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Abstract

Cefepime is a broad-spectrum fourth-generation cephalosporin with activity against Gram-positive 

and Gram-negative pathogens. It is generally administered as an infusion over 30–60 min or as 

a prolonged infusion with infusion times from 3 h to continuous administration. Cefepime is 

widely distributed in biological fluids and tissues with an average volume of distribution of ~ 
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0.2 L/kg in healthy adults with normal renal function. Protein binding is relatively low (20%), 

and elimination is mainly renal. About 85% of the dose is excreted unchanged in the urine, 

with an elimination half-life of 2–2.3 h. The pharmacokinetics of cefepime is altered under 

certain pathophysiological conditions, resulting in high inter-individual variability in cefepime 

volume of distribution and clearance, which poses challenges for population dosing approaches. 

Consequently, therapeutic drug monitoring of cefepime may be beneficial in certain patients 

including those who are critically ill, have life-threatening infections, or are infected with more 

resistant pathogens. Cefepime is generally safe and efficacious, with a goal exposure target of 

70% time of the free drug concentration over the minimum inhibitory concentration for clinical 

efficacy. In recent years, reports of neurotoxicity have increased, specifically in patients with 

impaired renal function. This review summarizes the pharmacokinetics, pharmacodynamics, and 

toxicodynamics of cefepime contemporarily in the setting of increasing cefepime exposures. We 

explore the potential benefits of extended or continuous infusions and therapeutic drug monitoring 

in special populations.

1 Introduction

Cefepime is a broad spectrum fourth-generation cephalosporin with activity against 

many Gram-positive and Gram-negative pathogens that cause nosocomial infections. First 

approved in 1993 in Europe and 1996 in the USA with indications for pneumonia, 

complicated urinary tract infections, skin and soft-tissue infections, complicated intra-

abdominal infections, and neutropenic fever [1], experience with cefepime is robust 

among the contemporarily used cephalosporins. In the hospital, cefepime is the ninth 

most commonly used antibiotic for all indications and is the sixth most commonly 

used antibiotic for the treatment of active infections [2]. The pharmacokinetics (PK) 

and pharmacodynamics (PD) of cefepime have been well characterized and susceptibility 

guidelines have defined population dosing strategies that are effective with standard and 

higher dose cefepime dosing schemes. However, less clarity exists regarding the exposure–

response relationship for neurotoxic adverse effects and other toxicities. This contemporary 

review focuses on the known exposure–response relationships for cefepime.

2 Cefepime PK

2.1 PK in Healthy Adults

Cefepime is primarily given as an intravenous (IV) infusion over 30–60 min [3] or as a 

prolonged infusion of 3–24 h [4-6]. Several smaller studies have also reported IV push 

administration over 3, 5, 10, or 15 min [7]. Maximum plasma concentrations occur rapidly 

and are two to three times higher after IV administration compared to intramuscular (IM) 

administration [8]. Maximum concentration is ± 30.7 mcg/mL 30 min after a 2-g IV dose 

[9] compared with a maximum concentration of 57.5 ± 9.5 mcg/mL h after a 2-g IM dose 

[10]. In addition, there are recent reports on the off-label use of cefepime by subcutaneous 

administration [11, 12].

Cefepime is reasonably distributed in biological fluids and tissues [13-18], and is 

hydrophilic with a partition coefficient (log P) and distribution coefficient (log D) <− 2.5 
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[19]. The apparent volume of distribution (Vd) in adults with normal renal function is 

~ 0.2 L/kg [20] (Table 1, Fig. 1). Cefepime clearance (CL) typically follows first-order 

kinetics, where concentrations decrease in a log-linear manner. Thus, cefepime doses are 

adjusted according to the half-life change. [9, 10]. Cefepime CL is largely renal and 

explained by the glomerular filtration rate; at least 85% of cefepime is excreted unchanged 

in urine. The terminal half-life (t1/2) of cefepime in healthy subjects with normal renal 

function after IV administration is approximately 2 h [9, 10]. The t1l2 increases and CL 

decreases proportionately with declining kidney function [21, 22]. Patients with glomerular 

hyperfiltration or augmented renal CL, such as those with cystic fibrosis, have a greater 

cefepime CL and a shorter t1l2 [23] (Table 1, Fig. 2). At a physiologic pH, the non-renally 

cleared component undergoes hydrolysis to N-methylpyrrolidine (NMP) and the 7-epimer of 

cefepime. NMP is then oxidized to NMP N-oxide. Less than 1% of the dose administered is 

recovered from urine as NMP, 6.8% as NMP N-oxide, and 2.5% as the 7-epimer [24].

2.2 PK and Pharmacokinetic Variability in Specific Disease States

2.2.1 Pneumonia—Cefepime PK has been extensively studied in patients with 

pneumonia (Table 1, Figs. 1 and 2). In a prospective study of 21 patients with nosocomial 

pneumonia treated empirically with cefepime (2 g every 12 h for patients with CrCL ≥ 50 

mL/minute or 2 g every 24 h for patients with CLCR < 50 mL/minute (30-min infusions)), 

peak serum concentrations demonstrated a two- to three-fold variation, with up to 40-fold 

variation in trough concentrations [25]. Direct correlations were observed between CrCL 

and cefepime elimination (Ke), and between hemodilution and Vd. Similarly, in 26 critically 

ill patients with ventilator-associated pneumonia treated with high-dose cefepime (2 g every 

8 h (3-h infusion) or a renal function-adjusted equivalent dose), CrCL and body weight were 

the covariates significantly impacting Ke and ~d. Notably, the authors observed a total CL of 

7.6 L/h in their critically ill patient population on a prolonged cefepime infusion [26], which 

is similar to total CL rates of 6–7 L/h observed in the critical care patient population in 

other studies [27-30]. In summary, patients with pneumonia display inter-patient variability 

in cefepime concentrations. Empiric dosing relies mostly on estimating cefepime CL in 

relation to CrCL.

