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Abstract 

The collection of user attributes by service providers is a double-edged sword. They are instrumental in driving 
statistical analysis to train more accurate predictive models like recommenders. The analysis of the collected user 
data includes frequency estimation for categorical attributes. Nonetheless, the users deserve privacy guarantees 
against inadvertent identity disclosures. Therefore algorithms called frequency oracles were developed to randomize 
or perturb user attributes and estimate the frequencies of their values. We propose Sarve, a frequency oracle that 
used Randomized Aggregatable Privacy-Preserving Ordinal Response (RAPPOR) and Hadamard Response (HR) for 
randomization in combination with fake data. The design of a service-oriented architecture must consider two types 
of complexities, namely computational and communication. The functions of such systems aim to minimize the two 
complexities and therefore, the choice of privacy-enhancing methods must be a calculated decision. The variant 
of RAPPOR we had used was realized through bloom filters. A bloom filter is a memory-efficient data structure that 
offers time complexity of O(1). On the other hand, HR has been proven to give the best communication costs of the 
order of log(b) for b-bits communication. Therefore, Sarve is a step towards frequency oracles that exhibit how privacy 
provisions of existing methods can be combined with those of fake data to achieve statistical results comparable to 
the original data. Sarve also implemented an adaptive solution enhanced from the work of Arcolezi et al. The use of 
RAPPOR was found to provide better privacy-utility tradeoffs for specific privacy budgets in both high and general 
privacy regimes.
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Introduction
The data collected from users is an essential resource for 
the improvement of services provided by hosted plat-
forms. The user data is aggregated to compute statisti-
cal properties that support or reject a hypothesis, drive 
analytics, and train Artificial Intelligence (AI) models 
(Lee and Clifton 2011; Tanwar et  al. 2020a, 2021). This 
collection of user information is a double-edged sword 
since its misuse by malicious parties can infringe on the 
individual privacy of the participants. Data breaches that 
spanned from the leak of Netflix users’ information to 

recent incidents like the sale of login credentials of Zoom 
users or attacks on popular social platforms like Twitter, 
LinkedIn, and Whisper (Wagenseil 2020; Huang and Ban 
2020; Memon et al. 2020; Boulanger, 2018) have resulted 
in a loss of trust among the users. The call for stricter 
laws resulted in regulations like General Data Protec-
tion Regulation (GDPR), Data Governance Act, ePrivacy 
Regulation, Do Not Track legislation, and so on (Härting 
et  al. 2017; Tanwar et  al. 2020b; Kirsch 2011; Mahanti 
2021; Grafenstein et al. 2021; Xue et al. 2021). These reg-
ulations have thereby promoted user privacy needs from 
being an additional feature to a mainstream requirement 
from products and services.

The development of data privacy requirements has 
fueled research methods that ensure the release of user 
data with privacy guarantees. A privacy guarantee aims 
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to protect against the disclosure of an individual’s iden-
tity, or any of their attribute that might result in the 
identity disclosure (Ahamad et  al. 2020). An attribute 
set A = {A1, A2, …, AD} belonging to an individual may 
contain information of varying sensitivities. For instance, 
the pregnancy status of the individual in a medical record 
may be more sensitive than their family history of Diabe-
tes. An aggregator who collects such data would be aware 
of the patients’ identities but not their sensitive informa-
tion. Therefore, privacy provisions need to be designed 
such that the presence of a specific individual cannot be 
discovered from a privatized record.

Privacy provision methods could be syntactical and 
simply suppress or generalize the identifying attributes 
and release the modified information. Some examples 
include k-anonymization, l-diversity, and t-closeness (Tu 
et al. 2018; Mehta and Rao 2019; Kacha et al. 2021). The 
information with suppressed fields could still be prone 
to inference attacks (Gatha et  al. 2020a). Consequently, 
a semantic strategy was formulated to release user data 
in the form of query results. Differential privacy (Dwork 
et  al. 2010a, b) is one such popular technique that pro-
vides individuals with plausible deniability of their par-
ticipation in a data record.

Differential privacy (DP) allows for the addition of cali-
brated noise to ensure that the presence or absence of an 
individual in a record does not affect the query results. 
The most generic form of DP involves the addition of 
noise to the collected record of user information and 
subsequent queries are run on the modified data (Dwork 
et  al. 2010a, b). But another of its variant named local 
differential privacy (LDP) (Xiong et al. 2020; Yang et al. 
2020) has been accepted more widely. In this scheme, 
noise can be added at the end of the individuals who 
comprise the record. Noise addition at the source can 
prove to be particularly beneficial if the data aggregator is 
vulnerable to breaches or is a less trustworthy third party 
(Wang et al. 2018a, b; Wang et al. 2021a, b).

The estimation of statistical distribution from samples 
of a population is a classical problem (Nguyên et al. 2016; 
Xu et al. 2020) and one of the major metrics to determine 
the utility of privatized data. The attributes that belong to 
user data could be of different types that include but are 
not limited to textual, numeric, or temporal. In the case 
of numerical attributes, the expected statistical estima-
tion property is governed by their type. For discrete or 
categorical attributes, statistical distribution estimation 
is the evaluation of the frequency of underlying discrete 
distribution (Zheng et al. 2021). For continuous numeri-
cal attributes, mean estimation is the most popular sta-
tistical task. The scope of this paper and the proposed 
solution is concerned with the frequency estimation of 
categorical attributes of locally-privatized data.

LDP has found wide acceptance and incorporation into 
mainstream solutions such as the collection of telem-
etry data by Windows10, collection of usage patterns by 
Google’s Chrome browser, Harmony by Samsung, and 
incorporation in Apple’s iOS among many (Kenthapadi 
et  al. 2019). Moreover, research has enriched it further 
with the addition of robust techniques like randomiza-
tion, shuffling, sampling, and k-anonymization (Zhao 
et al. 2019).

In comparison with the innovative approach of Feder-
ated learning, LDP has been found to give lower misclas-
sification rates for a large population. It also offers the 
additional benefit of flexible control over privacy budg-
ets (Zheng et  al. 2020). Nonetheless, data privatized by 
LDP is prone to inference attacks especially if the query 
mechanism is hosted in an interactive setting. An adver-
sary intent on executing a disclosure will have the nec-
essary computation power and skills. With repeated and 
carefully crafted queries, they can generate a subset of 
results that can point to an individual’s presence in the 
record (Rahimian et al. 2020). This problem is more rel-
evant in the case of heavy hitters (Zhu et al. 2020), where 
the data for certain individuals is present more frequently 
in the distribution. Another consideration when DP is 
employed is the balance of privacy achieved by noise 
addition and the utility of the perturbed data (Li et  al. 
2021).

Synthetic data, also known as fake data, is fast gaining 
prominence as means of achieving privacy guarantees. 
Datasets that have similar statistical properties of distri-
butions and correlations can be published in place of real 
or privatized real data (Campbell 2019). The advantages 
include higher privacy guarantees due to its immunity to 
inference attacks by reverse-engineering or background 
knowledge possessed by the adversary. But the technol-
ogy is still in a nascent stage. There is scope to develop 
more efficient solutions that are not computation heavy 
or divulge real data that was used for its generation (Hitt-
meir et al. 2019; Emam et al. 2021).

