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BACKGROUND: Serum starvation and hypoxia (SSH) mimics a stress condition in tumours. We have shown that intercellular
adhesion molecule-1 (ICAM-1) protein is synergistically expressed in ovarian clear cell carcinoma (CCC) cells under SSH in response
to an insufficient supply of fatty acids (FAs). This ICAM-1 expression is responsible for resistance against the lethal condition,
thereby promoting tumour growth. However, the underlying mechanisms that link SSH-driven ICAM1 gene expression to impaired
FA supply and its clinical relevance are unclear.
METHODS: The underlying mechanisms of how FA deficiency induces ICAM-1 expression in cooperation with hypoxia were
analysed in vitro and in vivo. Clinical significance of CCC cell-derived ICAM-1 and the mechanism associated with the transcriptional
synergism were also investigated.
RESULTS: ICAM-1 expression was mediated through lipophagy-driven lipid droplet degradation, followed by impaired FA-lipid
droplet flow. Lipophagy induced ICAM1 expression through stabilisation of NFκB binding to the promoter region via Sam68 and
hTERT. Analyses of clinical specimens revealed that expression of ICAM-1 and LC3B, an autophagy marker associated with
lipophagy, significantly correlated with poor prognoses of CCC.
CONCLUSIONS: The lipophagy-ICAM-1 pathway induced under a tumour-like stress conditions contributes to CCC progression and
is a potential therapeutic target for this aggressive cancer type.

British Journal of Cancer (2022) 127:462–473; https://doi.org/10.1038/s41416-022-01808-4

BACKGROUND
Epithelial ovarian cancer (EOC) is one of the most lethal
gynaecological disorders associated with heterogeneous histolo-
gical subtypes [1]. The clear cell carcinoma (CCC) subtype is
relatively frequent in Asian countries, which includes Japan, and
some European countries [2]. Conversely, the serous carcinoma
(SC) subtype is predominant in most Western countries [1]. CCC is
highly aggressive and recurrent because it exhibits resistance
against chemotherapy, which leads to a poorer prognosis than
that of SC [1, 2].
Hypoxia is a common tissue condition associated with poor

blood supply to tumour tissues that include ovarian cancer
tissue [3]. Tumour cells are starved for molecular oxygen and
other serum components, which include nutrients, growth
factors, and hormones, owing to aberrant vasculature and
aggressive tumour growth [3]. Cancer cells can adapt to such
severe conditions for tumour progression. This involves activa-
tion of transcription mechanisms that include heterodimeric

complex formation between hypoxia-inducible factor (HIF)-1α
and -2α, and arylhydrocarbon receptor nuclear translocator
(ARNT), followed by association with hypoxia response elements
of target genes [4]. Furthermore, recent studies have shown that
lipid starvation and hypoxia are lethal and adaptation to this
condition is important for progression of glioblastoma [5] and
clear cell renal cell carcinoma [6].
We previously reported that HIF-2α complexes with the

transcription factor Sp1, thereby activating multiple target genes
that include FVII and ICAM1 in CCC cells [7–9], which suggests
ARNT-independent transcriptional regulation via HIFs. We further
demonstrated that this Sp1-dependent transcriptional mechanism
is synergistically enhanced when cells are simultaneously exposed
to serum starvation and hypoxia (SSH) [7–9]. Long-chain fatty acid
(LCFA) deficiency [8] and cholesterol starvation coupled with
SREBP-1 activation [9] are responsible for the synergism of
transcriptional activation for ICAM1 and FVII, respectively. In the
case of ICAM1 expression, activation of transcription factor NFκB
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and mTOR and TNF-α signalling pathways contributes to the
synergism in association with a decrease in the cellular lipid
droplet (LD) level [8]. However, the underlying mechanisms by
which LCFA deficiency causes this characteristic synergism of
transcriptional activation are unclear.
ICAM1 encodes intercellular adhesion molecule-1 (ICAM-1).

ICAM-1 is a transmembrane protein that belongs to the
immunoglobulin superfamily. ICAM-1 is expressed in endothelial
and immune cells, and contributes to tissue infiltration of
leucocytes under physiological conditions [3]. Additionally,
ICAM-1 is highly expressed in various cancer cell types and
augments malignancy by enhancing metastatic potential [10–12],
tissue vascularisation [13], and interactions with immune cells
[13, 14]. Reports on the roles of ICAM-1 in EOC progression have
revealed a complex overview [3]. Previous studies have demon-
strated that expression of ICAM-1 suppresses the malignancy of
EOC cells [15–18]. Conversely, other reports have suggested the
opposite trend [19–22]. These results are based on experiments
using non-CCC EOC cells. Thus, published information regarding
the effect of ICAM-1 on CCC progression has been scarce. We have
demonstrated that SSH is lethal for CCC cells with a reduced LD
level. ICAM-1 confers resistance against SSH-driven apoptosis and
facilitates CCC-tumour progression [8], although detailed mechan-
isms are currently unclear.
On the basis of this background information, in this study, we

aimed to uncover the clinical importance of CCC cell-derived ICAM-
1. We further investigated the details of how an insufficient lipid
supply causes synergistic ICAM1 gene expression in cooperation
with hypoxia.