2.2.2 Febrile Neutropenia—Cefepime PK has been evaluated in patients with febrile 

neutropenia secondary to hematological malignancies (Table 1, Figs. 1 and 2) [31-34]. 

Patients with febrile neutropenia exhibit intra-individual and inter-individual variability 

of pharmacokinetic parameters, mainly due to an increased Vd (26.43 L vs 18.4 L) and 

increased renal CL (12.88 L/h vs 8.58 L/h) compared with healthy volunteers [9]. Such 

PK changes are often driven by patient and disease state factors in this group. Sime and 

colleagues have suggested that the observed significant expansion in Vd may be attributable 

to a combination of various factors including capillary fluid extravasation, high-volume fluid 

therapy, and markedly increased body mass index/obesity [33]. In addition, these authors 

have pointed out that higher cefepime CL could be a consequence of augmented renal CL 

that is very often observed in febrile neutropenic patients with apparently normal renal 

function. Variability in PK parameters may partially account for the increased mortality 

observed with cefepime in the treatment of patients with febrile neutropenia and documented 

bacterial infection [32, 35, 36].
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2.2.3 Sepsis and Shock—Cefepime is frequently administered to those with sepsis and 

shock (Table 1, Figs. 1 and 2). As with many other drugs, pharmacokinetic variability is 

high in those with septic shock [37]; coefficient of variation for CL or Ke can exceed 100% 

[38, 39]. In these patients, poor blood circulation [40] in infected tissues may decrease drug 

concentrations at the site of infection [41]. Additionally, augmented renal CL, defined as a 

CLCR > 130 mL/min for renally excreted drugs [42], is often discussed in this population 

[39, 43]. Many of these patients undergo renal replacement therapy and CL is affected 

by filtration flow rates and filter downtime [44]. Changes in cardiac output can increase 

CL while higher Vd secondary to protein dysregulation may lead to subtherapeutic serum 

concentrations [42]. As a result, these patients frequently do not achieve time over minimum 

inhibitory concentration (T>MIC) goals, especially at MICs of 4–8 mg/L.

2.3 Infection-Site Considerations, Clinical Therapeutic Drug Monitoring

2.3.1 Pulmonary—Using cefepime 20 mg/kg every 8 h in intensive care unit patients 

with pneumonia, Klekner et al. failed to detect measurable cefepime concentrations in 

the sputum samples of the patients [45]; however, cefepime does not achieve high 

concentrations in the sputum. Conversely, more precise studies investigating epithelial lining 

fluid (ELF) found that cefepime penetrated well into the ELF with a mean ELF:serum 

concentration of 100% [46]. In a study by Boselli et al., cefepime concentrations in plasma 

and bronchoalveolar lavage fluid were obtained at various timepoints (8, 12, and 16 h). 

The concentration of cefepime in ELF was then calculated using urea to standardize for 

diffusion. This study demonstrated that normal and injured lungs achieve ~ 100% of serum 

concentrations in the lung and do so within 5 h [47]. This penetration to ELF has been 

confirmed by others. The parenchyma of lung is reached via distribution as demonstrated by 

16 patients who received cefepime 2 g every 12 h before going to lung surgery. Cefepime 

plasma and lung homogenate concentration was quantified and the mean of the lung-to-

plasma concentration ratio was 1.01 (range 0.7–1.3) [48]. A mean (standard deviation [SD]) 

percentage penetration of cefepime to bronchial mucosa of 59.8% (12.5%) was reported in 

one study that included 20 patients who received a single 2-g dose of cefepime [17]. Thus, 

cefepime appears to reliably achieve therapeutic concentrations in necessary respiratory 

matrices.

2.3.2 Intra-Abdominal—Cefepime appears well distributed into the abdominal space 

as well. Eight patients undergoing a laparotomy received cefepime 1 g every 6 h over 30 

min and had cefepime plasma and peritoneal fluid concentrations measured at different 

timepoints. The mean cefepime maximum concentration was around 30% lower in the 

peritoneal fluid compared with the plasma, but the concentration was similar in both 

matrices 2 h after starting the infusion [49]. In 35 patients with appendicitis who received 

cefepime 2 g every 12 h, cefepime concentration was measured in the plasma, appendix 

tissue, and peritoneal fluid. The ratios of cefepime concentration in the appendix to plasma 

(mean 0.66, SD 0.52) and in the peritoneal fluid to plasma (mean 0.66, SD 0.51) were 

similar [15].

2.3.3 Central Nervous System—As with most beta-lactams, cefepime often does 

not fully transit the blood–brain barrier, and penetration has high inter-patient variability. 
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A study assessed 13 patients who received cefepime 2 g over 30 min and had plasma 

and cerebrospinal fluid (CSF) samples collected, eight with ventricular drainage and five 

obtained via lumbar puncture. The cefepime concentration in the CSF of the ventricular 

drainage group was higher than the lumbar puncture group. Additionally, the CSF:plasma 

ratio range was 0.30–2.14 in the ventricular drainage group and 0.03–1.14 in the lumbar 

puncture group. The maximum concentration was reached after 1–2 h in the ventricular 

drainage group compared with 4 h in the lumbar puncture group (mean ± SD 22.5 ± 14.1 

vs ± 3.7 mg/L) [50]. Similar results were noted from seven patients with a ventricular drain 

who received cefepime 2 g every 12 h. A population PK model was developed using plasma 

and CSF samples and the mean (SD) area under the curve for CSF to area under the curve 

for plasma (AUCCSF:AUCplasma) derived from the simulations was 0.23 (0.57). Because of 

the degree of heterogeneity, the probability of target attainment (50% and 100% fT>MIC) 

was below 80% for MICs > 0.5 mg/L, even when simulating a cefepime 6 g/24 h continuous 

infusion [51]. A richly sampled rat model demonstrated highly similar penetration ratios 

(i.e., median penetration 20%, interquartile range 18–45%) and showed that penetration was 

very rapid with all animals demonstrating a time to maximum concentration of less than 2 h 

[52].

