Table 2. Root mean-squared error (RMSE) and bias of estimators of the sizes N of simulated populations.
N | Performance measure | Expected Pr(encounter)1 | Number of encounters or lists | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | ||||||||||
LLM-AIC | BLCM | LLM-AIC | LLM-BMA | BLCM | LLM-AIC | LLM-BMA | BLCM | LLM-AIC | LLM-BMA | BLCM | |||
1,000 | RMSE | 0.025 | > 109 | 692 | > 109 | 543 | 506 | > 109 | 557 | 423 | > 109 | 618 | 376 |
0.050 | > 109 | 404 | > 109 | 716 | 390 | > 109 | 633 | 424 | > 109 | 572 | 417 | ||
0.100 | > 109 | 491 | > 109 | 630 | 541 | > 109 | 531 | 478 | 2,005 | 466 | 432 | ||
0.150 | > 109 | 566 | > 109 | 537 | 502 | > 109 | 452 | 433 | 276 | 396 | 381 | ||
0.200 | > 109 | 508 | > 109 | 464 | 447 | > 109 | 389 | 373 | 190 | 335 | 322 | ||
Bias | 0.025 | > 109 | -680 | > 109 | -31 | -468 | < −109 | 44 | -356 | > 109 | 109 | -279 | |
0.050 | > 109 | -307 | > 109 | 220 | -42 | > 109 | 194 | 26 | > 109 | 175 | 56 | ||
0.100 | > 109 | 55 | > 109 | 251 | 179 | > 109 | 203 | 163 | -22 | 173 | 148 | ||
0.150 | > 109 | 135 | > 109 | 203 | 182 | > 109 | 162 | 158 | -38 | 136 | 138 | ||
0.200 | > 109 | 120 | < −109 | 165 | 164 | > 109 | 128 | 139 | -49 | 102 | 115 | ||
10,000 | RMSE | 0.025 | > 109 | 4,215 | > 109 | 7,386 | 2,874 | > 109 | 6,303 | 4,316 | > 109 | 5,794 | 5,334 |
0.050 | > 109 | 3,533 | > 109 | 6,173 | 5,626 | 43,319 | 5,551 | 5,355 | > 109 | 5,294 | 5,155 | ||
0.100 | > 109 | 5,336 | 11,655 | 5,318 | 5,246 | 2,872 | 4,860 | 4,777 | 2,092 | 4,520 | 4,423 | ||
0.150 | > 109 | 4,953 | 3,603 | 4,766 | 4,701 | 2,002 | 4,235 | 4,179 | 1,544 | 3,798 | 3,751 | ||
0.200 | > 109 | 3,929 | 2,511 | 4,290 | 3,432 | 1,479 | 3,662 | 2,948 | 1,178 | 3,141 | 2,583 | ||
Bias | 0.025 | > 109 | -3,932 | > 109 | 2,888 | 28 | > 109 | 2,496 | 1,644 | > 109 | 2,333 | 2,457 | |
0.050 | > 109 | 117 | > 109 | 2,663 | 2,275 | -391 | 2,386 | 2,229 | > 109 | 2,264 | 2,171 | ||
0.100 | > 109 | 1,733 | 71 | 2,265 | 2,290 | -269 | 2,001 | 2,091 | -321 | 1,820 | 1,945 | ||
0.150 | > 109 | 1,557 | -19 | 1,901 | 2,084 | -173 | 1,685 | 1,880 | -326 | 1,475 | 1,691 | ||
0.200 | > 109 | 182 | -6 | 1,639 | 829 | -294 | 1,407 | 763 | -475 | 1,162 | 643 | ||
20,000 | RMSE | 0.025 | > 109 | 8,679 | > 109 | 13,859 | 6,127 | 57,543 | 12,382 | 9,052 | 31,361 | 11,618 | 10,649 |
0.050 | > 109 | 7,622 | > 109 | 11,758 | 11,443 | 52,505 | 11,007 | 10,828 | 8,080 | 10,548 | 10,418 | ||
0.100 | > 109 | 10,366 | 19,729 | 10,395 | 10,300 | 4,825 | 9,640 | 9,480 | 3,736 | 8,971 | 8,791 | ||
0.150 | > 109 | 9,731 | 5,732 | 9,413 | 9,326 | 3,285 | 8,345 | 8,294 | 2,650 | 7,490 | 7,489 | ||
0.200 | > 109 | 9,188 | 4,558 | 8,473 | 8,479 | 2,646 | 7,191 | 7,274 | 2,270 | 6,112 | 6,254 | ||
Bias | 0.025 | > 109 | -7,897 | > 109 | 5,791 | 524 | -613 | 5,277 | 3,121 | 1,275 | 4,964 | 4,267 | |
0.050 | > 109 | 1,214 | > 109 | 5,284 | 5,035 | -836 | 4,883 | 4,781 | -194 | 4,621 | 4,598 | ||
0.100 | > 109 | 3,447 | 574 | 4,434 | 4,643 | -188 | 4,012 | 4,308 | -388 | 3,670 | 4,065 | ||
0.150 | > 109 | 3,117 | 50 | 3,772 | 4,186 | -370 | 3,436 | 3,886 | -729 | 3,037 | 3,557 | ||
0.200 | > 109 | 2,671 | 23 | 3,318 | 3,769 | -707 | 2,830 | 3,359 | -972 | 2,340 | 2,859 |
1 For first encounters in data-generating models , and .
LLM-AIC denotes selection of the AIC-best loglinear model, LLM-BMA denotes Bayesian model-averaging of loglinear models, and BLCM denotes nonparametric Bayesian latent-class model estimation.