In this paper, the combination of LDP through ran-
domization and fake data has been enhanced to pro-
vide more robust privacy guarantees. The frequency 
estimation of the data privatized through the proposed 
framework was compared against the distribution of the 
original data for high-privacy as well as general-privacy 
regimes.

Motivation and techniques overview
The major concern that drives frequency estimation of 
privatized data is the design of a mechanism M to achieve 
minimal variance with respect to the original data. Wang 
et al. (2018a) introduced the term Frequency Oracle (FO) 
to denote a pair of algorithms < τ, υ > where mechanism 
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τ outputs the perturbed or randomized attributes and 
υ is the estimation method. The algorithm υ is used by 
the aggregator for statistical computation over privat-
ized data. Research has categorized FO into four major 
types namely, direct perturbation such as the use of ran-
domized response (Warner 1965; Kairouz et  al. 2016a, 
b; Lin et  al. 2018), hash-based methods like RAPPOR 
(Erlingsson et  al. 2014), transformation-based methods 
such as Hadamard response (Acharya et  al. 2018; Liu 
et al. 2020), and subset selection (Wang et al. 2016).

Existing research like Random Sampling plus Fake 
Data (RS + FD) solution by Arcolezi et  al. (2021a, b) 
devised FOs that utilized methods like GRR and OUE. 
The variant of RAPPOR used in our experiment used 
bloom filters. Bloom filters are highly space-efficient data 
structures that offer time complexity of the order of O(1) 
(Erlingsson et al. 2014). HR, on the other hand, has been 
proven by Acharya et al. (2018) to have the lowest com-
munication cost of the order of log(b) in a b-bits com-
munication. RAPPOR and HR are therefore more suited 
than GRR to lower the computational and communica-
tion complexities of a smart system.

The framework proposed in this paper aimed to answer 
if the hash-based method RAPPOR and transformation-
based method Hadamard Response could be used to con-
struct efficient frequency oracles. A frequency oracle may 
function on a high or a generic privacy regime based on 
the privacy budget. Generic privacy regimes are com-
monly found in internet browsers and similar real-world 
applications. While the original RS + FD solution had 
only been tested on high-privacy regimes, we tested fre-
quency oracles for general-privacy regimes as well. The 
incorporation of RAPPOR provided better privacy-utility 
tradeoffs for some instances of privacy regimes. In addi-
tion, HR was evaluated as a candidate mechanism τ and 
found to perform on par with GRR and OUE.

Purpose and contribution
The RS + FD framework proposed by Arcolezi et al. uti-
lized a combination of shuffling and sampling to achieve 
private frequency estimation for datasets containing cat-
egorical attributes. They also demonstrated how LDP 
combined with the use of fake data helped achieve a bal-
anced privacy-utility tradeoff. We have summarized the 
workings of the approach in “Literature survey” section. 
The work by Arcolezi et  al. used GRR and two variants 
of OUE (Wang et al. 2017). Their solution showed better 
performance than the conventional methods of splitting 
and sampling. The RS + FD also proposed an adaptive 
solution that dynamically selected GRR or OUE depend-
ing on which method offered lower variance. The perfor-
mance of their framework was compared with existing 
solutions for high privacy regimens only.

Numerous researches have identified randomization 
techniques and their advantages based on performance 
in different scenarios. Acharya et  al. (2018) compared 
the performance of RR, RAPPOR, subset selection, and 
Hadamard response (HR). The evaluation metrics for 
their comparison were communication cost and decod-
ing time required for estimating underlying probability 
distributions. HR is based on a local hashing mechanism 
that is symmetric across the N users. Among the candi-
dates, it was found to offer the best communication cost 
of log b + 2 bits per user, where b measured the size of the 
bit vector of the entity to be transmitted. Recent work by 
Chen et al. had also built on HR to propose a Recursive 
Hadamard Response (RHR) that facilitates privacy guar-
antees for the case of distributed learning (Chen et  al. 
2020).

In another paper, Acharya et al. (2019) have discussed 
how the construction of the Hadamard matrix incurs 
large memory costs. RAPPOR is a unary encoding-
based method and is used as a primary LDP protocol by 
Google’s Chrome browser. Le and Zia (2021) also carried 
out a comparative analysis and discovered that RAP-
POR gave the best performance for benchmark datasets 
in high privacy regimes. This led us to consider the two 
mechanisms Hadamard Response and RAPPOR as rand-
omization candidates τ to enhance the RS + FD solution 
by Arcolezi et al. We borrowed the fast implementation 
of RAPPOR by Cormode et al. (2021) and modified the 
HR implementation from Acharya et al. and tested their 
applicability to developing FOs extended from RS + FD. 
The details of the use of HR and RAPPOR can be found 
in next sections respectively.

The contributions of this paper can be summarized as:

•	 We introduce the use of RAPPOR in combination 
with fake data to facilitate frequency estimation of 
multidimensional datasets under high-privacy as well 
as generic privacy regimens.

•	 We introduce the use of Hadamard Response in com-
bination with fake data to facilitate frequency estima-
tion of multidimensional datasets under high-privacy 
as well as generic privacy regimens.

•	 We extended the RS + FD solution by Arcolezi et al. 
through the incorporation of RAPPOR to compare 
privacy-utility tradeoffs offered by the new candi-
dates. The enhancement was tested for high-privacy 
as well as generic privacy regimens. Furthermore, the 
utility of privatized data was tested using real-world 
as well as synthetic datasets. The proposed frame-
work that incorporated advantages of multiple tech-
niques has been named Sarve, a Sanskrit word that 
means ‘all together’.
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Paper organization
The problem addressed in this paper and our contribu-
tions have been discussed in “Motivation and techniques 
overview” and “Purpose and contribution” sections, 
respectively. With the introduction to the premise of 
this paper, Sect.  2 recaps the preliminary information 
required by the reader, and “Literature survey” section 
contains the literature survey of the concerned research. 
“Proposed methodology” section explains the proposed 
methodology with the architecture of Sarve in “Overview 
of sarve” section. “Application of RAPPOR in a frequency 
oracle”, “Application of Hadamard response in a fre-
quency oracle”, “Enhancement of adaptive RS+FD” sec-
tions detail the privacy-enhancing mechanisms RAPPOR 
and HR used in Sarve. In “Experimental results” section, 
we provide the implementation details of the solution. 
The metrics used for the evaluation are mentioned in 
“Evaluation metrics”  and “Experimental setup” sections 
explains the experimental setup. The results achieved by 
the proposed solution and discussion are in “Results and 
discussion”. We have concluded the findings and scope 
for future work in “Conclusion” section.

Preliminary
Notations
Through the course of this paper, the constant ε denotes 
a privacy budget. The significance of its values has been 
discussed in further sections. RS + FD is the name of the 
solution by Arcolezi et al. which formed the basis of our 
research. The data to be privatized was assumed to con-
tain N observations each belonging to an individual. Each 
of these observations had categorical attributes that were 
allowed a set of allowed domain values A = {A1, A2, …, 
AD}. The data aggregator would aim to get the frequency 
of each value in set A.