METHODS
Cell lines
CCC cell lines (OVSAYO and OVISE) and SC cell lines (OVSAHO and OVKATE)
were cultured as described previously [8, 23]. TOV21G was purchased
from the American Type Culture Collection (Manassas, VA, USA). For
cell authentication, STR profiling was performed (Takara Bio, Shiga, Japan).
To confirm cell line identity, STR profiles were examined by the similarity
search (CLASTR) programme in a public database (Cellosaurus; https://
expasy.org/cellosaurus/). We tested for mycoplasma contamination using
an e-Myco™ mycoplasma PCR detection kit (iNtRON Biotechnology,
Gyeonggi-do, Korea) and confirmed that the cell lines used in this study
were free of mycoplasma.

Cell culture
Cells were routinely cultured in RPMI-1640 medium with 10% foetal calf
serum. For hypoxic cell culture, cells were cultivated under 1% O2 using a
multi-gas incubator (BL-43MD, TOSC, Tokyo, Japan). Serum-starved cell
culture was performed as described previously [9]. Briefly, routinely
cultured cells were washed once with serum-free medium and then
cultured in the same medium.

Reagents
Fatty acid supplement (a mixture of unesterified saturated and unsaturated
fatty acids not involving cholesterol or albumin; information from product
website and technical support) (F-7050, Sigma-Aldrich, St. Louis, MO, USA),
oleic acid (O1008, Sigma-Aldrich), palmitic acid (P0500, Sigma-Aldrich).
Albumin from human serum (A3782, Sigma-Aldrich), LDL human
(OPPA01439-10MG, Aviva Systems Biology, San Diego, CA, USA), water-
soluble cholesterol reagent (C4951, Sigma-Aldrich), methyl-β-cyclodextrin
(C4555, Sigma-Aldrich), N-acetyl-L-cysteine (NAC) (A7250, Sigma-Aldrich),
and Bafilomycin A1 (B1793, Sigma-Aldrich).

siRNA transfection
siRNA reagents used in this study (See Supplementary materials) were a pool
of 2–4 target sequences for each gene designed to efficiently and specifically
block target mRNA expression. Transfection of siRNAs was performed using
Lipofectamine RNAi MAX (Life Technologies) for OVSAYO and TOV21G cells.
Transfection of OVISE cells was performed by electroporation using a Neon

Transfection System (Thermo Fisher Scientific, Waltham, MA, USA). All siRNAs
were used at a final concentration of 15 nM.

Quantitative RT-PCR analysis
We determined mRNA levels by real-time RT-PCR with hybridisation probes
as described previously [7, 8]. All data were normalised to 18S ribosomal
RNA levels.

Isolation of nuclear and cytoplasmic fractions
Nuclear and cytoplasmic fractions used for immunoblotting were prepared
using a Nuclear Extract kit (Active Motif, Carlsbad, CA, USA) in accordance
with the manufacturer’s protocol.

Protein quantification
Protein levels were quantified using a Micro BCA™ Protein Assay Kit
(Thermo Fisher Scientific) in accordance with the manufacturer’s
instructions.

Western blot analysis
Western blotting was performed as described previously [8]. In generally,
whole-cell lysates were used for detection. To detect mTOR, immunopre-
cipitated mTOR from cell lysates prepared using RIPA buffer were used for
better visibility. See Supplementary materials for primary antibodies.

Cell counting
Cells were counted by trypan blue exclusion using a Countess™ automated
cell counter (Invitrogen, Waltham, MA, USA).

Immunohistochemistry (IHC) of a tissue microarray
Routinely processed formalin-fixed, paraffin-embedded specimens from 38
CCC and 50 SC patients diagnosed at Kanagawa Cancer Center Hospital
(KCCH) from 2005 to 2010 were prepared for tissue microarray (TMA)
production (Table S1). Additionally, whole tissue sections (WTSs) were
prepared from 45 CCC patients diagnosed at KCCH from 2006 to 2017,
which were not applied to the TMA (Table S2). Written consent was
obtained from all patients. The study was approved by our institutional
review board (approval No. 177). All tissues were reviewed and histological
subtypes were diagnosed by pathologists at KCCH in accordance with the
World Health Organization Classification of Tumours, Female Genital
Tumours, 2020. TMA and WTS were stained with antibodies against ICAM-1
(sc-8439, Santa Cruz Biotechnology, Dallas, TX, USA; 2 µg/mL), LC3B (E7X4S,
#43566, Cell Signaling Technology, 0.1 µg/mL), and LC3A (A1805a, abcepta,
San Diego, CA, USA, 10 μg/ml). Immunoreactivity was visualised by the
peroxidase-labelled amino acid polymer method using Histofine simple
stain MAX-PO® (Nichirei Co., Tokyo, Japan) and the avidin-biotin-peroxidase
complex method (LSAB+; DakoCytomation Co., Tokyo, Japan) in accor-
dance with the manufacturers’ instructions. Sections were counterstained
with hematoxylin and eosin (HE).

