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a b s t r a c t

The high rate of transmission of the COVID-19 virus has brought various types of disinfection techniques,
for instance, hydrogen peroxide vaporization, microwave generating steam, UV radiation, and dry heat-
ing, etc. to prevent the further transmission of the virus. The chemical-based techniques are predomi-
nantly used for sanitization of hands, buildings, hospitals, etc. However, these chemicals may affect
the health of humans and the environment in unexplored aspects. Furthermore, the UV lamp-based radi-
ation sanitization technique had been applied but has not gained larger acceptability owing to its limita-
tion to penetrate different materials. Therefore, the optical properties of materials are especially
important for the utilization of UV light on such disinfection applications. The germicidal or microorgan-
ism inactivation application of UV-C has only been in-use in a closed chamber, due to its harmful effect on
human skin and the eye. However, it is essential to optimize UV for its use in an open environment for a
larger benefit to mitigate the virus spread. In view of this, far UV-C (222 nm) based technology has
emerged as a potential option for the sanitization in open areas and degradation of microorganisms pre-
sent in aerosol during the working conditions. Hence, in the present review article, efforts have been
made to evaluate the technical aspects of UV (under the different spectrum and wavelength ranges)
and the control of COVID 19 virus spread in the atmosphere including the possibilities of the human body
sanitization in working condition.
� 2022 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 issue is still a challenge even after availability of
medicine and vaccine (Cao and Li, 2022; Jamrozik and Selgelid,
2020; Khan et al., 2020; Yang and Wang, 2020; Zhang et al.,
2020). Asymptomatic patients were also found and the random
deaths of patients were also reported in almost every country
including India (Changotra et al., 2021). In case of asymptomatic
patient precaution is essentially required among the healthy pop-
ulation because silent transmission may be occurred rapidly in
population (Bai et al., 2020; Bherwani et al., 2021; Gao et al.,
2021; Yu and Yang, 2020; Zhou et al., 2020). If such kind of disease
dispersed among countries, then it can be a high-risk challenge.
However, vaccination has positive impact in the control of death
but its high transmission rate and its variable acute impact on dif-
ferent patient is still a challenge (Andrews et al., 2022; Coccia,
2022; Wang et al., 2022). One of the serious threats of the virus
spreading between countries is due to unavailability of any handy
monitoring of COVID-patient during travelling. Therefore, it can be
a threat issue at any time in several countries. If the technology is
developed to stop the contamination of such kind of viruses, then it
will help the country to avoid major impact on economy, health
and security (Ferdib-Al-Islam and Ghosh, 2022; Glass et al.,
2022; Pensini and McMullen, 2022; Shin et al., 2022).

Typically, different kind of disinfectant techniques hydrogen
peroxide vaporization, microwave generating steam, UV radiation
and dry heating are available to stop the spreading of COVID-19
(Arellano-Cotrina et al., 2021; Mahanta et al., 2021; V et al.,
2020). Among different chemicals, 75% ethanol, peroxy-acetic acid,
chloroform and other chlorine containing disinfectant (sodium
hypo-chloride etc.) used to stop the dispersion of virus. These
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chemical based techniques are predominantly used for sanitization
of hand, buildings, hospitals etc. The sanitization of staff, doctors,
nurses, and other COVID-19 warriors were also carried out by
using ethanol-based sanitizer or other chemicals. Therefore, the
consistent use of these chemicals may affect the health of human
and environment in unexplored aspects (Abuga and Nyamweya,
2021; Ghafoor et al., 2021; Golin et al., 2020; Mallhi et al., 2020).
Moreover, the radiation-based sanitization was available in the
form of UV lamp-based technology but it has certain limitations.
The UV wavelength lies between 10 and 400 nm and it is a non-
ionising part of electromagnetic spectrum (Biasin et al., 2021;
Gidari et al., 2021; Saadati, 2016). Recently, Stawicki has suggested
utilizing the UV-C for the treatment of COVID 19 virus present in
trachea-bronchial region of patient (Stawicki, 2020).