Local differential privacy
Local differential privacy has emerged as a well-suited 
technique for systems that aggregate sensitive user infor-
mation. Its popularity can also be attributed to the fact 
that it can be achieved through a wide selection of pri-
vatizing mechanisms. These mechanisms can be selected 
for specific requirements like computational costs, data 
dimensionality, desired privacy regimes, and communi-
cation overheads. An ε-LDP is satisfied by a privatization 
mechanism M if it satisfies the probability condition,

where t and t′ are sets of values that differ by one ele-
ment only and φ is the output after M has been applied 
to t and t′. If t and t′ are two records of user information 
that differ by the presence of an individual, then M will 
be applied to each entry in t and t′. The possible output of 

(1)Pr[M(t) = ϕ] ≤ eε · Pr[M(t ′) = ϕ]

M identified as φ will differ by a factor of e^ε for both the 
user records.

The privatization mechanisms include perturbation 
or randomization. Assuming M to be a randomization 
method, if the private information t is denoted as a set T 
with k possible values such that T = [k] = {0, 1, …, k − 1}, 
M will map t Є T to d Є φ with a probability P(d|t). The 
output value d is the privatized sample that is shared by 
an ε-LDP-protected system. The privatization probabili-
ties can be again shown as a factor of e^ε like:

The constant ε is called a privacy budget. As specified 
by Eq. (2), smaller values of ε put stringent restrictions on 
the mechanism M and therefore dictate a highly privat-
ized output set. Conversely, bigger values of ε result in 
low or general privacy regimes (Kairouz et al. 2016a; Ye 
et al. 2019).

LDP mechanisms are particularly advantageous since 
they are understandable by novice users. Additionally, 
no original information needs to be shared with the data 
aggregator which lowers the legal and technical costs 
of ensuring privacy at the aggregator’s end (Le and Zia 
2021). The methods employed by LDP systems are rela-
tively simpler to execute and restrict the communica-
tion costs of transmitting multidimensional data (Wang 
et al. 2019a, b, c). Despite providing strict privacy guar-
antees and multiple advantages, LDP mechanisms are 
vulnerable to adversarial manipulation. As proven by 
existing research, LDP-protected systems with high pri-
vacy regimes hosted in non-interactive settings are also 
vulnerable to manipulation attacks (Cheu et al. 2019a, b). 
Thereby, opening avenues for its use in combination with 
other privacy-enhancing techniques such as synthetic 
data.

Privacy amplification methods
The privacy guarantees provided by LDP can be further 
amplified by the use of methods like iteration, sampling, 
and shuffling. The privacy enhancement by iteration 
is based on how learning algorithms work. They cre-
ate intermediate solutions and iteratively improve upon 
them using data points. It was proved that withholding 
the intermediate results produced by learning processes 
such as stochastic gradient descent can amplify the pri-
vacy guarantees (Feldman et  al. 2018; Sordello et  al. 
2021).

Privacy amplification through sampling utilizes the 
existing technique of data sampling where partial con-
tents are selected from the complete set (Balle et  al. 
2018). It is a resource-saving method that has been 

(2)sup
d∈ϕ

P(d|t)

P(d|t ′)
≤ eε
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widely researched and is available in different variants. Li 
et al. presented that data sampling can minimize the dis-
closure potential of user information while being true to 
the data properties (Li et al. 2012). Feldman et al. showed 
that randomly shuffling the data records that are to be 
input to differentially private local randomizers improved 
the privacy guarantees of the system (Feldman et al. 2020; 
Erlingsson et al. 2019; Cheu et al. 2019a, b).

Frequency estimation
Real-world data that needs privatization is generally 
multidimensional and thereby adds more concerns to 
otherwise simpler computations. For the scope of this 
research paper, we focused on the frequency estimation 
of categorical attributes of multidimensional datasets. 
Due to the higher number of attributes, concerns for pri-
vacy budget ε also gain prominence (Wang et al. 2019a, 
b, c; Xu et  al. 2020). The randomization mechanism M 
used to apply LDP to each user in the multidimensional 
dataset works in two ways. The first strategy divides the 
privacy budget ε over all of the attributes and the user 
then shares all of the randomized attribute values with 
the aggregator. In the second approach, a single attrib-
ute is selected through random sampling, and ε is solely 
applied to this attribute. Existing research has shown that 
while sampling and randomizing an attribute achieves 
a better privacy-utility trade-off, it might not be fair in 
case the sampled attribute is less sensitive than the oth-
ers (Arcolezi et al. 2021b, a). Therefore, we explored the 
potential of improving the performance of LDP facili-
tated by the random sampling method.

The data released after privatization is used for statisti-
cal computation, and frequency estimation is one of the 
most common statistical goals for privatized categori-
cal data. Assuming that the record consists of N users, 
where each user entry has only one value among the set 
of allowed domain values A = {A1, A2, …, AD}. The data 
aggregator would aim to get the frequency of each value 
in set A, denoted by.

where count(Ai) is the number of users who had reported 
attribute value of Ai, and is computed over the output of 
privatization mechanism M.

The computation of statistical properties of the aggre-
gated data holds potential for privacy leaks. In the con-
text of this paper, we focused on privacy leaks due to 
frequency estimation. The aggregator who collects the 
privatized data belonging to individuals would estimate 
the count of persons for each of the values in domain 
A. This collecting and the aggregating party is aware of 
the individuals who comprise the dataset but not the 

(3)f (Ai) =
count(Ai)

N
, 1 ≤ i ≤ D

values of their private data (Arcolezi et al. 2021b, a). For 
instance, a diagnostic clinic application may collect pro-
tected health information during registration that could 
include pregnancy or HIV status. Since pregnancy status 
is limited to a very small demography of females between 
the ages of 13–45, the reported frequency for this field 
will be noticeable compared to other attributes. The com-
puted frequency for this field when combined with other 
attributes like age or choice of further tests can help an 
adversary uncover the individual’s identity.

The potential for privacy leaks can be further eluci-
dated when we consider the use of frequency estima-
tion to identify heavy hitters. An attribute is labeled as 
a top-f heavy hitter if its estimated frequency is among 
the top f frequencies among all of the calculated values 
(Wang et al. 2021b). The password preference of people is 
one such use case. Persons belonging to younger genera-
tions may prefer to use the name of their favorite band or 
sports team as a password. Or, it is common knowledge 
that people end up using simple passwords like ‘Pass-
word123’, ‘Password@123’, or ‘P@ssword123’. An adver-
sary could shortlist the easiest password to crack from 
the aggregated passwords of a user group (Naor et  al. 
2019). This is a particularly worrisome situation since 
many IoT devices are shipped with default passwords that 
are not changed by the users. Such leaks of passwords 
hold the potential to cause widespread botnet attacks like 
the Mirai (Naor et al. 2019). Therefore, there is a pressing 
need to research privacy-aware privatization and aggre-
gation methods and this paper is a step to address it.