IHC image acquisition, scoring, and survival analysis
Images (×20 objective lens) of tumour tissues stained by IHC were acquired
under a BM53 microscope (Olympus, Tokyo, Japan). Three images with a
representative staining pattern were selected and quantified using ImageJ
software (http://rsb.info.nih.gov/ij/). Briefly, the stromal region in images
was selected and discarded using the freehand selections tool in this
software. Then, the stained tumour cell area was quantified. Expression
scores were obtained by normalising the stained area to the total
examined tumour cell area. Mean scores of the images were used for
survival analysis. Kaplan–Meier analysis of the relationship between the
expression scores and overall survival (OS) periods of patients and
multivariable analysis by the Cox regression method were performed using
SPSS statistics 19 software (IBM, Chicago, IL, USA).

Fluorescence microscopy of BODIPY and Filipin III staining
Cellular LDs and free cholesterols were stained using BODIPY™ (D3922,
Invitrogen, Eugene, OR, USA) and Filipin III (sc-205323A, Santa Cruz
Biotechnology), respectively. Images were acquired under a BZ-9000
fluorescence microscope (Keyence, Osaka, Japan). Quantitative analysis of
images, which included the fluorescence area and number of nuclei, was
performed using BZ-Analyzer software (Keyence) and ImageJ software.
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Fig. 1 ICAM-1 level in cancer cells is associated with poor prognoses of CCC patients. a Staining pattern of ICAM-1 in EOC tissues evaluated
by IHC. H&E staining is also shown for comparison. b Comparison of ICAM-1 levels between CCC and SC tissues. c Comparison of ICAM-1 levels
between FIGO stages in EOC tissues. d,e Kaplan–Meier analysis of the correlation between the ICAM-1 level and OS of CCC (d) and SC (e)
patients. f Western blot analysis of ICAM-1 expression in the indicated cells exposed to the indicated culture conditions for 48 h. FCS: 10%
foetal calf serum, N and H indicate normoxia (ambient air) and hypoxia (1% O2), respectively. β-Actin was examined as a protein loading
control. g Example of ICAM-1 knockdown (KD) in TOV21G cells. Cells were cultured under the SSN condition for 48 h after the indicated siRNA
transfection. NS: non-specific. h Scheme of the cell growth assay. The effect of ICAM-1-KD on proliferation of TOV21G cells was examined
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significance was evaluated by the two-sided t-test. N non-specific, I ICAM-1.
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Immunofluorescence microscopy
For immunocytochemistry of LC3A/B, cells were seeded in a four-well
chamber polystyrene vessel (#354114, Corning, Big Flats, NY, USA) and
then cultured under the indicated conditions. Cells were fixed with
methanol in accordance with the protocol for the primary antibody
[#12741, LC3A/B (D3U4C) XP rabbit mAb]. In the case of xenografted
tumour tissues, samples were briefly washed and fixed with 4%
paraformaldehyde in PBS for 10min. Fixed cells were washed twice with
PBS and permeabilized with 0.1% Triton X-100 (Sigma). Cells were
incubated with primary antibodies. After washing the cells with PBS, they
were incubated for 1 h with anti-mouse (A11029 and A11031, Molecular
Probes, Eugene, OR, USA) and anti-rabbit (A11008, Molecular Probes and
DI-1794, Vector Laboratories, Burlingame, CA, USA) secondary antibodies
conjugated with Alexa Fluor 488, 568, or 594 diluted with blocking reagent.
Labelled cells were washed and mounted using VECTASHIELD HardSet™
Mounting Medium with DAPI (Vector Laboratories). All steps were carried
out at ambient temperature. Cellular localisation of target proteins
was visualized under the BZ-9000 fluorescence microscope. Primary
antibodies against ICAM-1, pimonidazole-adducts (hypoxyprobe) have
been described previously [8]. The antibody against LC3B was the same as
that in IHC.

Chromatin immunoprecipitation analysis
Chromatin immunoprecipitation (ChIP) analyses of the ICAM1 promoter
region were performed as described previously [8, 9]. See Supplementary
materials for antibodies used.

Xenografted tumour establishment
The Institutional Review Board at Kanagawa Cancer Center Research
Institute approved this study. OVISE cells were implanted as described
previously [8]. Briefly, cells were subcutaneously injected into two 6-
week-old female NOD-SCID mice. Two representative tumors isolated
from different mice were used for ChIP as described previously [9].
Alternatively, tumours fixed using neutral formalin [8] were used for
histochemical analysis.

Detection of reactive oxygen species
Detection of reactive oxygen species (ROS) was performed using a CellROX
green flow cytometry assay kit (C10492, Life Technologies) in accordance
with the manufacturer’s protocol.

Statistics
Statistical significance was evaluated for two data sets using SPSS statistics
19 software. Parametric (Student’s and Welch’s (no assumption of equal
variance between data sets) t-tests) methods were used. Non-parametric
method (Mann–Whitney U-test) was also used based on non-normal
distribution determined with the Shapiro–Wilk test. p < 0.05 was con-
sidered statistically significant.