The UV spectrum are divided into four major fragment UV-A,
UV-B, UV-C and V UV(vacuum UV) depending on the range of
wavelength as shown in Fig. 1. It is easier to absorb rather than
penetrate, reflect or refract, because of lower wavelength com-
pared to visible light. Therefore, optical properties of materials
are very important for utilization of UV light on certain applica-
tions. UV-A has lowest energy and VU-V region has highest energy
because wavelength is inversely proportional to the energy. There-
fore, lower wavelength of the UV does not have a good quality of
reflection, refraction or transmission. Among UV spectrum, UV-C
was used prominently for germ removal (McDevitt et al., 2012;
Memarzadeh et al., 2010). However, it can be used in close cham-
ber to inactive microorganismwithin 20 s in air, but the major con-
cern is related to harmful effect on human skin and eye. UV-C is
carcinogenic as well as mutagenic in nature (Davies et al., 2002).
Therefore, UV-C is avoided to be used in open working place in
Fig. 1. Different types of UV on the basis of their wavelength as per ISO 21348.
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the presence of people and it must be handled very carefully in
close chamber equipment.

During the literature we have not found any review article pub-
lished before which summarized the technical aspects and applica-
tion of UV-ray based disinfection techniques along with suitable
measures. Hence, the purpose of present review article is to evalu-
ate the technical aspects of UV (under the different spectrum and
wavelength ranges) and the control of COVID-19 virus spread in
the atmosphere including the possibilities of the human body san-
itization in working condition.
2. UV-radiations against COVID-19 pandemic

Generally, epidemic viral infections are more effectual in cold
weather, and infections due to COVID-19 will go longer time and
or may also repeat. The variation in atmospheric conditions for
instance rain, cold, change in temperature with wind, and snow
were found as significant component which are influencing upper
respiratory zone viral infections (Arora et al., 2021; Mecenas et al.,
2020; Rajput et al., 2021; Türsen et al., 2020). Despite, the real
impact of above motioned circumstance on corona virus is myste-
rious. However, some studies reported that the transmission of
coronavirus can be slow down with increase in temperature. It
has also found that the heat is the key components which affect
the coronavirus survival and within the temperature range of
23–25 �C viral load reduce quickly compare to 4 �C temperature.
However, study conducted in some cities by Kumar et al. reported
that the transmission of coronavirus was not related with heat or
UV rays (Kumar et al., 2020).

During the summer season higher amount of UV–radiations
reached to the earth and it can become a critical component in
stopping corona virus transmission. Regarding the overexposure
of UV-rays at a meticulous position at certain time has been pro-
vided by UV index which is an international standard measure-
ment. Depending upon the various factors such as category of
organism and wavelength of UV-rays, different types of viruses
for instance influenza virus, MERS and SARS can be permanently
destroy or damage by UV-radiations. In the various countries like
China different public transports and central banks were disin-
fected of coronavirus through UV-light (Dietz et al., 2020;
Malateaux, 2020; Parsa et al., 2021). The UV-C light, containing
wavelength range of 250–270 nm are effectively absorbed by
microbial DNAs and therefore this wavelength range is deadly
wavelength for microorganism. Here, nucleic acid bases absorb
UV-C radiation which resulted in damage the molecular structure
through photodimerization which leads to inability to replicate
and inactivation of virus. The treatments of coronavirus infected
humans through UV-C radiations are very rare or in very initial
stage. However sanitization of N-95 masks during covid-19 pan-
demic was highly recommended through this technique (Peters
et al., 2021; Rohit et al., 2021). Besides, the contaminated waste
water containing COVID-19 virus can be treated through high tem-
perature (greater than 56 �C) and UV C (100–280 nm) (Parsa et al.,
2021). Auspiciously, UV-germicidal irradiations (UVGI) or UV-C
(222 nm) is emerged as a potential contender that does not hurt
human skin and eyes nevertheless various kind of study is still
required to get deep into it. It has also found that UV-C is lesser
carcinogenic compare to UV-B. Hence the uses of UVGI or UV
(222 nm) are found to be more effective to disinfect the corona
virus. Owing to carcinogenic effects corona virus on humans the
use of UV-C in public areas such as railways stations, transporta-
tions, airports, malls, hospitals etc are still restricted and required
some more approaches need to be included for better disinfection
of corona virus (Dietz et al., 2020; Kumar et al., 2020; Welch et al.,
2018).
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3. UV-based disinfection system