Literature survey
Differential privacy (DP) emerged as a frontrunner for 
semantic privacy definitions after syntactic privacy pro-
tection methods were found vulnerable to disclosures 
(Gatha et al. 2020b). Initial implementations of DP were 
based on a central model where the aggregator would add 
noise to the collected data and share it for further analysis 
(Dong et al. 2019). This required trust to be placed on a 
third-party and statistical computations could also cause 
identity disclosures (Kifer et al. 2020). With the adoption 
of DP into cloud-hosted services, the onus of privatiza-
tion shifted to the users. This variant of DP called Local 
Differential Privacy provided individuals with more con-
trol over their privacy budgets (Wang et al. 2021a).

Over time, LDP has been adopted by many widely 
used platforms and service providers, thereby fueling 
research on its evolution. The evolution was aimed at 
addressing requirements such as multi-dimensionality 
and resulting complexities, communication costs, or 
decoding mechanisms (Acharya et al. 2018). The nature 
of the attributes present in the dataset to be privatized 
also governs the statistical computations. For instance, 
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categorical attributes are computed for frequency esti-
mation. These can be subsequently used to predict heavy 
hitters and balancing of user privacy with aggregator 
accuracy (Lopuhaä-Zwakenberg et  al. 2020). For con-
tinuous numeric attributes, the statistical computations 
involve mean estimation. This particular class of attrib-
utes is a separate research subject (Xue et al. 2021; Wang 
et al. 2019a, b, c).

Akin to any technology that has been deployed to real-
world applications, LDP also has shortcomings and vul-
nerabilities. It has been a known target of poisoning and 
other attacks due to the collection of data from multiple 
sources (Cao et al. 2019). This may allow an adversary to 
inject their compromised data and corrupt the collected 
records (Cheu et al. 2019a, b). Moreover, if hosted on an 
interactive platform, LDP privatized results are accessi-
ble for indefinite permutations of queries (Dwork et  al. 
2010a, b; Joseph et al. 2018). The biggest motivation for 
the adversary is the use of real user data that was rand-
omized or perturbed by an algorithm. Reverse-engineer-
ing or statistical inferences are highly probable threats. A 
potential workaround to this problem has been proposed 
through the use of synthetic or fake data (Abay et  al. 
2018).

The generation of fake data is fast gaining popularity 
due to many reasons such as the need for precise labels 
for deep learning models (Alkhalifah et  al. 2021; Hoff-
mann et  al. 2019) or fears of identity disclosure by data 
holders (Snoke et al. 2018). The need for synthetic data-
sets became more prominent during the SARS-Cov-2 
pandemic since the novel infection translated to a short-
age of datasets to train medical AI models (Emam et al. 
2021; Bautista and Inventado 2021).

This research domain is in the nascent stage. The con-
struction of synthetic datasets and their utility metrics 
have become an exciting research problem (Snoke et al. 
2018). Further exploration of this avenue also compared 
the protection provided by fake data against conventional 
methods like k-anonymization (Hittmeir et  al. 2020). 
Recent findings showed that synthetic datasets having 
similar statistical properties as real data may offer pri-
vacy protection against inference attacks. The protection 
was on par with conventional anonymization methods 
(Stadler et  al. 2022). Therefore, the generation of differ-
entially-private synthetic data has been proposed as one 
of the solutions (Vietri et  al. 2020; Quick 2021). While 
some methods have aimed at mitigation of bias in data-
sets (Ghalebikesabi et  al. 2021), others have compared 
differentially-private synthetic data against baseline DP 
models for similar privacy budgets (Rosenblatt et  al. 
2020; Snoke and Slavković 2018).

Frequency estimation is a classic use case for privacy 
protection since analytics translate observations into the 

frequency of relevant attributes. Such statistical transla-
tion helps find relevant behavior such as the heavy hit-
ters (Ben Basat et al. 2020; Pekar et al. 2021; Wang et al. 
2021b; Zhao et al. 2022), frequent items (Luna et al. 2019; 
Wang et  al. 2018a; Djenouri et  al. 2018, 2019; Rouane 
et al. 2019; Li et al. 2019), or finding the marginals (Zhang 
et  al. 2018; Cormode et  al. 2018; Xue et  al. 2021; Wang 
et  al. 2019a, b, c). While individuals who comprise the 
records require plausible deniability from participation 
in the record, the statistical values should not deviate to 
extremes. Metrics and lower-bounds set for privacy-util-
ity tradeoffs (Lopuhaä-Zwakenberg et al. 2019, 2020) are 
guiding lights for privacy provision methods. Numerous 
methods have therefore emerged that offer flexible pri-
vacy suited for different data release and trust regimes. 
Data can be released as marginal tables which may be in 
the form of count or range query answers (Wang et  al. 
2019a, b, c). Such privacy methods focus on the sensitiv-
ity and size of the dimensions and place zero trust in the 
aggregator. In contrast, some methods may assume the 
aggregator’s knowledge of the distribution followed by 
the attributes (Jia and Gong 2019). In a previous section, 
we have discussed the advantages offered by sampling 
to improve the offered privacy provisions. Privacy-pre-
served frequency estimation has also been achieved with 
a combination of sampling and Multi-Party Computation 
(MPC), a cryptographic protocol (Yang et al. 2021).

Proposed methodology
Overview of Sarve
Sarve is an enhancement of the RS + FD framework 
through the incorporation of RAPPOR as randomiza-
tion techniques. As part of the analysis, the application 
of Hadamard Response to frequency oracles was also 
tested. The RS + FD framework was conceptualized for 
an LDP system that comprised of N users who send their 
privatized data to an aggregator. Each user dataset had 
been assumed to contain a set of D categorical attributes 
identified by the set A = {A1, A2, …, AD}. In the case of 
RS + FD, the randomization mechanism M could either 
be GRR, OUE-R, OUE-Z, or the adaptive solution ADP. 
In Sarve, the randomization mechanism M has been 
extended to include RAPPOR and Hadamard Response. 
Additionally, RAPPOR had been added as a candidate to 
ADP. We have summarized the methodology employed 
by RS + FD and thus Sarve in Fig. 1. In the next section, 
the incorporation of the new randomization candidates 
has been discussed in detail.

As described in “Purpose and contribution” section, the 
framework utilized a combination of sampling and fake 
data to privatize user records. Additionally, the tuples 
were shuffled before being input into sampling algo-
rithms. This method has been proven to amplify privacy. 
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If the data record contained N entries for each user, each 
described by D attributes, the workings of the adopted 
methodology can be seen in Fig. 1. A list comprising of 
possible values for attribute Ai was first shuffled among 
the N users, then split into two parts. The first part was 
privatized through mechanisms that included GRR, 
OUE, RAPPOR, and Hadamard Response, in addition to 
the adaptive methods. The second set of the attribute val-
ues for the remaining users was replaced by fake data that 
had been randomly selected from the allowed domain 
values [0, D − 1]. The privatized and replaced parts were 
merged to form the set of attribute values for statistical 
computation.

The RS + FD framework employed GRR and OUE tech-
niques that are explained in the original paper. In the 
next section, we explain the incorporation of RAPPOR 
and HR and the resulting adaptive solution that has been 
named Sarve. The incorporation has been discussed in 
terms of the randomization and estimation algorithms of 
a frequency oracle.