RESULTS
ICAM-1 is associated with poor prognosis of CCC patients
Previous studies have shown that ICAM-1 expression in non-CCC
EOC contributes to suppression of malignant phenotypes [15–18].
This is consistent with information in a public database, which
shows that ICAM-1 transcript levels in tumour cells of 373 patients
based on The Cancer Genome Atlas RNA-seq data significantly
correlate with favourable prognoses of SC patients (see the
website: Human Protein Atlas; https://www.proteinatlas.org). Thus,

we examined the expression levels of ICAM-1 in CCC tissues
surgically removed from 38 Japanese patients and compared
them with those of SC tissues from 50 Japanese patients (Table S1).
IHC of ICAM-1 using a TMA (Fig. 1a), followed by scoring of
expression levels revealed that ICAM-1 was expressed similarly in
CCC and SC tissues (Figs. 1a, b, and S1). Additionally, ICAM-1 levels
were not different between disease (FIGO) stages for both
histological subtypes (Fig. 1c). Kaplan–Meier analysis revealed
that a high ICAM-1 level correlated significantly with a poor OS
rate of CCC patients (Fig. 1d, left). Additional IHC using WTSs with
a different diagnosis period (Table S2), followed by Kaplan–Meier
analysis revealed the same trend (Fig. 1d, right). Multivariable
analysis showed that ICAM-1 was a prognostic factor for CCC with
a risk ratio of 4.183 (TMA) and 4.653 (WTS) (Table 1). Conversely, a
high ICAM-1 level in SC tissues was significantly related to a better
OS rate (Fig. 1e), which was consistent with published data
showing that ICAM-1 transcript levels are associated with better
prognoses of EOC patients.
We previously reported that ICAM-1 expression in CCC cell

lines, OVSAYO and OVISE is very low under normoxia with serum
(FCS-N), but dramatically increases in response to serum
starvation and hypoxia (SSH) (H with FCS—in Fig. 1f), thereby
increasing cell viability under this harsh condition [8]. In this
study, we found that ICAM-1 was expressed in an additional CCC
cell line, TOV21G, even under the FCS-N condition (Fig. 1f) and
the expression was highest under SSH similarly to OVSAYO and
OVISE cell lines (Fig. 1f). ICAM-1 knockdown (KD) (Fig. 1g),
followed by elucidation of cell viability under culture conditions,
which included serum starvation and normoxia (SSN) and
hypoxia with serum (FCS-H) (Fig. 1h), revealed that the number
of live cells was significantly decreased by ICAM-1-KD only when
the cells were cultured under SSH (Fig. 1i). We also examined
ICAM-1 expression in two additional SC cell lines [23]. We found
that OVKATE, (Fig. S2a) but not OVSAHO (Fig. S2b), cells
expressed ICAM-1. SSH-induced ICAM-1 expression was not
observed in both cell lines (Fig. S2a, b). Furthermore, ICAM-1-KD
(Fig. S2c), followed by the cell viability assay as shown in Fig. 1h
revealed that ICAM-1 tended to suppress (p < 0.1) growth of
OVKATE cells under SSH (Fig. S2d). Thus, ICAM-1 conferred a
survival advantage specifically to multiple CCC cell lines exposed
to SSH, which may contribute to a poor survival rate of CCC
patients.

Loss of fatty acid-LD flow under SSH induces ICAM-1
expression
Our previous study showed that fatty acid (FA) uptake, followed
by LD biogenesis is important to alleviate SSH stress [8]. Similarly,
a recent study revealed that an unsaturated FA (oleic acid) derived
from neutral LD hydrolysis alleviates saturated FA-driven cytotoxi-
city in cells exposed to limited serum and O2 supply, because this
condition reduces both uptake and unsaturation of FAs [6].
Low-density lipoprotein (LDL) is a major plasma lipid and source

of LD biogenesis because it supplies multiple esterified FAs and
cholesterol [24, 25]. Cholesterol facilitates progression of cancer
via multiple mechanisms [26–28] and its deficiency, followed by
SREBP-1 activation, can be critical for progression of glioblastoma

Table 1. Multivariable (with ICAM-1) analysis of OS rate of CCC patients.

TMA WTSs

Variable HR 95% CI p value HR 95% CI p value

ICAM-1 4.183 1.075–16.279 0.039 4.653 1.369–15.816 0.014

Age (year) 0.934 0.869–1.005 0.068 1.015 0.956–1.078 0.619

Disease stage (FIGO I, II vs III, IV) 10.824 3.028–38.691 <0.001 2.367 0.748–7.485 0.142

HR hazard ratio, CI confidence interval.
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under hypoxia [5]. However, the effect of FA saturation and
cholesterol on CCC cell survival under SSH is currently unclear.
Thus, we next examined this issue to better understand the
relationship between cell viability, ICAM-1 expression, the LD level,
and LD components.