Cefepime has good penetration in the central nervous system (CNS) of children for 

the treatment of bacterial meningitis. In a study of 43 infants and children, mean CSF 

concentrations ranged from 5.7 μg/mL at 0.5 h after a 50-mg/kg dose to 3.3 μg/mL at 8 h 

after administration [53]. These concentrations are well above typical MIC90 for common 

causes of pediatric bacterial meningitis, such as Streptococcus pneumoniae and Neisseria 
meningitis.

2.3.4 Joint and Bone—Cefepime penetration to the bone is generally rapid and 

approaches concentrations obtained in the blood. A prospective study was performed with 

18 patients with periprosthetic join infections who received cefepime 2 g and daptomycin 

10 mg/kg intraoperatively. Each patient had two bone biopsies and one synovial membrane 

biopsy taken at a median time of 10 min after the end of the cefepime infusion. The median 

cefepime serum concentration was 28.6 mg/L (interquartile range 21.5–37.9). Among the 54 

tissue samples taken, cefepime was detected in 35 (64%). The median (interquartile range) 

cefepime tissue concentration was 17.9 mg/L (1.1–24.3) in the synovial membrane, 17.1 

mg/L (9.35–32.5) in the femur, 11.7 mg/L (5.4–29.0) in the cup, and 8.75 mg/L (7.55–24.9) 

in the tibia [54]. In another study, ten patients undergoing a total hip replacement received 

cefepime 2 g and had plasma and bone tissue samples collected 1.5 h later. The mean (SD) 

bone:plasma cefepime concentration ratio was 1.06 (0.23) in cancellous bone tissue and 0.87 

(0.37) in cortical bone tissue [55]. Using a model to predict cefepime concentration in the 

intervertebral disc, Zhu et al. found that cefepime 2 g infused over 30 min every 12 h can 

achieve disc concentrations between 1.1 and 4.2 times an MIC of 8 mg/L in 2 days. A dose 

of 1 g every 12 h failed to consistently achieve disc concentrations above this MIC [56].

2.4 Special Populations

2.4.1 Extracorporeal Membrane Oxygenation—There are limited clinical data on 

the impact of extracorporeal membrane oxygenation (ECMO) on cefepime exposure. 
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Physiochemical properties of cefepime (i.e., a hydrophilic drug with low protein binding) 

predict low ECMO sequestration and most pharmacokinetic changes result as a function 

of fluid shifts [57]. Ex vivo work suggests there is a circuit/volume-related decrease in 

cefepime concentration with an average cefepime recovery from the ECMO circuit of 67% 

at 48 h [58]. Clinically, critically ill pediatric patients receiving cefepime while on ECMO 

demonstrated a central Vd increase of over two-fold in the setting of a blood transfusion, 

while a decrease in Vd was observed as ECMO circuit oxygenators increase in age [59]. 

Cefepime CL in this population was lower than previously reported in a similar population, 

not on ECMO [59, 60]. It is likely that underlying renal function is a more significant driver 

of CL than ECMO; however, hemodilution lowers effective concentrations. More studies are 

needed to clarify the effects, if any, of ECMO on cefepime clearance.

2.4.2 Renal Replacement Therapy—Cefepime is removed significantly by 

hemodialysis and its CL is directly proportional to the flow rate and filter efficiency [21, 61]. 

In one study, about 70% of cefepime was eliminated after 3.5 h of high-flux hemodialysis 

and the reported intra-dialytic and inter-dialytic half-lives were 1.6 and 22 h, respectively 

[62]. With only 30% of cefepime remaining, a regimen of 1–2 g of cefepime after each 

hemodialysis session may be reasonable [62, 63]. In peritoneal dialysis, the half-life of 

cefepime was 18 h with peritoneal dialysis CL of 4 mL/min. With a half-life approximately 

eight-fold higher than normal, cefepime 1–2 g every 48 h (i.e., the same dose with a dosing 

interval stretched eight-fold greater than normal) would be appropriate to maintain the 

concentration above the MIC of the susceptible bacteria [64, 65].

In continuous renal replacement therapy (CRRT), CL often approaches rates of patients 

with normal kidney function, necessitating more frequent dosing. Cefepime accumulation 

is affected by the CRRT flow rates and filter downtime [44, 66, 67]. Dosing adjustments 

for patients receiving CRRT may be based on flow rates (Table 2), which are similar 

to adjustments based on estimated glomerular filtration rate/CrCL rates in mL/min [68]. 

Patients on CRRT can exhibit a large inter-individual variability as a function of different 

filters utilized and therapeutic drug monitoring may result in the most appropriate exposures. 

Literature-suggested population-based maximal dosing as a function of flow rate is shown 

in Table 2. Similar to patients with ‘normal renal function’ (CrCL > 100 mL/min), more 

aggressive doses such as 1 g every 6 h or 2 g every 8 h may be needed to achieve 

pharmacokinetic/pharmacodynamic targets against select pathogens. Additionally, when 

MICs are elevated as discussed below, extended or continuous infusions may offer superior 

target attainment when compared to intermittent infusion [44, 67, 69].