Application of RAPPOR in a frequency oracle
The randomization in frequency oracle using RAPPOR
We used the basic form of RAPPOR that has been proven 
to satisfy ε-LDP. It is based on unary-encoding and is 

suitable for highly-dimensional datasets. As explained in 
Algorithm 1, the attribute values that were to be privat-
ized were first one-hot encoded to convert the input set 
a Є [D] to R Є {0, 1}D, where D is the domain size of the 
attribute value and Rj = 1 for j = a and Rj = 0 for j ≠ a. The 
bit vector R is privatized by independently flipping each 
bit of R with a probability p given by Eq.  (4). The prob-
ability q of flipping Rj where j ≠ a is given by Eq. (5).

Figure  2 illustrates the probabilities of sampling and 
flipping. Firstly, the part of attribute values to be privat-
ized will be sampled with a probability beta = 1/D. The 
flipping of the bits will be done with probability p.

The fake data comprised of a zeroes vector that was 
again randomized using RAPPOR. To contain the noise 
that could be added through the fake data, zeroes vec-
tor were used instead of randomly selected set of val-
ues. The implementation of this method was done per 
Algorithm 1.

(4)p =
1

eε/2 + 1

(5)q = 1−
1

eε/2 + 1

Fig. 1  A schematic of the RS + FD framework proposed by Arcolezi et al. that formed the basis of the proposed solution Sarve 
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Application of Hadamard response in a frequency oracle
The randomization in frequency oracle using Hadamard 
Response. The use of Hadamard Response for randomi-
zation is relatively recent among the other mechanisms 
mentioned in this paper. It is a hashing-based mechanism 
and therefore gives smaller decoding times as proven by 
Acharya et al. For randomization purposes, a Hadamard 
matrix is constructed in the form given by Eq. (7). For an 
attribute Ai that holds values within the allowed range [0, 
D − 1], the size of the Hadamard matrix is computed as 
D ≤ D′ ≤ 4*D. The Hadamard matrix HD` = {1, − 1}D′XD′ 
will be constructed as.

Additionally, it can be stated that H1 = [+ 1].
To privatize the attribute value Ai Є [0, D − 1], another 

value Ai`′ is selected from the domain size D′. This is 
done by choosing all of the elements from (Ai + 1)th row 
index and the same block as Ai of the Hadamard matrix. 
The set of values returned from the Hadamard matrix 
can be called SA.

To privatize Ai, an element from SA will therefore be 
randomly selected with a probability.

where h is the size of set SA. In the case of Sarve, we set 
D′ = D, h = 1, and SA = A, therefore.

(7)

Ho :=
Ho/2 Ho/2

Ho/2 Ho/2
with o = 2j f or 1 ≤ j ≤ log(D′)

(8)p =
eε

eε · h+ D′ − h

Fig. 2  The probabilities associated with the use of RAPPOR as a 
privatization mechanism

The estimation in frequency oracle
The frequency estimation method calculated the num-
ber of times the privatized data was reported. It is also 
a function of perturbation or randomization probability. 
For the randomizations carried out by probabilities p and 
q, Wang et al. (2017, 2018b) proposed the estimated fre-
quency of privatized values as.

where D is the domain size of the reported attribute Ai, 
npriv is the number of times the privatized attribute was 
reported, and N is the total number of observations in 
the record.

(6)f̂ (Ai) =
D · (npriv − N · q)

N · (p− q)
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Thereby the solution was rendered similar to a rand-
omized response mechanism. Algorithm  2 summarizes 
the steps that were implemented to realize the mecha-
nism. Figure  3 shows the probabilities and resulting 
attribute values for the application of HR.

(9)p =
eε

eε + D − 1

The Eq. (6) would be modified to include the probabili-
ties associated with the construction of set HA, and thus 
be used as

where npriv is the numbers of times attribute value Ai had 
been reported and N is the total number of individuals 
present in the record.

Enhancement of adaptive RS + FD
The user data in real-world conditions is multidimen-
sional and uncertain. The variance is one of the most 
commonly used indicators to depict the utility of the 
privatized data. Therefore, an LDP protocol that results 
in lower variance can be dynamically selected among 
several candidates (Wang et  al. 2017). Additionally, the 
mean square error (MSE) is a common evaluation metric 
for performance, and for estimators that are not biased 
variance can be measured as MSE (Wang et  al. 2019b). 
In RS + FD, the authors dynamically selected between 
two candidates GRR and OUE to facilitate an adaptive 

(11)f̂ (Ai) =
npriv · D · Ai − N · (D − 1+ q · Ai)

N · Ai · (p− q)

Fig. 3  The probabilities associated with the use of Hadamard 
Response as a privatization mechanism

The estimation in frequency oracle
The frequency estimation strategy was the same as for 
the case of GRR since we had reduced the use of HR to 
a randomized response method. The probability q of not 
selecting the new symbol from HA would be defined as.

(10)q =
(1− p)

(D − 1)

LDP protocol. The results of experiments in this paper 
showed that the performance of Hadamard Response fol-
lowed a trend similar to GRR but with bigger MSE values. 
Interestingly, RAPPOR performed better than GRR and 
OUE specifically for the general privacy regime. In Sarve, 
RAPPOR has been added as another candidate to further 
enhance the performance of the adaptive LDP protocol 
selection.
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As seen in Fig. 4, the algorithm looks for the randomiza-
tion method that offers the least MSE, or in this case vari-
ance. The variance for the GRR method is calculated as.

Since OUE and RAPPOR are both unary coding meth-
ods, the variance was formulated as.

The algorithm computed the variances, selected the 
randomization method that gave lowest variance, and 
carried out privatization using the chosen randomization 
scheme.

(12)Var(f̂ (Ai)) =
D2 · δ · (1− δ)

N · (p− q)2
where δ =

1

d
·

(

q + f (Ai) · (p− q)+
(D − 1)

Ai

)

(13)Var(f̂ (Ai)) =
D2 · δ · (1− δ)

N · (p− q)2
where δ =

1

D
·
(

D · q + f (Ai) · (p− q)
)

Experimental results
Evaluation metrics
The statistical computations of this paper were focused 

on frequency estimation of categorical attributes belong-
ing to multidimensional datasets. The estimated fre-
quency of the privatized attribute values was compared 

against the original frequency distributions. The metric 
for the comparison was the mean squared error (MSE) as 
shown in Eq. (14).

Fig. 4  The flow of logic for an improvised adaptive approach to dynamic randomization using variance as the evaluation metric
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where f(ai) was the real frequency of the attribute 
Ai and was the estimated frequency of the attribute 
post-privatization.

Since randomization techniques had been employed 
for privatization, the algorithms were run 100 times, 
and mean MSE was computed for six different values of 
ε. Additionally, the algorithms were tested for regimes 
that mandated strong and general privacy. For the for-
mer case of strong privacy, values of ε were restricted 
to under 2, specifically a set of values were taken from 
RS + FD experiments as ε = [ln(2), ln(3), ln(4), ln(5), ln(6), 
ln(7)] = [0.6931, 1.0986, 1.3863, 1.6094, 1.7918, 1.9459]. 
The conditions for general privacy were defined by us 
with bigger values of ε = [2, 3, 4, 5, 6, 7].