We examined the effect of LDL treatment on the viability of
OVSAYO and OVISE cells cultured under SSH for 72 h (Fig. 2a). We
found that LDL rescued the impaired cell viability (cell count 2)
compared with the viability of initial live cells (cell count 1) (Fig. 2a,
b) similarly to oleic acid-Alb (fatty acid-free albumin) (Fig. 2b) and
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0.3% fatty acid supplement (FAS, a mixture of unsaturated and
saturated FAs, see “Methods”)-Alb (Fig. S3a) treatments because
these treatments cancelled the SSH condition. However, saturated
palmitic acid-Alb treatment impaired cell viability (Fig. 2b).
Real-time RT-PCR and western blot analyses showed that ICAM1

expression in OVSAYO cells was largely decreased (approximately
one-tenth) by treatments with 5 μg/ml LDL (Fig. 2c) and 0.3% FAS-
Alb (Fig. S3b).
We next examined effect of LDL treatment on cellular LD and

cholesterol levels. BODIPY staining of OVSAYO and OVISE cells
(Fig. 2d and S3c) treated with 5 μg/ml LDL revealed that the LD
level was increased by LDL treatment (Fig. 2d, e). However, this
was significantly lower than that induced by FAS-Alb treatment
(Fig. 2d, e), although both treatments similarly suppressed ICAM-1
mRNA expression (Fig. 2c and S3b) and improved cell viability
(Fig. 2b and S3a). Filipin III staining revealed that the cellular free
cholesterol level was significantly increased only in LDL-treated
cells (Fig. 2f) with a plasma membrane staining pattern (Fig. S3d).
This indicated that FAS-Alb treatment efficiently increased the LD
level and cell viability without a cholesterol supply.
We further examined the effect of cholesterol treatment on the

LD level and viability of CCC cells cultured under SSH (Fig. 2g).
OVSAYO and OVISE cells were cultured under SSH with 15 and 25
μg/ml cholesterol (cholesterol supplement, see “Methods”). LD
levels in CCC cells were increased by cholesterol treatment
(Fig. 2h, i). However, they were quite low considering the robust
increase of free cholesterol levels compared with negative
controls (Fig. 2h, i). It is unlikely that this low cholesterol-LD
generation was due to low esterification potency because acyl-
CoA cholesterol acyltransferase (ACAT-1) [26], which is responsible
for cellular cholesterol esterification, followed by LD biogenesis
were abundant in CCC cells (Fig. 2j). We found that cholesterol
treatment did not rescue the impaired viability of cells under SSH
with sustained ICAM-1 expression (Fig. 2k). Considering that LDL
treatment improved cell viability with a similar LD level as
cholesterol treatment (Fig. 2e, i), LDL alleviated SSH stress through
unsaturated FA-mediated LD biogenesis and the effect of
cholesterol was dispensable. Collectively, our data showed that
impairment of FA-LD flow, which involved incorporation of oleic
acid, was critical for SSH-driven cell death and concomitant ICAM-
1 expression.

Lipophagy contributes to SSH-driven expression of ICAM-1 in
CCC cells
Our data demonstrated that unsaturated FA uptake, followed by
LD biosynthesis are important for survival of CCC cells. However,
this pathway was impaired in response to SSH with ICAM-1

expression. Thus, we next investigated the mechanisms of these
events. In our metabolomics analysis [9], the total amino acid
level in OVSAYO cells cultured under SSH was increased
compared with that in cells cultured under FCS-H (Fig. S4), which
suggested activation of a cellular protein degradation process.
Autophagy was a candidate mechanism because it promotes
cancer progression (Autophagy to Disease; http://auto2disease.
nwsuaflmz.com). Thus, we next assessed whether autophagy
contributed to SSH-driven ICAM1 expression.
Western blot analysis showed that autophagy executor proteins

ATG-5 and beclin-1 (ATG-6) [29, 30] were expressed equally under all
four culture conditions in OVSAYO and OVISE cells (Fig. 3a).
However, LC3A/B-II levels were increased when OVSAYO and OVISE
cells were cultured under SSH (Fig. 3a), which suggested accumula-
tion of autophagosomes [31] in CCC cells under this condition.
LC3A/B-II levels were further increased by treatment with chlor-
oquine (CQ) that inhibits fusion between autophagosomes and
lysosomes [31, 32] (Fig. 3b). Therefore, we concluded that autophagy
was induced in response to SSH. We further found that CQ
treatment cancelled SSH-driven ICAM-1 expression at protein
(Fig. 3b) and mRNA (Fig. 3c) levels in CCC cells with impairment of
cell viability (Fig. 3d). These results suggest that autophagy
contributed to resistance against SSH via ICAM-1 expression.
Accumulating evidence suggests that autophagy contributes to

LD degradation via lipophagy [29, 30, 33]. Alternatively, LD can be
catabolized through lipolysis by neutral cytosolic lipases such as
adipocyte triglyceride lipase (ATGL) [29] and hormone-sensitive
lipase (HSL) [6]. We found that the ATGL, but not HSL, level was
increased and showed the highest expression under SSH in
OVSAYO and OVISE cells (Fig. 3a), which suggested that neutral
lipolysis by ATGL is also activated under SSH. Thus, we next
examined whether lipophagy was involved in SSH-driven ICAM-1
expression. Cultivation of OVSAYO cells under the indicated
conditions for 16 h (Fig. 3e), followed by fluorescence microscopy
demonstrated that LC3A/B were obviously increased in cells with a
robust decrease in the LD level (Fig. 3f). This diminished LD level in
OVSAYO and OVISE cells was restored by CQ treatment prior to
SSH culture (Fig. 3g, h).
It has been reported that ATGL activates lipophagy in the liver