2.4.3 Burn Patients, Patients with Cystic Fibrosis, Elderly Patients, Obese 
Patients—Several studies have looked at a variety of other notable patient populations. For 

these patient populations, CrCL and Vd remain the most important variables and can aid 

in predicting cefepime disposition. In cystic fibrosis, CL of cefepime is increased [70] as 

these patients often display augmented renal CL. In acute cholecystitis, CL of cefepime 

is increased [71]. Elderly patients display longer half-lives of cefepime as a function 

of decreasing CrCL [72, 73] and obese patients have larger Vd and CL compared with 

non-obese individuals [74, 75]. As such, elderly patients can require lower doses and less 
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frequent administration of cefepime whereas obese individuals can require higher doses and 

more frequent dosing. Finally, burn patients can display either larger Vd and higher CL or 

more normal values, resulting in large potential dosing differences among individual patients 

[76-78]. All of these groups may have a large inter-patient variability, which may be better 

understood with individualized therapeutic drug monitoring.

2.5 Children—The PK of cefepime has been evaluated in children of all ages (Table 1) 

[79-82]. Studies involving infants have generally found that CL is lower in the first few 

months of life compared with in older children [79, 80, 82], which is consistent with many 

renally eliminated drugs. A secondary population pharmacokinetic analysis of data from two 

of these studies [79, 82] reported that CL was more than 50% lower in the first 30 days of 

life (1.08 ± 0.38 mL/min/kg) compared with children older than ≥ 30 days (2.59 mL/min/kg) 

[83]. The age-dependent increase in CL plateaued around 2–3 years of age in this analysis 

[83]. In contrast, the median CL among 85 infants in a study by Zhao et al. was similar 

to values described in older children (median 3.0 mL/min/kg) [81]; however, this study 

may have been limited by the inclusion of only 100 cefepime concentrations from these 85 

subjects. An additional, large population pharmacokinetic study involving 230 adults and 36 

children did not report pediatric-specific pharmacokinetic parameters aside from Ke, which 

was substantially higher in children (1.03 h−1) compared with adults (0.32 h−1) [84].

Age-specific effects can also be seen in cefepime Vd. Consistent with the known affinity of 

cefepime for total body water, studies regularly demonstrate that Vd is larger in neonates 

and infants than in older children [79-82]. As a result, steady-state peak concentrations are 

higher in older children when equivalent weight-based (i.e., mg/kg) doses are given [80, 82]. 

As with adults, the majority of cefepime is excreted unchanged in the urine. In the study by 

Reed et al. [82], approximately 57–68% of doses were recovered in the urine over an 8-h 

period.

Although cefepime is typically administered intravenously in children, it can also be 

administered intramuscularly. While near-complete bioavailability has been reported for 

adults [3], the average bioavailability via an IM injection in children was roughly 82% in 

the study by Reed and colleagues, though individual bioavailability estimates ranged from 

61 to 124% [82]. Owing to larger volumes of distribution and longer mean residence times 

when administered intramuscularly compared with intravenously [82], peak concentrations 

and area under the concentration–time curve are lower via the IM route [85]. As with adults, 

limited data exist on the free fraction of cefepime in clinical practice, and the actual free 

fraction may be highly variable in children. Thus, caution must be used when interpreting 

total drug concentrations in clinical practice.

3 Cefepime PD for Efficacy (e.g., fT>MIC)

3.1 Preclinical Animal Data—Cefepime is unique from other commercially available 

cephalosporins because it is a zwitterionic compound; the cephem nucleus has both a 

positive charge on the C-3’ group nitrogen as well as a negative charge on the C-4 

carboxylic group [11]. This zwitterionic property allows cefepime to rapidly penetrate 

the outer membranes of Gram-negative bacteria [12, 13]. As members of the beta-lactam 
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class of antibiotics, cephalosporins are classified as time-dependent agents because their 

antibacterial activity is predicated on maintenance of the free drug concentration above 

the minimum inhibitory concentration (fT>MIC) [86-88]. As noted, determining the free 

fraction for cefepime can be difficult. Thus, some studies utilize the total drug concentration 

above the minimum inhibitory concentration (CT>MIC), or extrapolate free fractions from 

measured total concentrations based on population estimates for the fraction unbound 

(~80%) [3]. Multiple animal pharmacodynamic models of infection have been used to define 

the optimal conditions for the antibacterial activity and clinical efficacy. Early in vivo animal 

studies of ticarcillin antibacterial activity against Pseudomonas aeruginosa and cefazolin 

against Escherichia coli utilized a neutropenic murine thigh infection model and have been 

widely cited for class beta-lactam effects [89]. Results showed that a T>MIC threshold 

of 40–60% was likely required for the suppression of bacterial growth. Notably, increased 

bacterial killing was observed as T>MIC increased up to 100%; beta-lactam concentrations 

up to four times the organism MIC were also associated with maximal bactericidal 

activity [89]. Infections due to Gram-positive organisms such as Staphylococcus and 

Streptococcus species required lower exposure thresholds than Gram-negative organisms; 

likely owing to a post antibiotic effect of the studied agents (cefazolin against S. aureus 
and erythromycin against S. pneumoniae) [90]. Similarly, early neutropenic murine thigh 

and lung infection models with Enterobacteriaceae and Klebsiella pneumoniae treated with 

cefotaxime demonstrated that antibacterial effects of cephalosporins were optimized when 

free drug concentrations in serum (f) were maintained above the MIC for 35–40% of 

the dosing interval, with an effect plateau observed when fT> MIC was 60–70% of the 

dosing interval [91, 92]. Overall, these early in vivo studies reported that fT>MIC of 40–