Recently, various types of studies reported to inactivate the
coronavirus from the surface of any objects. The main objective
was to identify the cost effective technique to disinfect the virus
at particular wavelength. As the LEDs are available in market with
different wavelength which are different from conventional dis-
charge lamp with constant wavelength emission can optimize
the response and provide most appropriate wavelength (Alnaser
et al., 2020; Trivellin et al., 2021).

UV light-emitting diodes (UV LEDs) based disinfections tech-
nique is becoming more popular due to precise control of radiation
pattern, flexible design and reduced size of disinfector. The
requirement of low voltage and short turn-on time can be also
operated though solar panel and battery. UV LEDs based disinfec-
tion unit has established for more efficient for various types of
pathogens. On the other hand, UV LEDs with narrow emission
characteristic as shown in Fig. 2 (a), and lower wavelength leads
to provided lower output. These limitations demanded the
Fig. 2. (a) Various emission spectrum of UV LED. (b) Dose response characteristic of t
designated irradiation and N0 represent the time zero (without irradiation). Panel (a-b) a
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UV-LEDs with high wavelength and its efficacy towards various
types of pathogens must be examined. Gerchman et al. have stud-
ied the disinfection of coronavirus through UV LED and evaluated
the wavelength effects. They have investigated the sensitivity of
corona virus (HCoV-OC43 used as SARS-CoV-2 surrogate) at differ-
ent wavelength in human. The UV LED having peak emission at
nearly 286 nm was found more effective as shown in Fig. 2(b)
and can be used as useful tool for fight against coronavirus
(Gerchman et al., 2020). Further, they have designed UV chip tech-
nology to test the virucidal activity on SARS-CoV-2 of a device. The
obtained result showed a SARS-CoV-2 charge decline of more than
99.9% after 3 min of operation. The highest measurable attenuation
of 5.7 Log (99.9998%) was calculated at an irradiation time of
10 min, for all the repetitions, regardless of direct or reflected UV
radiation hitting the virus samples in the device (Messina et al.,
2021). In the other study, Choi et al. have introduced UV LED irra-
diation robot for the disinfection of patient room after discharge of
patients. They have collected 216 environmental samples from 17
rooms and found the presence of SARS-CoV-2 RNA at various
he HCoV-OC43 disinfected through UV-LEDs. N signifies the virus count after the
re reprinted with permission from (Gerchman et al., 2020), copyright Elsevier 2020.
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surface. The obtained result demonstrated that UV LED based robot
is more effective in spacious area like ICU but it performance var-
ied with small places like CTC rooms (Choi et al., 2021).

Guettari et al. have designed amobile robot named I-Robot UV-C
to inactive the coronavirus at various environmental surfaces. The
developed i-Robot UV-C includes two lamp on the top and eight
UV-C lamp on the central column. The column of the designed robot
was fixed on the mobile base and also included temperature and
humidity sensor, pulsemotion detector sensor. The designed device
disinfected 99.999% bacteria (Guettari et al., 2021). Further, Table 1
summarized the different form of UV in terms of disinfection of
SARS-COV-2 with respective to dose and time duration. It is clear
from the table that UV LED, UV chip, UV-A, B, and C with range of
different wavelength are able to deactivate about 99% of SARS-
COV-2 virus at particular UV-dose and time.