[34]. Interestingly, western blotting showed that the ICAM-1 level
increased in response to SSH was further increased by ATGL-KD in
OVSAYO cells (Fig. 3i), presumably because the equilibrium between
lipophagy and neutral lipolysis shifted to the former. Thus, lipophagy
but not cytosolic lipolysis induced by ATGL, likely mediated SSH-
driven ICAM-1 expression in CCC cells.
Our metabolomics analysis [9] showed that a reduced

glutathione/oxidised glutathione (GSH/GSSG) ratio was decreased

Fig. 2 Impairment of FA-LD flow is associated with synergistic ICAM-1 expression and decreased cell viability under SSH. a Scheme of the
assay. Effect of LDL (0, 1, and 5 μg/ml), Alb (44 μM [8]) alone, and palmitic acid (pal)- and oleic acid (ole)-Alb complexes (50 μg/ml) on cell
viability, LD levels, and cholesterol levels were examined. b Results of a. Data are the mean (N= 3) ± SD. Statistical significance was evaluated
by the two-sided t-test. c LDL (5 μg/ml) suppresses ICAM-1 mRNA expression in OVSAYO cells exposed to SSH for 16 h (N= 3) ± SD. Inset:
western blot analysis of ICAM-1 expression in OVSAYO cells exposed to SSH for 48 h. Symbols are described in Fig. 1. d Effect of LDL on
cholesterol (Filipin III) and LD (BODIPY) levels in OVSAYO cells cultured under SSH for 16 h. Cellular lipids were stained with the indicated dyes
and detected by fluorescence microscopy. Nuclei were counterstained with DAPI. e LD levels were quantified by ImageJ software. The stained
area was evaluated for the indicated number of images acquired from three independent replicates and normalised to the number of cells
(nucleus) in each image. Statistical significance was evaluated by the Mann–Whitney U-test. *p= 0.005 (compared with none), #p < 0.001
(compared with LDL), **p < 0.001 (compared with none), and ##p < 0.001 (compared with LDL). f Cholesterol levels were quantified as
described in (e). Statistical significance was evaluated by the Mann–Whitney U-test. *p < 0.001 (compared with none), **p < 0.001 (compared
with FAS-Alb), and #p= 0.514 (compared with none), ##p= 0.213 (compared with none). The stained area was evaluated for the indicated
number of images acquired from three independent replicates. g Scheme of the cell growth assay. The effects of cholesterol on cellular LD,
cholesterol, and cell viability were examined. h Image of cholesterol and LD in OVSAYO cells treated with a cholesterol supplement under SSH
for 16 h. C: 25 μg/ml cholesterol; V: corresponding amount of vehicle (methyl-β-cyclodextrin). i Cholesterol (blue) and LD (green) levels were
quantified as described in e and f. C cholesterol, V vehicle (methyl-β-cyclodextrin). The stained area was evaluated for the indicated number of
images acquired from three independent replicates. j Western blot analysis of ACAT-1 in CCC cells cultured under the indicated conditions for
48 h. Symbols are described in Fig. 1f. k Effect of cholesterol treatment on viability of CCC cells cultured as described in (g). Data are the mean
(N= 3) ± SD. C: 25 μg/ml cholesterol; V: corresponding amount of vehicle (methyl-β-cyclodextrin). Inset: effect of cholesterol treatment on
ICAM-1 expression. Western blotting was performed using cells exposed to SSH for 48 h.
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in OVSAYO cells cultured under SSH compared with those
cultured under FCS-H (Fig. S5a), which implied that the ROS level
was higher under SSH. Thus, we determined whether ROS
contributes to SSH-driven ICAM-1 expression. Western blot
analysis demonstrated that ICAM-1 induced under SSH was not
decreased by NAC treatment (Fig. S5b), although a positive control

experiment with a ROS-inducing drug, tert-butyl-hydroperoxide
(TBHP), showed that the same concentration of NAC substantially
decreased ROS generation in OVSAYO cells (Fig. S5c).
We further addressed whether lipophagy occurred in hypoxic

tumour regions in vivo. OVISE cells were used for this purpose
because of favourable engraftment efficacy in immunocompromised
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mice. Mice with grafted OVISE tumours were treated with hypoxia
probe pimonidazole and then the hypoxic region, ICAM-1 expres-
sion, and LC3B expression in tumour tissues were examined by IHC.
As expected, ICAM-1 was strongly expressed in the severe hypoxic
tumour area (Fig. S6). We found that autophagosomes stained for
LC3B (Fig. 3j and S7), a predominant marker of autophagy [31], were
unevenly distributed in tumour tissue (Fig. S7) that included the
pimonidazole-positive region (Fig. 3k and S8). Our previous study of
frozen tumour sections revealed that the LD level in the blood
vessel-poor (hypoxic) grafted tumour area was significantly lower
than that in the vessel-rich area [8]. Thus, the hypoxia-lipophagy-
driven LD catabolism-ICAM-1 expression axis was likely active in vivo.