70% or greater was the pharmacodynamic parameter for maximal bactericidal activity with 

beta-lactams. Important differences in the fT>MIC required for maximal bactericidal activity 

was observed for Gram-negative (requiring higher percent fT>MIC) and Gram-positive 

(requiring lower percent fT>MIC) organisms [93]. Subsequent cefepime-specific studies 

have been reported owing to the development of beta-lactamase inhibitors that are being 

paired with cefepime [94]. Monotherapy studies have demonstrated stasis in the neutropenic 

thigh model with a %fT>MIC range from 0 to 37.7% for E. coli and K. pneumoniae 
strains [95]. Considerable discussion has occurred on the importance of the endpoint (stasis 

vs 1-log vs 2-log kills) in murine studies. The general consensus is that stasis is a more 

appropriate target for non-serious serious infections and ≥ 1-log kills are appropriate targets 

for more serious infections [96, 97]. However, the lower range of %fT>MIC that has been 

observed in vivo for the efficacy of cefepime demonstrates the often-unmeasured variability 

of these systems (including MIC variability, variability in measuring free fractions, starting 

inoculum variability, genus/species/isolate variability in response). Thus, all targets can be 

regarded as estimates of the pharmacokinetic/pharmacodynamic exposures needed with an 

expected variability. Ultimately, it is reasonable to conclude that optimal pharmacodynamic 

activity for cefepime from the murine model ranges from 40 to 70%fT>MIC, with some 

variability around those estimates.

3.2 Clinical Studies

Efforts to elucidate the optimal PD of cefepime in humans have resulted in heterogenous 

findings which differ from in vivo animal data in some cases. Clinical evidence suggests 
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that the optimal pharmacodynamic index for microbiological and clinical success may be 

higher than the pre-clinical fT>MIC target of 40–70% that was previously identified. Several 

small studies of cefepime PD in humans have suggested that serum cefepime concentrations 

four to eight times the MIC for ≥ 90% of the dosing interval were associated with an 

increased likelihood of microbiological success [98, 99]. The most frequently cited study 

by Tam et al. evaluated 36 patients and identified microbiologic success correlated with 

100% T>MIC of 4.3 × MIC [99]. Others have found a fT>MIC threshold of 75–100% as 

a favorable predictor of treatment outcomes among critically ill adults, patients with sepsis, 

and the elderly [100-103]. The Defining Antibiotic Levels in Intensive Care Unit Patients 

(DALI) study was a prospective pharmacokinetic point-prevalence study of eight common 

beta-lactam antibiotics, including cefepime. The investigators observed that maintenance of 

beta-lactam concentrations above 50% fT>MIC and 100% fT>MIC was associated with a 

1.02-fold and 1.56-fold higher likelihood of clinical cure. Sixteen percent of patients in 

the study cohort did not achieve 50% fT>MIC and these patients were 32% less likely to 

achieve clinical cure. Notably, there was significant heterogeneity in the achievement of 

beta-lactam pharmacodynamic targets (fT>MIC) when standard empiric doses were utilized. 

The results of the DALI study helped to support the findings of previous small studies 

that suggested that higher drug exposures are associated with improved outcomes among 

the critically ill [100, 101, 104]. Additionally, analysis of trough cefepime concentrations 

amongst study participants demonstrated an approximately 100-fold range of concentrations, 

further emphasizing the degree of inter-patient variability present. More recent work by 

Rhodes et al. has also shown that each 1% increase in cefepime fT>MIC from 0 to 100% 

independently predicted a higher odds of survival (adjusted odds ratio, 1.02; 95% CI 1.00–

1.01; p = 0.015) among patients with Gram-negative bacteremia. Two sensitivity analyses 

identified that fT>MIC >68% and > 74% thresholds predicted increased survival with 

multivariate-adjusted odds ratios of ~ 7 for each [102]. Similarly, a study by Crandon et al. 

found fT>MIC targets of > 60% and > 64% for pneumonia and skin/skin structure infections 

[105]. An analysis of the same data from Rhodes et al. [102] probed the interrelationship 

between patient co-morbidity (quantified as the mAPACHEII score) and fT>MIC [106] and 

demonstrated a window of mAPACHE II scores in which optimized PK/PD provided the 

most benefit. Specifically, the benefit of optimized cefepime PK/PD was observed between 

mAPACHE II 9 and 22 (Fig. 3).

Similar to animal findings, variability existed in the identified pharmacokinetic/

pharmacodynamic target for clinical efficacy. Differences compared to preclinical studies 

are likely due to increased variability in study design, individual patient factors, disease 

states, variable use of free versus total cefepime concentrations, and organism MICs. In 

addition, clinical studies were small retrospective evaluations at single centers and would be 

expected to result in point estimates with greater variability. In summary, both pre-clinical 

and clinical pharmacokinetic/pharmacodynamic studies for cefepime have identified that 

optimal outcomes are explainable as a continuum from low to high fT>MIC. It is reasonable 

to acknowledge variability (i.e., no exposure guarantees an outcome) [107] and set target 

minimum goals of fT>MIC >100% [106] for cefepime, thus ensuring that fT>MIC does not 

fall below 70% when known individual patient variability is accounted for [106, 108].
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In patients with febrile neutropenia with underlying hematological malignancies, utilizing 

cefepime as prolonged or continuous infusions is most important for pathogens with 

an elevated MIC (such as K. pneumoniae or P. aeruginosa) [31, 32]; however, 

pathogen identification and susceptibility testing are often delayed. Thus, pharmacokinetic 

optimization may maximize positive outcomes for those that are pharmacodynamically 

challenged [31]. Additional studies are needed to define dosing schemes and PK parameters 

in high-risk and low-risk patients with febrile neutropenia secondary to hematological 

malignancies [32] and to define subsets of this patient population who may most benefit 

from therapeutic drug monitoring [109].