Inagaki et al. demonstrated that the deep ultraviolet light-
emitting diode (DUV-LED) of at wavelength of 280 ± 5 nm rapidly
inactivated the SARS-CoV-2 which was collected from infected
patient. For the observation of inactivation of virus through DUV-
LED irradiation aliquots of 150 lL of virus stock were placed in
petri dish of 60 mm and 3.75 mW/cm2 light were projected from
work station of 20 mm for different times as shown in Fig. 3(a-
c). The infectious titer decrease the ratio of 87.4% was observed
for 1 s irradiation which enhanced up to 99.9% for 10 s irradiation
(Inagaki et al., 2020).
4. Technical aspects of UV based COVID 19 dispersion mitigation
equipment

Among UV light UV-A has capability to penetrate the deep layer
of human skin whereas UV B and UV-C are considered as actinic
(causing photochemical reactions). Recently, Doremolen et al.
explored that inaerosol COVID-19 virus remain stable for 3 h. This
study was based on Bayesian regression model and it was sug-
gested that stability of virus depends on the kind of surfaces and
inoculum shed. The stability was found higher on stainless steel
and plastic as compared to copper and cardboard (van
Doremalen et al., 2020). Therefore, mitigation technology advance-
ment like UV based tools were designed in most of the countries
but UV light source was typically based on low pressure containing
mercury vapour arc lamp having wavelength of 254 nm or xenon
lamp with broad spectrum. The UV-C tube also emits a consider-
able concentration of ozone. The germicidal effect of UV-C is
Table 1
Different form of UV in terms of disinfection with respective dose and time duration.

Sr.
No.

UV Categories Time UV Dose Remarks

1. UV-LED (267 &
279 nm)

– 7 mJ/cm2 3-log inactivation of HCoV-O

2. UV-C (254) 9 min 1048 mJ/
cm2

High infectious titer of 5 �

3. UV-A (365 nm) 15 min 1048 mJ/
cm2

Weak effect was observed o

4. UV-chip 3 min 15 mJ/cm2 The SARS-CoV-2 charge dec

10 min 35 mJ/cm2 Highest measurable attenua

5. Far UV-C (222 nm) 25 min 3 mJ/cm2 Aerosolized coronavirus 229

6. UV-C (254) 2.98 s 6.556 mJ/
cm2

UV Clight was able to inacti

7. UV-C(222 nm) 30 s 3 mJ/cm2 The obtained result exhibite
TCID 50 assay

8. UV-C (254 nm) – 1.5 J/cm2 Efficiently deactivate the fac
9. UV-C (222 nm) 15 s 81 mJ/cm2 SARS-CoV-2 from forty-eigh
10. UV-C (253.7 nm) 30 s 500 lW/

cm2
Reduced SARS-CoV-2 by 10�
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already established with several germs and its use in the disinfect-
ing of medical kits were also under process for COVID 19 virus
(Hashem et al., 2019; Momattin et al., 2019; Szeto et al., 2020;
Torres et al., 2020). Beside this applications, the different designs
were also advanced for sanitization of currency, surface, docu-
ments, mask and PPE kit etc (Pandya et al., 2021; Ravi et al.,
2021; Tiwary et al., 2021). However, these developed design tech-
nologies are able to decontaminate the assets up to certain extents
but few scientific facts must be considered for effective application.

The intensity of light and contact time in between virus and UV
rays are two vital parameters to denature the virus (Hamzavi et al.,
2020). The distance of the inoculums from the light source is also
an important parameter. Most of the study was performed to kill
the virus present in aerosol. In aerosol the intensity required for dif-
ferent viruses aredifferent. For example, forH1N1 influenza virusUV
dose was reported 1.1 mJ/cm2 whereas, for alpha (HCoV–229E) and
beta (HCoV-OC43) coronavirus required 0.56 mJ/cm2 and 0.34 mJ/
cm2 respectively (Buonanno et al., 2020; McDevitt et al., 2012). The
D90 dose was found 0.7 mJ/cm2in the earlier corona virus strain ger-
micidal studies (Kowalski, 2015). These variations are due to differ-
ence in number of base pair in DNA/RNA. The pyrimidine dimer
(especially thymine) is more sensitive towards photo-degradation
by UV and hence DNA based viruses are more sensitive with UV-C
(Lytle and Sagripanti, 2005). In these studies, the contact time is very
less. But the contact timewill not be common for each kind of mate-
rials such asmedical kits, mobile, purse, floor etc (Huber et al., 2021;
Narla et al., 2020).Moreover, the viruswill denature at different con-
tact time if it is present over the material surfaces and in aerosol. It
occurred due to the surface roughness and band gap energy of the
material. The transmission of any light without adsorption is only
possible if material has lower band gap energy as compared to light
energy. Thevirusmaybepresent inbetween troughandnanohollow
pits at the surface material. Most of the materials are opaque to UV
light because of lower wavelength or higher energy. For example,
amongvery fewmaterials, fusedquartz (Type214) is able to transmit
at least 86%of incidentUV-C light (Sosninet al., 2015). Theutilization
of thisUV-C light is not applicable tobeused inworkingareabecause
of different kind of harmful effects on human cells.
5. Far UV based option