Lipophagy contributes to SSH-driven ICAM-1 expression via
NFκB binding
We found that lipophagy and hypoxia collaborated to induce
robust ICAM-1 expression in CCC cells at the gene expression
level. We next investigated how lipophagy contributed to this
synergistic transcriptional activation. Our previous data showed
that phosphorylation of RelA, a component of transcription factor
NFκB, followed by binding to the ICAM1 promoter is enhanced in
response to SSH [8]. This NFκB activation is associated with mTOR
and TNF-α pathways [8]. In this study, we found that SSH-driven
expression of the FVII gene, which is independent of NFκB [9], was
not inhibited by CQ treatment (Fig. 4a). Thus, we surmised that the
NFκB pathway was responsible for the lipophagy-mediated ICAM1
expression. To test this hypothesis, we first examined the effect of
CQ treatment on SSH-driven phosphorylation of RelA in OVSAYO
cells. Western blotting revealed that CQ did not reduce the
phospho-RelA level (Fig. S9a). Additionally, expression of proteins
associated with NFκB activation (TNF-α) [8], dimerisation (p50)
[8, 35], and suppression (GILZ [9] and IκB-α [35]) were not changed
by CQ treatment (Fig. S9a, b). Phosphorylation of mTOR was also
not altered by CQ treatment (Fig. S9c). Thus, CQ did not interfere
with the activation process of NFκB under SSH.
HSC70 is involved in chaperone-mediated autophagy in

association with lipophagy [29]. HSC70 also binds to RelA and
activates NFκB-targeted genes [36]. Thus, we further investigated
whether HSC70 was involved in SSH-driven expression of ICAM-1.
HSC70 protein was expressed equally in OVSAYO cells cultured
under the four conditions (Fig. S9d). Western blotting showed that
the ICAM-1 level under SSH was not reduced by HSC70-KD
(Fig. S9e), which suggested that HSC70 was not involved in ICAM1
expression.
We next determined whether CQ interfered with translocation

of NFκB from the cytoplasm to nucleus. Western blotting of RelA
and its binding partner p50 revealed that their relative expression
levels in the nucleus under SSH were not decreased by CQ
treatment (Fig. 4b), which suggested that CQ did not inhibit the
translocation process.
Some cofactors, such as NPM1 [37], human telomerase reverse

transcriptase (hTERT) [38], and Src-associated substrate during
mitosis of 68 kDa (Sam68) [39], stabilise NFκB binding to target
gene regions to enhance transcription, which indicates that NFκB

activity is controlled at its binding level. Moreover, there have
been no reports on the roles of these cofactors in ICAM1
expression. Thus, we further examined whether CQ interfered
with NFκB binding to the ICAM1 promoter region. Chromatin
immunoprecipitation (ChIP) analysis of RelA revealed that the
binding of NFκB under SSH was significantly impaired in CQ-
treated CCC cells (Fig. 4c and S10a). This finding was also observed
for bafilomycin A1, another autophagy inhibitor (Fig. 4d) with a
distinct chemical structure (Fig. 4e). Thus, it was unlikely that CQ
directly inhibited NFκB binding.
Western blotting of NPM1, hTERT, and Sam68 in whole OVSAYO

and OVISE cell lysates revealed that these proteins were expressed
under the indicated conditions (Fig. 4f and S10b). The expression
levels of these proteins in cells cultured under SSH were not
altered by CQ treatment (Fig. 4g and S10c). Additionally, nuclear
localisation of these proteins under SSH was not decreased by CQ
treatment (Fig. 4h), which suggested that CQ did not affect both
the expression or nuclear localisation of these proteins at least
within the tested treatment period.
Binding of the NFκB complex to target genes is enhanced by

direct association to hTERT and Sam68 [38, 39]. Thus, we next
examined whether these proteins bound to the ICAM1 promoter
region in OVSAYO cells. ChIP assays with real-time PCR revealed
that the binding level of hTERT and Sam68 was relatively low
under SSN in OVSAYO cells. However, binding of these proteins
was enhanced by culturing the cells under SSH (Fig. 4i). We also
found that such protein binding under SSH was inhibited by CQ
treatment in CCC cells (Fig. 4i and S10d). ChIP analysis of grafted
OVISE tumours revealed that both proteins considerably bound to
the human ICAM1 region in vivo (Fig. 4j, k) and the binding was
predominant for Sam68 (Fig. 4k).
CQ potentially blocks NFκB binding by inhibition of hTERT and

Sam68. To test this possibility, we further examined whether
Sam68-KD under SSH decreases the association of NFκB with the
promoter region (Fig. 4l). Sam68-KD under SSH did not affect the
expression levels of RelA and p50 in OVSAYO cells (Fig. 4m).
However, RelA binding was significantly diminished by Sam68-KD
(Fig. 4n), which suggests that Sam68 promoted NFκB binding
under SSH. We also examined hTERT, but the hTERT level was only
partially reduced even when CCC cells were treated with siRNA for
a longer period probably, owing to high protein stability (data not
shown). Therefore, we did not reach the same conclusion.