Pharmacokinetic variability is highest in critically ill patients with septic shock (Table 1, 

Figs. 1 and 2). As a result, these patients frequently miss their T>MIC goals, especially at 

MICs of 4–8 mg/L. In the Conil et al. study, a cefepime dose of 2 g every 8 h (20-min 

infusions) was insufficient to reach a target of 100% T > 4 × MIC in 80% of burn patients 

[76], while in the Taccone et al. study, only 16% of patients achieved the intended target 

of > 70% T > 4 × MIC [110]. To assess the expected probability of target attainment of 

various cefepime dosing regimens against the common pathogens in the intensive care unit, 

a cefepime pharmacodynamic model was developed [28]. The expected probability of target 

attainment calculated from the probability of target attainment vs MIC profiles demonstrate 

that cefepime 4 g/day given as intermittent bolus or CI for E. coli and K. pneumoniae should 

achieve the T>MIC target, while higher doses of cefepime (>4 g/day) are required for P. 
aeruginosa (where MICs distributions were obtained from Australian laboratories provided 

by the Queensland Health Pathology Service). From these same surveillance data, cefepime 

6 g/day administered as a continuous infusion still fails to reliably achieve the bactericidal 

target for A. baumannii. This study and others [4, 27, 111] emphasize the importance of 

individually dosing patients to achieve targets against the highest susceptible MICs (i.e., 8 

mg/L) and then decreasing doses according to specific pathogen MICs in this critically ill 

patient population.

The heterogeneity in the efficacy targets and their achievement is also due, in part to MIC 

determination and the utilized method. Many of these pharmacodynamic clinical studies 

utilized an imputed MIC (which is the highest achievable susceptible MIC) because they did 

not have organism-specific MIC. Pharmacodynamic outcomes studies have used actual [27, 

76, 98-102, 105, 106, 111] and imputed [28, 31, 32, 101, 103, 110] MICs.

4 Cefepime Toxicodynamics

The exposure-related major treatment-limiting toxicities from cefepime are neurotoxicity 

and cytopenias. Below we discuss the exposure–response relationships for each of these 

toxicities. Allergic rashes and hypersensitivities are not discussed as they are not related 

to gradient exposures. The interested reader is referred to excellent reviews of beta-lactam 

allergies [112, 113].

4.1 Neurotoxicity

Cefepime neurotoxicity rates have been estimated between 3.0 and 23.2% [114-118]; 

though estimates are difficult and may be either overestimated because of publication 
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bias or underdiagnosed in the intensive care unit as many patients are under sedation. 

Diagnosis is also challenging and requires a careful clinical assessment of the 

encephalopathic patient given that patients receiving cefepime often have multiple reasons 

for obtundation. Clinically, cefepime neurotoxicity is manifested as encephalopathy 

(disturbance of consciousness including confusion, hallucinations, stupor, and coma), which 

may be accompanied by other symptoms including aphasia, myoclonus, seizures, and 

status epilepticus [1, 115, 119, 120]. Electroencephalograms may aid in the diagnosis. 

Electroencephalogram results of patients with cefepime neurotoxicity exhibited changes that 

range from moderate to severe nonspecific diffuse slowing of the background, to seizures 

and nonconvulsive status epilepticus [115]. A recent study [121] showed that generalized 

rhythmic delta activity was the electroencephalogram pattern most frequent encountered, 

followed by generalized periodic discharges with and without triphasic morphology, 

generalized spike and wave discharges, and lateralized periodic discharges. Except for 

generalized rhythmic delta activity, all the other patterns are associated with an increased 

risk of seizures [122] and, in the same study, seizures were documented in 36% of the 

patients. It is important to notice that none of those electroencephalogram abnormalities 

is pathognomonic of cefepime neurotoxicity, but in the right clinical context may aid with 

diagnosis.

Clinical and demographic data appear to predict the risk of cefepime neurotoxicity. Kidney 

dysfunction is a major complicating factor of those that experience cefepime neurotoxicity; 

87% of patients with cefepime neurotoxicity had renal dysfunction and 29% had end-stage 

renal disease [123]. Both dose administered and decreased CL lead to higher-than-normal 

systemic cefepime concentrations and are likely synergistic for toxicity. One systematic 

review that included 37 studies with a total of 135 cases of cefepime-related neurotoxicity 

found that neurotoxicity occurred in 48% of patients who were overdosed, and in 26% of 

patients who were appropriately dosed based on their renal function [124]. As approximately 

85% of the administered dose of cefepime is excreted unchanged in the urine, renal 

dysfunction can increase the t1/2 of cefepime from 2 to 19 h [1, 21, 64, 125], thus 

significantly increasing cefepime exposure in these patients. Older age has also been 

associated with cefepime neurotoxicity; the average/median age of those experiencing 

neurotoxicity is 67/70 [123]. It is unknown if older adults have a lower threshold for 

toxicity or if decreased kidney function drives toxicity. Renal dysfunction can also lead to 

uremia, accumulation of toxic organic acids, or alteration of pH, which may contribute to the 

impaired active transport of cefepime from CSF to blood [126-130].