(14)MSEAVG =
1

D
·

∑

j∈⌊1,D⌋

1

|dj|
(f (ai)− f̂ (ai))

2 Experimental setup
All of the executions for different experimental setups 
were carried out on the operating system Linux Mint 
version 20 (Ulyana). The scripts were written in Python 
version 3.8.10 language and run in the Jupyter Lab devel-
opment environment. The enhancements implemented 
as part of Sarve were tested on similar conditions as 
Arcolezi et  al.’s RS + FD. The experimental setups had 
used real-world as well as synthetic datasets with differ-
ent values of ε, number of observations, and number of 
categorical attributes, and allowed values for each attrib-
ute of the relevant dataset. The three real-world test 
datasets were the UCI adult income (Kohavi 1996), UCI 
nursery admissions (Olave and Rajkovic 1989), and MS-
FIMU (Arcolezi et al. 2021a). The different combinations 
of test setups used for benchmarking have been summa-
rized in Tables 1 and 2.

Table 1  The various parameter values that comprised the experimental setup were tested on real-world datasets

Experimental 
setup identifier

Values of ε Dataset name Number of 
observations = N

Number of 
categorical 
attributes = D

Number of allowed 
values for each 
attribute = A

ES_Real_1 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] UCI Adult 45,222 9 [7, 16, 7, 14, 6, 5, 2, 41, 2]

ES_Real_2 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] UCI Nursery 12,960 9 [3, 5, 4, 4, 3, 2, 3, 3, 5]

ES_Real_3 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] MS-FIMU 88,935 6 [3, 3, 8, 12, 37, 11]

ES_Real_4 [2, 3, 4, 5, 6, 7] UCI Adult 45,222 9 [7, 16, 7, 14, 6, 5, 2, 41, 2]

ES_Real_5 [2, 3, 4, 5, 6, 7] UCI Nursery 12,960 9 [3, 5, 4, 4, 3, 2, 3, 3, 5]

ES_Real_6 [2, 3, 4, 5, 6, 7] MS-FIMU 88,935 6 [3, 3, 8, 12, 37, 11]

Table 2  The various parameter values that comprised experimental setup tested on synthetic datasets

Experimental 
setup 
identifier

Values of ε Dataset name Number of 
observations = N

Number of 
categorical 
attributes = D

Number of allowed values for each 
attribute = A

ES_Syn_1 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] 50K_5D 50,000 5 [10, 10, 10, 10, 10]

ES_Syn_2 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] 50K_10D 50,000 10 [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

ES_Syn_3 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] 500K_5D 500,000 5 [10, 10, 10, 10, 10]

ES_Syn_4 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] 500K_10D 500,000 10 [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

ES_Syn_5 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] 500K_10D_NU 500,000 10 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

ES_Syn_6 [ln(2), ln(3), ln(4), ln(5), ln(6), ln(7)] 500K_20D_NU 500,000 20 [10, 10, 20, 20, 30, 30, 40, 40, 50, 50, 60, 
60, 70, 70, 80, 80, 90, 90, 100, 100]

ES_Syn_7 [2, 3, 4, 5, 6, 7] 50K_5 D 50,000 5 [10, 10, 10, 10, 10]

ES_Syn_8ara> [2, 3, 4, 5, 6, 7] 50K_10 D 50,000 10 [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

ES_Syn_9 [2, 3, 4, 5, 6, 7] 500K_5D 500,000 5 [10, 10, 10, 10, 10]

ES_Syn_10 [2, 3, 4, 5, 6, 7] 500K_10D 500,000 10 [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]

ES_Syn_11 [2, 3, 4, 5, 6, 7] 500K_10D_NU 500,000 10 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

ES_Syn_12 [2, 3, 4, 5, 6, 7] 500K_20D_NU 500,000 20 [10, 10, 20, 20, 30, 30, 40, 40, 50, 50, 60, 
60, 70, 70, 80, 80, 90, 90, 100, 100]
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The synthetic datasets were also constructed using 
Python scripts. As seen in Table 2, the generated distri-
butions were uniform, except for non-uniform distri-
butions labeled ES_Syn_5, ES_Syn_6, ES_Syn_11, and 
ES_Syn_12.

Results and discussion
The performance of RAPPOR, Hadamard Response, and 
RAPPOR in the RS + FD adaptive solution called Sarve 
were compared with three main methods of RS + FD. The 
three RS + FD methods used for benchmarking the pro-
posed solutions include:

•	 Spl[ADP] method had been implemented by ran-
domly sampling a single attribute and spending 
the privacy budget ε on it. The adaptive approach 
selected between GRR and OUE for randomization 
was based on calculated variance.

•	 Smp[ADP] method was implemented by splitting the 
privacy budget ε across all categorical attributes. The 
adaptive approach selected between GRR and OUE 
for randomization was based on calculated variance.

•	 RS + FD[ADP] method that randomly sampled 
attributes and replaced some values with fake data. 
The adaptive approach privatized the true values of 
the attribute by choosing between GRR and OUE 
based on calculated variance.

The benchmarking aimed to show the performance of 
RAPPOR, HR, and Sarve such that the offered privacy 
guarantees and the utility of the privatized datasets were 
comparable to the above three methods. The results have 
been categorized based on testing through real-world 
and synthetic datasets.

Fig. 5  The MSE averaged over 100 runs for the UCI adult dataset privatized using different randomization techniques and fake data under a high 
privacy regime, experimental setup labeled ES_Real_1 in Table 1; b general privacy regime, experimental setup labeled ES_Real_4 in Table 1

Fig. 6  The MSE averaged over 100 runs for the UCI nursery dataset privatized using different randomization techniques and fake data under a high 
privacy regime, experimental setup labeled ES_Real_2 in Table 1; b general privacy regime, experimental setup labeled ES_Real_5 in Table 1
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Results on real‑world datasets
The three multi-dimensional real-world datasets had 
a large number of observations with various types of 
domain values. As summarized in Table 1, the number of 
individuals varied from 12,000 to 88,000 with each data-
set possessing six or more categorical attributes. The UCI 
Adult and MS-FIMU datasets had attributes that could 
take a value from a large set of values, i.e., set A was of 
the order of 10 or higher. The MSE averaged over a hun-
dred runs for UCI Adult, UCI Nursery, and MS-FIMU 
datasets post-privatization by Spl[ADP], Smp[ADP], 
RS + FD[ADP], RAPPOR, Hadamard Response, and 
Sarve have been shown in Figs. 5, 6, and 7 respectively.

The effects of different factors like the number of obser-
vations attribute counts and domain values had affected 
the performance of randomization algorithms.

For high privacy regime
The UCI Adult dataset had 45  K observations and nine 
attributes. While Randomization through Hadamard 

response approximated the behavior displayed by GRR, 
privatization by RAPPOR was found to give lower MSE 
and thus a better utility. The use of RAPPOR in Arcolezi 
et al.’s RS + FD[ADP] did not degrade the performance of 
the algorithm.