Recently, a review was published by Toress et al. enlightening
the different methods opted for sanitization of accessories for
Ref.

C43 (Gerchman et al.,
2020)

106 TCID50/mL was totally inactivated (Heilingloh et al.,
2020)

n infectious titer of 5 � 106 TCID50/mL (Heilingloh et al.,
2020)

line at 99.94% (Messina et al.,
2021)

tion of 5.7 Log (99.9998%) (Messina et al.,
2021)

E and OC43, respectively inactivated by almost 99.9%. (Buonanno et al.,
2020)

vate more than 99 % of SARS-CoV-2 viral particles (Sabino et al., 2020)

d a 99.7% reduction of viable SARS-CoV-2 based on the (Kitagawa et al.,
2021)

epieces of 3 M 1860 and Moldex 1511 (Ozog et al., 2020)
t locations, become negative (Su et al., 2022)
4.9 fold (Lo et al., 2021)



Fig. 3. Inhibitory result of DUV-light on SARS-CoV-2. (a) Cytopathic variation in virus infected Vero cells under different irradiation conditions including (0 s) without DUV
LED –light or with DUV LED –light for 1, 10, 20, 30, 60 s and each of them corresponds to 3.75, 37.5, 75, 112.5, or 225 mJ/cm2, respectively. (b) Formation of Plaque in Vero cell.
(c) Disinfection of SARS-CoV-2 though DUV-LED irradiation under different time. Panel (a-c) are reprinted with permission from (Inagaki et al., 2020).
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COVID-19 virus (Torres et al., 2020). Briefly, authors explained UV-
C (254 nm) based sanitization and their limitations. However, Far
UV based techniques were excluded irrespective of the advantages
over UVC. However, the study of Far UV-C is started hundred years
ago but, now a days, it attracts the researcher as an option to be
used for sanitization-based application instead of 254 nm based
UV (Buonanno et al., 2016; Kogelschatz, 2004; Seuylemezian
et al., 2021; Welch et al., 2018). Because, it is able to kill the
microorganism without affecting the skin and retina of human
eyes (Barnard et al., 2020; Kang and Kang, 2019; Saadati, 2016;
Seuylemezian et al., 2021; Wang et al., 2010; Welch et al., 2018).
Significantly, It is non mutagenic to skin cell of human (Barnard
et al., 2020; Haider et al., 2020). Therefore, far UV based techniques
can be used in open working area for office staff, doctors, nurses
and other COVID-19 warrior. Beside this advantage there are num-
ber of advantages of the far UV excil lamp as compared to other UV,
represented (Oppenländer, 2007; Oppenländer and Sosnin, 2005).
Advantages of far UV excil lamp (222 nm) over UV-C (254 nm):
(i) variable geometries, (ii) narrow-band emission, (iii) no IR emis-
sion, (iv) variable power adjustment, (v) mercury free system, (vi)
instant start at full radiation output, (vii) long lamp lifetime (viii)
electrode-less configuration.

At present, the excil-lamps are most commonly used in photo-
science because, it has extensive lifetime (several thousand hours).
The pressure has considerable role in the emission of radiation in
82
excil lamp. The radiant power depends on the pressure of the gas
mixture (Schitz et al., 2008). If the pressure of the gas in a bulb
exceeds 20–30 kPa, than narrow band radiation emission occurred.
It also depends on the nature of filled gas or mixture of gas
(Oppenländer and Sosnin, 2005). The efficiency of excil lamp can
be increased by optimum voltage application on discharge gap
(Lomaev et al., 2002). The emission maxima of halogens and rare
gases with and without mixing are represented in Table 2. Among
these radiations, KrCl based emission maxima (222 nm) have sev-
eral advantages to be used over other exciplexes based emission.