Inflammatory conditions during sepsis, CNS infection, critical illness, severe infection, 

diabetes mellitus [131], and previous brain injury may disrupt the blood–brain barrier 

integrity, resulting in increased CNS penetration of cefepime [132]. Cerbrospinal fluid/

plasma cefepime concentration ratios from 9.1 to 45% have been reported in patients with 

cefepime neurotoxicity [133-135], which as previously noted is not substantially different 

from ratios in those without neurotoxicity. It is possible that an altered blood–brain barrier 

permeability on an individual level may influence cefepime neurotoxicity. Additionally, and 

as expected, pre-existing CNS conditions increase the likelihood that neurotoxicity will be 

observed during cefepime therapy. A total of 8% of patients in a meta-analysis [124] had 

underlying CNS conditions including lymphoma that had infiltrated the brain, non-herpetic 
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acute limbic encephalitis, encephaloma [136], stroke [137], seizures [138], and infection 

of the surgical site following lumbar spinal stenosis surgery [133]. It is possible that pre-

existing CNS conditions result in altered blood–brain barrier permeability and decrease the 

seizure threshold [124, 126, 133, 136-139].

The pharmacokinetic/toxicodynamic index prediction of cefepime neurotoxicity remains 

uncertain [140]. Most studies have reported trough thresholds because they only measured or 

only analyzed trough concentrations [114, 120, 141]. The first study identified probabilities 

of neurotoxicity of 50, 75, and 95% at trough concentrations of ≥ 22 mg/L, ≥ 25 mg/L, 

and ≥ 30 mg/L, respectively [120]. However, these thresholds (even when accounting 

for under-reporting) have not harmonized with observed neurotoxicity rates in the treated 

population [140]. More recently, trough concentrations of > 35 mg/L [116, 124], > 36 

mg/L [114], > 38.1 mg/L [142], and > 49 mg/mL [142] have been suggested as thresholds 

for neurotoxicity. Boschung-Pasquier et al. suggested a 50% probability of neurotoxicity 

at trough concentrations ≥ 16 mg/L; [114] however, these troughs are regularly obtained 

and a 50% probability is discordant with most other clinical reports [140]. Taking into 

consideration interindividual pharmacokinetic and analytical variabilities, the probability of 

the neurotoxic threshold lying between the 35–49 mg/mL range seems plausible, yet none of 

these concentration thresholds has been particularly discriminatory.

Limitations in these studies, including their retrospective nature [114, 116, 120, 141, 142], 

the heterogeneity in the definition of neurotoxicity [114, 116, 120, 141, 142], measurement 

or analysis of only trough concentrations [114, 120, 141], and potential technical variability 

in the analytical methods [116], make it difficult to compare across studies. In addition, 

the timing of when the concentrations were obtained (following the discontinuation of 

cefepime) or concomitant use of opioids or previous chemotherapy may have contributed 

to lowering the neurotoxicity threshold [120]. Future studies should also consider other 

measures such as cumulative area under the concentration–time curve from time zero to 

infinity to account for accumulation.

In summary, pharmacokinetic/toxicodynamic predictive thresholds for neurotoxicity are 

much more variable than the relationships observed for efficacy; however, reports 

have consistently demonstrated that both kidney dysfunction and elevated cefepime 

concentrations increase the risk of cefepime neurotoxicity. Additional work is needed to 

improve the specificity of the prediction; nonetheless, it is reasonable to exercise additional 

caution in patients with renal dysfunction and avoid concentrations well in excess of what is 

necessary for efficacy.

4.2 Cytopenias

Cytopenias due to cefepime administration are less well characterized; though class-effect 

drug-induced cytopenias for beta-lactams can be due to an immunogenic adverse reaction 

or can be exposure/time related, resulting in depressed myeloid cell proliferation [143, 144]. 

Thrombocytopenia defined as a platelet count reduced by 50% was found in 0.1–1.0% 

of patients receiving cefepime in early clinical trials [1]. A 2011 case study described 

a typical response in that cefepime-induced thrombocytopenia in a critically ill patient 

resolved on discontinuation of the drug [145]. Cefepime-induced neutropenia (defined as 
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≤ 500 cells/uL) has been reported in 0.2% of cefepime courses during early clinical trials 

[1, 146]. In one case review of 134 patients receiving IV antibiotics for osteomyelitis, 

8 of 13 patients receiving extended cefepime courses resulted in neutropenia, compared 

with none in the 121 patients who received other antibiotics. The patients who developed 

neutropenia received extended courses of cefepime treatment (> 14 days), suggesting a 

time-mediated depression of neutrophil proliferation as the underlying mechanism [147]. 

Further supporting the correlation between treatment duration and occurrence of cytopenias, 

prolonged use of cefepime in cystic fibrosis patients for 22–24 days [148] and for the 

treatment of post-surgical infection for 24 days [149] resulted in neutropenia. A single 

study reported cefepime administration by a rapid IV push was associated with a higher 

risk of cefepime-induced neutropenia [150]. A prospective pharmacovigilance evaluation 

determined that the most frequent cause of non-chemotherapy-induced agranulocytosis 

(neutrophil count < 500 cell/mm3) was the use of antimicrobial drugs and cefepime had 

the highest incidence rate of 83.85 per 10,000 defined daily doses (Poisson 95% confidence 

interval 67–102.89) [151]. Finally, decreased hematocrit levels have been observed in 

cefepime clinical trials with an incidence of 0.1–1% [1]. In addition, a single case of 

immune-mediated hemolytic anemia has been reported [152].

5 Other Considerations, Clinical Therapeutic Drug Monitoring

5.1 Protein Binding

Cefepime is oft quoted in pharmacokinetic studies to have a protein binding of 20%, an 

estimate derived from in vivo experiments [153, 154]. However, at least one study in adult 

patients found a median protein binding of 39%, with a range from 1 to 48% [155], 

and other studies have found the estimated free fraction of cefepime to be unreliable 

[59]. Several factors may affect the in vitro protein-binding estimates including pH, 

temperature, centrifugal force, length of sample storage, and associated freeze-thaw cycles. 

It is recommended to control all these factors when conducting such experiments [156-158]. 

