0.562 0.992 0.479 0.604 0.982 0.459

0.200 0.422 0.821 0.541 0.982 0.497 0.620 0.963 0.475 0.663 0.937 0.449

10,000 0.025 0.771 0.514 0.498 1.000 0.761 0.456 1.000 0.478 0.402 1.000 0.412

0.050 0.492 0.803 0.400 1.000 0.463 0.464 1.000 0.465 0.490 1.000 0.455

0.100 0.403 0.818 0.525 1.000 0.472 0.599 1.000 0.469 0.615 1.000 0.469

0.150 0.383 0.827 0.588 0.996 0.484 0.629 0.990 0.478 0.703 0.983 0.474

0.200 0.362 0.792 0.626 0.982 0.582 0.729 0.964 0.579 0.761 0.940 0.572

20,000 0.025 0.651 0.537 0.423 1.000 0.505 0.405 1.000 0.445 0.422 1.000 0.446

0.050 0.407 0.795 0.460 1.000 0.446 0.480 1.000 0.442 0.554 1.000 0.437

0.100 0.376 0.807 0.573 1.000 0.457 0.580 1.000 0.454 0.596 1.000 0.449

0.150 0.374 0.823 0.590 0.998 0.475 0.629 0.993 0.461 0.682 0.984 0.441

0.200 0.346 0.826 0.641 0.985 0.487 0.730 0.965 0.465 0.737 0.950 0.450

1 For first encounters in data-generating models Mb, Mbh and Mtbh.

https://doi.org/10.1371/journal.pgph.0000155.t003
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Discussion

PSE is inherently challenging, and especially for KPs affected by discrimination, prosecution

and stigma. Unlike inanimate or non-human population members, people can refuse contact

and acceptance/disclosure of marks. For key populations those marks are typically inexpensive

small gifts or membership on some service list. It is unreasonable to expect that all people will

share a common and constant propensity seek services from a particular entity, or to accept

interpersonal contact and marks, and to disclose prior receipt of a mark. Therefore Mh may

be the simplest plausible form of inhomogeneity among KPs, and more complex forms than

those used in these simulations may be in play. For example, some KP members might increase

their encounter probability after the first contact if they find the gift marks attractive while oth-

ers might decrease their subsequent encounter probabilities, leading to distribution mixtures

of different behavioral effects.

A priori, the analyst confronting PSE has no knowledge of patterns of variation in encoun-

ter probabilities. Worse, the lack of identifiability of model parameters [44, 45] precludes the

possibility of reliable inference about the form of inhomogeneity, as is clearly illustrated by the

Fig 3. Relative root mean-squared errors (RRMSE = RMSE� N) of estimators of population size. LLM-AIC

denotes loglinear model selection, LLM-BMA denotes Bayesian model-averaging of loglinear models, BLCM denotes

nonparametric Bayesian latent-class model estimation and E(p) denotes expected encounter probability.

https://doi.org/10.1371/journal.pgph.0000155.g003
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results of this study. Therefore the analyst can never be confident that any model matches the

underlying data-generating process. Model uncertainty is especially problematic where the

estimates differ substantially, which is often the case. The only practical recourse is to use esti-

mation methods which are robust to model uncertainty and inhomogeneities in encounter

probabilities.

LLM-BMA and BLCM estimation demonstrated considerable robustness. Both generally

outperformed LLM-AIC in terms of sample RMSE and bias, except where per-list encounter

probabilities were at least 0.1. Two-list LLM-AIC estimation—which has been commonplace

for PSE—was unreliable across all three population sizes and all expected encounter probabili-

ties. LLM-BMA and BLCM estimates were generally comparable and never produced effec-

tively infinite RMSEs. RMSEs decreased with increasing numbers of lists across all three

Table 4. Percentages of correct matchings of the data-generating model by the AIC-best LLM population size estimation models based on overlap of 3–5 lists for

each of four per-list expected probabilities of encounter. See text for explanation of the data-generating models.

