Skip to main content
. 2022 Mar 10;2(3):e0000155. doi: 10.1371/journal.pgph.0000155

Table 2. Root mean-squared error (RMSE) and bias of estimators of the sizes N of simulated populations.

N Performance measure Expected Pr(encounter)1 Number of encounters or lists
2 3 4 5
LLM-AIC BLCM LLM-AIC LLM-BMA BLCM LLM-AIC LLM-BMA BLCM LLM-AIC LLM-BMA BLCM
1,000 RMSE 0.025 > 109 692 > 109 543 506 > 109 557 423 > 109 618 376
0.050 > 109 404 > 109 716 390 > 109 633 424 > 109 572 417
0.100 > 109 491 > 109 630 541 > 109 531 478 2,005 466 432
0.150 > 109 566 > 109 537 502 > 109 452 433 276 396 381
0.200 > 109 508 > 109 464 447 > 109 389 373 190 335 322
Bias 0.025 > 109 -680 > 109 -31 -468 < −109 44 -356 > 109 109 -279
0.050 > 109 -307 > 109 220 -42 > 109 194 26 > 109 175 56
0.100 > 109 55 > 109 251 179 > 109 203 163 -22 173 148
0.150 > 109 135 > 109 203 182 > 109 162 158 -38 136 138
0.200 > 109 120 < −109 165 164 > 109 128 139 -49 102 115
10,000 RMSE 0.025 > 109 4,215 > 109 7,386 2,874 > 109 6,303 4,316 > 109 5,794 5,334
0.050 > 109 3,533 > 109 6,173 5,626 43,319 5,551 5,355 > 109 5,294 5,155
0.100 > 109 5,336 11,655 5,318 5,246 2,872 4,860 4,777 2,092 4,520 4,423
0.150 > 109 4,953 3,603 4,766 4,701 2,002 4,235 4,179 1,544 3,798 3,751
0.200 > 109 3,929 2,511 4,290 3,432 1,479 3,662 2,948 1,178 3,141 2,583
Bias 0.025 > 109 -3,932 > 109 2,888 28 > 109 2,496 1,644 > 109 2,333 2,457
0.050 > 109 117 > 109 2,663 2,275 -391 2,386 2,229 > 109 2,264 2,171
0.100 > 109 1,733 71 2,265 2,290 -269 2,001 2,091 -321 1,820 1,945
0.150 > 109 1,557 -19 1,901 2,084 -173 1,685 1,880 -326 1,475 1,691
0.200 > 109 182 -6 1,639 829 -294 1,407 763 -475 1,162 643
20,000 RMSE 0.025 > 109 8,679 > 109 13,859 6,127 57,543 12,382 9,052 31,361 11,618 10,649
0.050 > 109 7,622 > 109 11,758 11,443 52,505 11,007 10,828 8,080 10,548 10,418
0.100 > 109 10,366 19,729 10,395 10,300 4,825 9,640 9,480 3,736 8,971 8,791
0.150 > 109 9,731 5,732 9,413 9,326 3,285 8,345 8,294 2,650 7,490 7,489
0.200 > 109 9,188 4,558 8,473 8,479 2,646 7,191 7,274 2,270 6,112 6,254
Bias 0.025 > 109 -7,897 > 109 5,791 524 -613 5,277 3,121 1,275 4,964 4,267
0.050 > 109 1,214 > 109 5,284 5,035 -836 4,883 4,781 -194 4,621 4,598
0.100 > 109 3,447 574 4,434 4,643 -188 4,012 4,308 -388 3,670 4,065
0.150 > 109 3,117 50 3,772 4,186 -370 3,436 3,886 -729 3,037 3,557
0.200 > 109 2,671 23 3,318 3,769 -707 2,830 3,359 -972 2,340 2,859

1 For first encounters in data-generating models Mb, Mbh and Mtbh.

LLM-AIC denotes selection of the AIC-best loglinear model, LLM-BMA denotes Bayesian model-averaging of loglinear models, and BLCM denotes nonparametric Bayesian latent-class model estimation.