The presented chemical reaction occurred between krypton and
chlorine (Eqn. (1)), at the pressure of approximately, 0.3–0.5 atm.
This reaction is termed as harpoon reaction and KrCl* molecules
are produced (Zhang and Boyd, 1996; Zhuang et al., 2010). Since
KrCl* molecules are unstable and after coming into ground state
it emits the radiation of 222 nm (Zhang and Boyd, 1996; Zhuang
et al., 2010).

Kr* + Cl2 ! KrCl* + Cl ð1Þ
KrCl* ! Kr + Cl + UV radiation (222 nm) ð2Þ
However, the life of excimer lamp is very long but the molecular

Cl is incompletely recovered during the intervals between voltage
pulses. Hence, the concentration of Cl is reduced by the time. After



Table 2
The emission maxima from halogens with rare gases in their respective combinations (Kogelschatz, 2004; Lebedev and Pryanichnikov, 1993; Pikulev et al., 2012).

Halogen gases Rare gases

Emission maxima of pure gas Xe Kr Ar Ne He

172 nm 146 nm 126 nm 84 nm 74 nm

F 157 nm 354 nm 248 nm 193 nm 108 nm Emission maxima of mixture gas
Cl 259 nm 308 nm 222 nm 175 nm
Br 289 nm 282 nm 207 nm 165 nm
I 342 nm 253 nm 190 nm
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a long period, the hetero-phase chemical reaction between quartz
wall and Cl resulted into degradation of quartz material. This reac-
tion leads to the formation of chlorosiloxanes, a polymer as repre-
sented in Eqn. (3) (Zhuang et al., 2010).

nSiO2 (solid) + 2nCl (gas) ! SinOnCl2n (Solid) + (n/2)O2 ð3Þ
6. Limitations and future prospects of Hg-based UV radiation on
COVID-19 evolution

UV irradiation can be deliberated as a mediation whichmay dis-
place chemical treatment due to non thermal treatment. It has
really a number of benefits over conventional chemical treatment
like no disinfectant residuals, insignificant development of disin-
fection by-products (Aoyagi et al., 2011; Dotson et al., 2012;
Lubello et al., 2004; Mori et al., 2007). We can use low or
medium-pressure mercury lamps most commonly used as a UV
source in UV disinfection methods (Beck et al., 2015;
Chevremont et al., 2013a). Although, UV technology is nowadays
used as surface treatment but it has number of limitations: (i)
UV is not able to facilitate directly to the surface microorganisms
due to the characteristic shallow penetration depth. (ii) This shad-
owing effect of UV radiation also dominant if located in pores or
other natural irregularities of surface (Gardner and Shama, 2000;
Liu et al., 2015; Shama, 2007). (iii) Fragile quartz based UV lamps
have mercury content and have the risk of damaging human health
and the environment (Chevremont et al., 2013b; Close et al., 2006).

In the latest literature, researchers have developed ‘‘water-
assisted UV system”. This device separates and dissolves microor-
ganisms on the sample surface via the agitation. As a result of it, all
microorganisms can simply be deactivated via UV radiation
whereas the sample is relocated arbitrarily to expose all surfaces
to UV irradiation. This process raised UV inactivation effect
(Huang and Chen, 2015, 2014; Raeiszadeh and Adeli, 2020). Such
type of systems may be the path of the reduction of disinfectant
effect on many surfaces from the COVOD-19 viruses. This system
uses Hg-free photoluminescence technology with UV source and
disinfects the samples via only the water without any sanitizer
and have a great potential with respect to the conventional Hg-
based UV device technology. Apart from that there is a need of
number of efforts in renew such type of devices and structured
by including a real agitating technology to help practical applica-
tion in the current type of COVID situations.

7. Safety measures against UV-treatment

UV-light has creates numerous effects on skin may cause high
risk of skin cancer and skin pigmentation. Besides, the exposure
of naked eye under UV-light may lead to sever problem such as
solar retinopathy, photokeratitis, retinal damage, and erythema
of eyelids (Behar-Cohen et al., 2013; Ivanov et al., 2018; Izadi
et al., 2018).