N Expected Pr(Encounter)1 Lists Data-generating Model

Mb Mbh Mh Mth Mt

1,000 0.025 3 55.7 19.6 14.5 0.0 52.8

4 42.1 22.2 9.9 0.0 78.7

5 51.8 24.8 13.4 0.0 90.2

0.050 3 51.1 12.3 30.0 5.5 59.9

4 36.9 21.5 40.0 1.7 82.1

5 55.9 19.8 39.4 3.3 86.9

0.100 3 64.1 10.6 53.9 3.7 69.2

4 45.3 10.5 65.9 2.7 83.0

5 56.2 9.7 79.4 4.2 87.4

0.150 3 59.9 8.2 66.8 3.8 71.8

4 69.1 10.8 82.9 3.3 78.8

5 74.2 13.4 90.5 1.5 84.7

0.200 3 64.0 7.1 75.6 8.1 73.7

4 73.9 10.8 87.5 4.5 84.9

5 77.6 10.2 91.8 6.0 83.9

20,000 0.025 3 51.1 15.8 53.5 3.7 76.7

4 52.9 14.8 47.9 5.2 83.8

5 50.5 12.9 65.9 5.3 83.5

0.050 3 67.0 7.3 63.6 6.3 81.2

4 64.6 12.0 78.0 5.0 82.5

5 71.9 12.3 89.4 2.0 84.0

0.100 3 75.5 4.0 88.5 5.0 79.7

4 73.4 4.8 89.0 2.0 85.2

5 75.8 1.5 91.0 2.6 85.0

0.150 3 70.2 3.5 88.5 6.5 81.5

4 76.5 1.2 93.2 1.9 84.2

5 80.0 0.0 95.2 3.3 84.2

0.200 3 73.8 2.5 87.0 3.0 82.5

4 82.0 0.0 88.0 5.1 82.8

5 83.5 0.0 91.8 4.8 83.0

1 For first encounters in Mb, Mbh and Mtbh.

https://doi.org/10.1371/journal.pgph.0000155.t004
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methods, which should be unsurprising given that the observed fraction of a population

increases with the number of lists.

All three PSE methods failed to achieve the nominal 95% coverage for uncertainty intervals

in these simulations. LLM-AIC and BLCM estimation produced intervals with substantially

less than the nominal coverage, while LLM-BMA estimation, as implemented in the dga pack-

age for R, produced highly conservative intervals. Overall, LLM-BMA estimation tended to

produce the best balance of accuracy and interval coverage in this study.

The dga package for R is convenient for loglinear model averaging, but other options are

available with greater effort. For example, frequentist model averaging has been proposed [56],

but was not considered here because it requires custom coding by the analyst. Likely more

important, frequentist model averaging lacks the theoretical grounding of BMA and does not

exploit prior information on N, so that practically infinite estimates are not precluded. In prac-

tice, some upper bound of convenience on N is always known. For example, the number of

FSW and cannot be larger than the female population, and the number of MSM is highly

unlikely to be more than 10% of the male population in most settings [57, 58]. Therefore the

ability to constrain the upper bound on N in the prior for Bayesian model averaging as imple-

mented in the dga package is an advantage.

The limitations of this study arise from reliance on Monte Carlo simulation, which provides

weaker conclusions than formal mathematical proof. However, simulation is the only practical

way to compare estimates with known population sizes. Monte Carlo simulation relies on

machine-generated pseudo-random numbers, and therefore results will vary slightly across

different streams of random numbers. All results from this simulation study are conditional

on the choice of data-generating models, and also on control and prior parameters for the esti-

mation models. The choice of data-generating models was broad and representative of com-

monly expected patterns of variation in encounter probability, but was not exhaustive. Results

may differ from other data-generating models, other control and prior parameters for estima-

tion, and other true population sizes and numbers of lists. Still, this simulation study provides

the first cross-cutting comparison of the performance distinctly different PSE methods, and

provides an objective basis for choice among those methods.

Conclusion

The results of this simulation study strongly suggest that some form of comprehensive model

averaging or latent-class modeling should be the default choice for PSE, and that estimation

should be based on data from at least three encounter events or lists. The two Bayesian

approaches, LLM-BMA and BLCM, were more robust than LLM-AIC. LLM-BMA, as imple-

mented in the freely available dga R package is particularly appealing because the analyst will

almost always have some prior information on population size. Although none of the methods

produced uncertainty intervals that achieved nominal coverage, the conservative intervals pro-

duced by LLM-BMA, as implemented in the dga R package, came closest in these simulations.

All of the estimation methods compared in this study are implemented using the freely

available R packages. However, they are also easily accessible to those unfamiliar with R via

web-based Multiple Source Recapture web application at https://www.epiapps.com/.

Supporting information

S1 Text. Supplemental methods and results. A PDF file containing the derivation of the

probability of first encounters in succesive lists and brief sensitivity analyses of the prior distri-

butions for LLM-BMA and BLCM estimation.

(PDF)
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S1 Table. Comparison of LLM-AIC heterogeneity corrections. Sample sizes and estimated

root mean-squared errors ( dRMSE) from Poisson2, Darroch and Gamma3.5 heterogeneity cor-

rections in loglinear estimation models Mh and Mth for estimation of population size N from

five lists generated from models Mh, Mbh, Mth, and Mbth.

(PDF)

S2 Table. Frequencies (percentages) by which individual data-generating models were

matched to various AIC-best estimation models. The column labels are self-explanatory.

This table is an expansion of Table 3 showing matchings by each data-generating model. In

practice, the analyst would not know the data-generating model.

(PDF)

S1 File. R code and population-size estimates. A zip archive containing the R code used to

generate the random samples from the simulated populations and to estimate population size

from those samples. The population size estimates are also included because obtaining those

from the samples is computationally burdensome.

(ZIP)
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