The MS-FIMU dataset had the maximum number of 
observations at around 88 K and six attributes. The pri-
vatization offered by HR was not good but RAPPOR 
performed with a higher utility than the Smp[ADP] solu-
tion. Sarve created by the addition of RAPPOR to the 
RS + FD[ADP] enhanced the algorithm for the case when 
ε = 1.609.

The UCI Nursery dataset was the smallest among the 
real-world test data with the number of observations 
being 45  K and having nine attributes. While HR and 
RAPPOR alone performed better than Smp[ADP] but 
gave higher MSE than Spl[ADP]. The MSE values for 
Sarve and RS + FD were found to be lower than Spl[ADP] 
for ε = 0.693. Moreover, the use of RAPPOR enhanced 
the solution’s performance for ε = 1.09.

Fig. 7  The MSE averaged over 100 runs for the MS-FIMU dataset privatized using different randomization techniques and fake data under a high 
privacy regime, experimental setup labeled ES_Real_3 in Table 1; b general privacy regime, experimental setup labeled ES_Real_6 in Table 1

Table 3  The lowest MSE for the existing method and the enhancements which were tested on the UCI adult dataset

The values in bold indicate privacy conditions when Sarve performed better than adaptive RS+FD and resulted in lower MSE between real and post-privatization 
estimated frequencies

Method ε = ln(2) ε = ln(3) ε = ln(4) ε = ln(5) ε = ln(6) ε = ln(7)

RS + FD[ADP] 0.000596388 0.000325887 0.000278437 0.000183621 0.000162579 0.000126356

RAPPOR 0.000821897 0.000474918 0.000429617 0.000391613 0.000293406 0.000274562

Hadamard response 0.001347787 0.000483257 0.000394622 0.00029166 0.00023901 0.000161183

Sarve 0.000559558 0.000315456 0.000243588 0.000190493 0.000150871 0.00014343

Method ε = 2 ε = 3 ε = 4 ε = 5 ε = 6 ε = 7

RS + FD[ADP] 0.000132441 0.000124503 3.01E−05 2.16E−05 1.39E−05 1.97E−05

RAPPOR 0.0002658 0.00013092 7.36E−05 5.38E−05 4.08E−05 2.55E−05

Hadamard response 0.000198588 0.000135697 0.000103984 9.55E−05 0.000137056 8.82E−05

Sarve 0.000111824 5.53E−05 3.16E−05 2.19E−05 1.54E−05 1.60E−05
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Overall, it can be said that RAPPOR performed better 
than benchmark solution Smp[ADP] but not Spl[ADP]. 
HR did not perform as well as RAPPOR in all of the test 
cases. Lastly, the addition of RAPPOR to RS + FD which 
was called Sarve was found to perform on par and better 
for certain values of ε.

For general privacy regime
For the datasets that had a large number of observations, 
that is the UCI Adult and MS-FIMU datasets, HR was 
found to perform better than Smp[ADP] for ε < 5. The 
performance of the method degraded as we moved to 
lower privacy regimes. The MSE achieved by RAPPOR 
was consistently better than HR and lower than those of 
RS + FD and Sarve for low privacy regimes. For the UCI 
Nursery dataset characterized by a smaller number of 
observations and high dimensionality of nine, HR did not 
perform well but RAPPOR gave low MSE for low privacy 
regimes. Overall, the privatization performance of Sarve 
was comparable to RS + FD[Adp] and better for specific 
values of ε.

The graphs were plotted for the MSE averaged over 
a hundred runs. For a clearer benchmarking between 
existing solution and the proposed work, the lowest 
MSE reported by the methods have been summarized in 
Tables 3, 4, and 5.

Results on synthetic datasets
The properties of the synthetic datasets used for bench-
marking are summarized in Table  2. The algorithms 
were tested for uniform as well as non-uniform distri-
butions for a large number of observations and differ-
ent dimensions. The MSE averaged over a hundred runs 
for synthetic datasets post-privatization by Spl[ADP], 
Smp[ADP], RS + FD[ADP], RAPPOR, Hadamard 
Response, and Sarve have been shown in Figs. 8, 9, 10, 11, 
12, and 13 respectively.

The effects of different factors like the number of obser-
vations attribute counts and domain values had affected 
the performance of randomization algorithms.

Table 4  The lowest MSE for the existing method and the enhancements which were tested on UCI nursery dataset

The values in bold indicate privacy conditions when Sarve performed better than adaptive RS+FD and resulted in lower MSE between real and post-privatization 
estimated frequencies

Method ε = ln(2) ε = ln(3) ε = ln(4) ε = ln(5) ε = ln(6) ε = ln(7)

RS + FD[ADP] 0.000734962 0.000491035 0.000220841 0.000250292 0.00030747 0.000189085
RAPPOR 0.000981 0.000799 0.000441 0.000529 0.000483 0.000338

Hadamard response 0.00163 0.00075 0.000433 0.000659 0.000556 0.000396

Sarve 0.00087 0.000445 0.000417 0.000259 0.000387 0.000285

Method ε = 2 ε = 3 ε = 4 ε = 5 ε = 6 ε = 7

RS + FD[ADP] 0.000278 0.000152 0.000111 9.31E−05 8.91E−05 0.000109
RAPPOR 0.000255 0.000219 0.000132 0.000112 8.07E−05 4.76E−05

Hadamard response 0.00048 0.000492 0.000452 0.000376 0.000378 0.000445

Sarve 0.000286 0.000124 0.000112 9.06E−05 0.000102 0.000119

Table 5  The lowest MSE for the existing method and the enhancements which were tested on MS-FIMU dataset

The values in bold indicate privacy conditions when Sarve performed better than adaptive RS+FD and resulted in lower MSE between real and post-privatization 
estimated frequencies

Method ε = ln(2) ε = ln(3) ε = ln(4) ε = ln(5) ε = ln(6) ε = ln(7)

RS + FD[ADP] 0.000108 5.59E−05 4.64E−05 4.40E−05 3.37E−05 2.97E−05

RAPPOR 0.000207 8.86E−05 8.01E−05 5.29E−05 5.78E−05 4.75E−05

Hadamard response 0.004249 0.001295 0.000635 0.00037 0.000263 0.000187

Sarve 0.000105 6.73E−05 4.78E−05 4.41E−05 3.20E−05 2.72E−05

Method ε = 2 ε = 3 ε = 4 ε = 5 ε = 6 ε = 7

RS + FD[ADP] 2.02E−05 1.12E−05 5.87E−06 3.90E−06 4.35E−06 3.10E−06
RAPPOR 4.87E−05 2.28E−05 1.23E−05 8.58E−06 5.73E−06 4.91E−06

Hadamard response 0.000164 3.79E−05 1.88E−05 1.13E−05 1.72E−05 1.78E−05

Sarve 2.50E−05 9.78E−06 6.81E−06 4.64E−06 4.66E−06 3.21E−06
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Table 6  The lowest MSE for the existing method and the enhancements which were tested on a synthetic 10-dimensional dataset 
having 50,000 records

The values in bold indicate privacy conditions when Sarve performed better than adaptive RS+FD and resulted in lower MSE between real and post-privatization 
estimated frequencies