Hazardous UV-radiation exposure to human eye and skin is
considered as direct radiation and secondary exposure are also
possible due to reflection of UV-light from the surface and reached
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to our eye and skin. The secondary reflection of UV-ray from highly
reflective surface must be critical consideration during the devel-
opment of disinfection devices. For example various materials such
as stainless-still, aluminium, PTFE surfaces have very high reflec-
tance properties of 50%, 90% and 95% respectively. According to
the regulations provided by various types of organizations such
as European Agency for Safety and Health, American conference
of governmental industrial hygienists and American cancer society,
the threshold limit value is demonstrated as ‘‘effective” UV dose
(irradiance � exposure time) of 3 mJcm�2 under 8 h time frame
to human exposure. The used of word ‘‘effective” in the regulation
is considered as the highest value of sensitivity of human eye that
was nearly obtained as 270 nm. This presented wavelength is con-
sidered as a reference wavelength to know the biological response
of sample under different wavelengths condition. The exposure of
UV-radiations to human eye and skin could be reduced with the
use of some UV protected goggles and gloves, development of UV
protected shield for prevent the exposure (Raeiszadeh and Adeli,
2020).

Although the developer of UV-based disinfector provides all the
safety measures, the ultimate goal of success disinfection can be
only achieved by an appropriate use of device from the user side.
For instance, a person is handling the UV-based disinfector device
so he must be aware about the safety measures such as any kind of
hand sanitization cannot be done by it, how long and from what
distance a surface or object can be irradiated. There providing a
comprehensive manual from manufacturer and appropriate
knowledge of given manual and handling protocol form user side
must be required for the success of UV-based disinfections of coro-
navirus. The formation of ozone during air disinfection is recog-
nized as one of the crucial problem associated with UV
disinfection. The O3 generation is common phenomena occurred
with the reaction of O2 with UV rays. However, the design, power
and operation time of UV lamps significantly affect O3 generation.
It can be reduced by using particular wavelength (Fig. 4(a, b)) and
the technology available such as activated carbon filters, tightly
enclosing of lamp with ozone resistant material, ozone filters, par-
ticular wavelength filter of UV radiation etc. (Claus, 2021;
Salvermoser et al., 2008). The O3 generation simultaneously
accompanied with its decay, hence it can be reduced in open area
because natural half-life of O3 is reported between 1 and 3 days
(Claus, 2021; Koller, 1945). However, Welch et al. reported the for-
mation of ozone was less than 0.005 ppm for far UV C (222 nm) and
concentration was not up to the level which can offer antimicrobial
effect (Chapman, 1930; Raeiszadeh and Adeli, 2020; Welch et al.,
2018). Finally, the ozone formation also must be required to con-
sider during development and use of UV-based disinfection
system.
8. Conclusion

The capabilities of UV radiations to check the transmission of
the Covid-19 virus are well established. In terms of harmful impact
on human skin cells and retina from UV-C (254 nm), open area san-
itization is quite possible by using far UV-C (222 nm) based tech-



Fig. 4. Oxygen absorption with different wavelength of UV. (b) The plot of the
spectral power distribution of a typical KrCl lamp in semi logarithmic scale. Panel
(a-b) are reprinted with permission from (Claus, 2021), copyright John Wiley and
Sons 2021.
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nology. It can be used for the sanitization and degradation of
microorganisms present in aerosol during the working condition.
It is advantageous over mercury-based UV because Kr and Cl are
used for UV-C (222 nm), which is non-polluting inert and halogen
gas respectively. Hence, far UV-C-based applications instead of
higher wavelength-based UV-C overall reduce the hazardous and
radiation-based health impact. The other application can also be
developed by exploring its different impacts on several microor-
ganisms. The utilization of this technology will also indirectly
reduce the use of UV-C (254 nm) based ozone emission and overall
reduce air pollution. The various efforts are still required to be
applied to achieve safe disinfection from UV light that will protect
human life and the surrounding ecosystem.
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