However, until more data are available and the free fraction determination is standardized, 

it is not clear that individually measured free fractions are representative of the physiologic 

environment or are reproducible [59]. Thus, measurement of total cefepime concentrations 

with a population-adjustment for protein binding (e.g., 80% free fraction) is a reasonable 

approach.

5.2 Drug Stability

Availability of accurate assays to measure drug concentrations is essential for implementing 

a therapeutic drug monitoring program for cefepime. A well-validated assay is pertinent 

for both research purposes and clinical application, but component priorities within these 

domains may differ slightly. In research, samples are often collected and batched for future 

analysis. Stability must be demonstrated at various concentrations, over time, and under 

specific storage conditions. Specifications for these analyses are governed by FDA guidance 

for bioanalytical method validation [159]. In clinical practice, stability in the presence of 

commonly used coexistent medications and conditions, ability to detect levels across the 

expected clinically relevant range, and rapidity of thetest turnaround affect clinical utility (in 

addition to the accuracy and precision requirements). Early reports cast doubt on whether 
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cefepime would be stable long enough for a clinical assay, a finding that unless cefepime 

was treated immediately with a buffer or water, significant degradation occurred within 

1 hour at typical ambient temperatures. The recent emphasis placed on developing new 

beta-lactam pharmacokinetic models, particularly using scavenged blood specimens [28, 84, 

160-162], and applied therapeutic drug monitoring [163-165] has led to the proliferation of 

cefepime assay validation reports using contemporary blood collection media/additives [157, 

166-170].

One study described the development and validation of a rapid high-performance 

liquid chromatography tandem mass spectrometry method for characterizing cefepime 

concentrations [166]. Sample stability was compared between ambient (20–25 °C), 

refrigerated (2–8 °C), or frozen (− 20 °C or − 70 °C) temperatures over 35 days and with 

several freeze/thaw cycles. When frozen at − 70 °C, cefepime was stable for up to 35 days 

with up to three freeze/thaw cycles. Others have demonstrated extended stability to 3 months 

at − 80 °C, though degradation of cefepime at room temperature was 30.1% at 24 h [167]. 

Under ambient and refrigerated conditions, stability lasted up to 4 h and 24 h, respectively. 

These findings build upon previous data that describe rapid degradation of cefepime at 

room temperature [171]. Another study demonstrated the concentration dependence of 

cefepime degradation at 37 °C. At 10 mg/L, cefepime concentration decreased by 50% 

within 2 h, whereas at a concentration of 500 mg/L, well in excess of a normal physiologic 

exposure, a 50% decrease in cefepime concentration took 6 h [157]. Under refrigerated 

or frozen conditions, varying the concentration within the typical analytical range did not 

affect cefepime stability. Use of different tubes and anticoagulants or separator gels resulted 

in an average difference in concentration from the serum of < 10% [166]. Consistent 

cefepime assay performance was observed at low, medium, and high drug concentrations 

[166, 168]. No assay interference was detected from the top 25 prescribed drugs, commonly 

used concomitant medications, or drugs of abuse. These included relevant medications 

in the critically ill such as other antimicrobials, antiarrhythmics, analgesics, sedatives, 

vasopressors, and antithrombotics. Hyperbilirubinemia, hemolysis, and lipemia did not 

affect assay performance [166]. Reports demonstrate high-throughput assays with short 

cycle times (less than 10 min) make bedside application feasible [166, 167, 172, 173].

5.3 Cefepime Therapeutic Drug Monitoring

While the impact of real-time therapeutic drug monitoring for cefepime has not been 

prospectively studied to our knowledge, a small report found a mortality benefit for patients 

receiving a continuous infusion of cefepime when compared with a traditional intermittent 

infusion [174]. Separately, higher pathogen MICs [175] and lower rates of target attainment 

[102] were associated with worse mortality for Gram-negative bloodstream infections. It 

follows that improving exposures could improve patient outcomes; however, this remains to 

be prospectively studied.

6 Conclusions

Cefepime is often safe and efficacious even in high doses when administered as an extended 

or continuous infusion. Therapeutic drug monitoring is warranted in special populations 
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including patients with critical illness, renal insufficiency, and underlying neurological 

disorders. In these cases, monitoring is suggested to avoid underdosing in the case of 

patients with increased CL and/or Vd, and to prevent adverse neurological effects due to an 

accumulation of cefepime in patients with neurological conditions or renal insufficiency.
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Key Points

Cefepime is generally safe and efficacious, however, reports of neurotoxicity have 

increased in recent years, specifically in patients with impaired renal function.

Cefepime is 85% eliminated as an unchanged drug in the urine. Serum concentrations 

are affected by changes in renal clearance and volume of distribution; substantial inter-

patient variability exists in infected individuals, which poses challenges for population 

dosing approaches.

Therapeutic drug monitoring is facilitated by liquid chromatography tandem mass 

spectrometry assays and can be considered in inflammatory conditions and critical illness 

where high variability is observed in the cefepime volume of distribution and clearance.

Administration by prolonged and continuous infusion can help maximize 

pharmacodynamic benefit by increasing cefepime free drug concentrations above the 

minimum inhibitory concentration of bacteria for prolonged periods of time.
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Fig. 1. 
Variability in cefepime volume of distribution (Vd) in different pathological conditions. 

CrCL creatinine clearance, ESRD end-stage renal disease, GFR glomerular filtration rate
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Fig. 2. 
Variability in cefepime clearance (CL) in different pathological conditions. CrCL creatinine 

clearance
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Fig. 3. 
Hospital survival for those that reach their cefepime pharmacodynamic goal (blue triangles) 

and those who do not (red circles) as a function of the APACHE II score [106]
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