Method ε = ln(2) ε = ln(3) ε = ln(4) ε = ln(5) ε = ln(6) ε = ln(7)

RS + FD[ADP] 0.000496 0.000255 0.000198 0.00015 0.000114 0.000111

RAPPOR 0.000807 0.00048 0.000325 0.00026 0.000247 0.000226

Hadamard response 0.000943 0.000312 0.000268 0.000215 0.000187 0.000151

Sarve 0.000481 0.000261 0.000207 0.000145 0.000118 0.000106

Method ε = 2 ε = 3 ε = 4 ε = 5 ε = 6 ε = 7

RS + FD[ADP] 9.65E−05 4.51E−05 3.38E−05 2.45E−05 2.43E−05 2.35E−05
RAPPOR 0.000205 0.000112 6.63E−05 4.86E−05 3.06E−05 2.43E−05

Hadamard response 0.000177 0.000111 0.000126 0.000118 0.000102 9.77E−05

Sarve 0.000101 4.39E−05 3.14E−05 2.68E−05 2.41E−05 2.26E−05

Table 7  The lowest MSE for the existing method and the enhancements, tested on synthetic 20-dimensional dataset having 50,000 
records

The values in bold indicate privacy conditions when Sarve performed better than adaptive RS+FD and resulted in lower MSE between real and post-privatization 
estimated frequencies

The attribute values followed non-uniform distribution

Method ε = ln(2) ε = ln(3) ε = ln(4) ε = ln(5) ε = ln(6) ε = ln(7)

RS + FD[ADP] 0.000105 6.24E−05 4.30E−05 3.35E−05 2.77E−05 2.41E−05
RAPPOR 0.000155 0.000121 9.77E−05 8.32E−05 7.35E−05 6.61E−05

Hadamard response 0.000159 7.82E−05 5.37E−05 4.32E−05 3.57E−05 3.27E−05

Sarve 0.000113 6.46E−05 4.51E−05 3.39E−05 2.77E−05 2.50E−05

Method ε = 2 ε = 3 ε = 4 ε = 5 ε = 6 ε = 7

RS + FD[ADP] 2.35E−05 8.77E−06 4.36E−06 2.69E−06 2.17E−06 1.78E−06

RAPPOR 6.64E−05 3.93E−05 2.24E−05 1.31E−05 8.06E−06 5.27E−06

Hadamard response 3.29E−05 2.12E−05 1.90E−05 1.77E−05 1.58E−05 1.75E−05

Sarve 2.27E−05 8.76E−06 4.33E−06 2.55E−06 1.96E−06 1.72E−06

Fig. 8  The MSE averaged over 100 runs for synthetic data with N = 50,000, D = 5 privatized using different randomization techniques and fake data 
under a high privacy regime, experimental setup labeled ES_Syn_1 in Table 2; b general privacy regime, experimental setup labeled ES_Syn_7 in 
Table 2
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For high privacy regime
The numbers of observations were 50 K and 500 K with 
dimensionalities that took the values five and ten for uni-
form distribution, ten and twenty for non-uniform distri-
bution. It was observed that the increase in the number 
of observations from 50 to 500 K had an adverse effect on 
the performance of Hadamard Response but RAPPOR 
remained immune to it. The performance of RAPPOR 
solely used as a randomization mechanism performed 
better than Smp[ADP] for all of the test cases. Interest-
ingly, for a non-uniform distribution dataset having 50 K 
observations and ten attributes, HR performed better 
than RAPPOR. In all of the test configurations, Sarve 
performed on par with RS + FD[ADP].

For general privacy regime
The performance of RAPPOR as the sole randomization 
mechanism in the case of datasets with ten attributes was 
found better than Smp[ADP]. The recorded MSE showed 
a stable trend. The change in the number of attributes 
affected the performance of HR more than RAPPOR. 
Lastly, Sarve performed on par with RS + FD[ADP] with 
the former giving lower MSE for specific values of ε 
(Tables 6, 7).

The graphs were plotted for the MSE averaged over a 
hundred runs. For a clearer benchmarking between the 
existing solution and the proposed work, the lowest 
MSE reported by the methods has been summarized in 
Tables 3, 4 and 5.

Fig. 9  The MSE averaged over 100 runs for synthetic data with N = 50,000, D = 10 privatized using different randomization techniques and fake 
data under a high privacy regime, experimental setup labeled ES_Syn_2 in Table 2; b general privacy regime, experimental setup labeled ES_Syn_8 
in Table 2

Fig. 10  The MSE averaged over 100 runs for synthetic data with N = 500,000, D = 5 privatized using different randomization techniques and fake 
data under a high privacy regime, experimental setup labeled ES_Syn_3 in Table 2; b general privacy regime, experimental setup labeled ES_Syn_9 
in Table 2
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Conclusion
In this paper, the authors propose a novel frequency ora-
cle termed Sarve for privacy-aware frequency estimation 
of categorical attributes of multi-user records. The pri-
vatization provided by Sarve utilized RAPPOR for rand-
omization in addition to fake data. Existing research by 
Arcolezi et al. had used an adaptive combination of Gen-
eral Randomized Response and Optimal Unary Coding 
with fake data to prove that such mechanisms are well-
suited for frequency oracles.

The use of a transformation-based method like Had-
amard Response was found to perform on par with 
the existing work. The benefits offered by Hadamard 
Response include lower communication costs and there-
fore it emerged as a worthy alternative. Additionally, the 

implementation of Sarve tested the application of a hash-
based method like RAPPOR. It was found that RAPPOR 
performed better than GRR and OUE for specific privacy 
conditions. Therefore, an adaptive privatization algo-
rithm was devised to employ GRR, OUE, or RAPPOR 
based on the variance values. The proposed algorithms 
were tested on real-world as well as synthetic datasets 
that varied over the number of observations, dimension-
alities, and size of allowed domain values. The adaptive 
performance of Sarve was found to be on par with the 
solution by Arcolezi et al. and performed better for spe-
cific privacy scenarios.

There is vast potential in the development of frequency 
oracles since all of the cloud-hosted services and plat-
forms collect user information. The RAPPOR method 

Fig. 11  The MSE averaged over 100 runs for synthetic data with N = 500,000, D = 10 privatized using different randomization techniques and 
fake data under a high privacy regime, experimental setup labeled ES_Syn_4 in Table 2; b general privacy regime, experimental setup labeled 
ES_Syn_10 in Table 2

Fig. 12  The MSE averaged over 100 runs for synthetic non-uniform data with N = 500,000, D = 10 privatized using different randomization 
techniques and fake data under a high privacy regime, experimental setup labeled ES_Syn_5 in Table 2; b general privacy regime, experimental 
setup labeled ES_Syn_11 in Table 2
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is already in use by Google’s Chrome browser and many 
popular tools. Therefore, the ability to amplify the pri-
vacy offered by such techniques in combination with fake 
data is an exciting avenue. This research can be extended 
to reduce the uncertainty introduced through the incor-
poration of fake data. Additionally, several other encod-
ing schemes such as OLE exist that can be enhanced to 
produce frequency oracles like Sarve.
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