LC3B expression in cancer cells significantly correlates with
poor prognoses of CCC patients
It has been shown that LC3B better reflects the autophagy status
than LC3A [40]. Additionally, it has been reported that LC3A
expression in tumour tissues is associated with poor prognoses of
CCC patients [41]. We found that lipophagy associated with
increased LC3A/B level induced synergistic ICAM-1 expression in
CCC cells in response to SSH. Thus, we further examined the
correlation between tissue LC3 levels and the prognosis of CCC
patients. IHC of LC3A and LC3B using the TMA, followed by scoring
of expression levels revealed that the LC3B level was considerably

Fig. 3 Lipophagy is responsible for SSH-driven ICAM-1 expression and associated with an LD decrease in CCC cells. aWestern blot analysis
of the indicated proteins in CCC cells. Cells were cultured under the indicated conditions for 16 h. N and H are described in Fig. 1f. β-Actin was
probed as a protein-loading control. b Effect of CQ on LC3A/B-II and ICAM-1 levels in CCC cells. Cells were cultured under the indicated
conditions for 16 h (LC3A/B-II) and 48 h (ICAM-1). V: Vehicle. c Effect of CQ on ICAM-1 mRNA levels in OVSAYO cells exposed to SSH for 16 h. V:
Vehicle. Data are the mean (N= 3) ± SD. Statistical significance was evaluated by the two-sided t-test. *p= 0.02 (compared with vehicle).
d Effect of CQ on the viability of CCC cells exposed to SSH for the indicated periods. Data are the mean (N= 3) ± SD. e Scheme of the assay.
Cellular LD level under the indicated conditions and effect of CQ treatment on LD level were examined. f LD and LC3A/B levels in OVSAYO
cells cultured under the indicated conditions for 16 h. Bars: 100 μm. g Effect of CQ on the LD level in OVSAYO cells cultured under SSH. h LD
levels in CCC cells were quantified by ImageJ software. The stained area was evaluated for the indicated number of images acquired from
three independent replicates and normalised to the number of cells (nucleus) in each image. Statistical significance was evaluated by the
Mann–Whitney U-test. *p < 0.001 (compared with SSH vehicle). i Effect of ATGL-KD on expression of ICAM-1 in OVSAYO cells cultured under
SSH for 48 h. j, k Immunofluorescence staining of grafted OVISE tumour tissue for the indicated markers. j is a magnified version of Fig. S7.
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heterogeneous among CCC cases (Fig. 5a). Kaplan–Meier analysis
revealed that the LC3B level was significantly associated with a poor
OS rate (Fig. 5b). Multivariable analysis showed that LC3B tended to
be a prognostic factor for CCC (p < 0.1) with a risk ratio of 2.634
(Table S3), although the LC3A level did not (Figs. S11 and 5c), which
may be consistent with the notion that LC3B better reflects the
autophagy status. Thus, the lipophagy-ICAM-1 pathway contributed
to the aggressiveness of CCC.

DISCUSSION
The present study demonstrated that SSH-driven activation of the
ICAM1 gene in CCC cells was mediated via lipophagy, a lipid
catabolism induced in association with autophagy. It is well known
that autophagy is induced in cancer cells, which include ovarian
cancer cells, in response to nutrient deprivation [33] and hypoxia
[42]. The presented mechanism is characteristic because it occurs
when availabilities of oxygen and fatty acids (FA-albumin complex
and lipoproteins such as LDL) are simultaneously limited (Fig. 5d).

Additionally, we demonstrated that this mechanism involves
stabilisation of NFκB binding to the ICAM1 promoter region
(Fig. 5d). Thus, the present study provides a greater understanding
of how ICAM-1 is produced in CCC cells, thereby augmenting
malignancy of CCC tissues.
We found that ICAM-1 levels were not significantly different

between disease stages, which implied that malignant CCC cases
tend to highly express ICAM-1 even at the onset of the disease. So
far, the reported roles of ICAM-1 in EOC cell biology have been
controversial as described in the Introduction. We first demon-
strated that ICAM-1 expression is related to poor prognoses of
CCC patients although there are limitations owing to relatively
small sample size. This is in agreement with data showing that
ICAM-1 confers a survival advantage to CCC cells under SSH [8]
and that generation of autophagosomes in association with ICAM-
1 expression can correlate with a poor prognosis. Considering that
ICAM-1 and autophagy contribute to cancer progression and can
be therapeutically targeted by specific antibodies [14] and CQ [43],
respectively, CCC may also be treated with these drugs.
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Sam68-KD on RelA binding to the ICAM1 region under SSH. Data are the mean (N= 3) ± SD. Statistical significance was evaluated by the two-
sided t-test.
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We showed that FA, but not cholesterol, uptake is predominantly
associated with LD biogenesis in CCC cells, thereby increasing cell
viability under SSH. To date, some studies have suggested
mechanisms by which LD confers survival advantages to cancer
cells under hypoxia, such as maintenance of endoplasmic reticulum
homoeostasis [44] and detoxification of ROS [45]. Thus, the effect of
LD generation on cell survival under SSH might involve these
reported molecular mechanisms. However, these functions of LD
may not replace those of ICAM-1 because SSH-driven ER-stress [8]
and potential ROS generation (Fig. S5) are not responsible for the
ICAM-1 expression.
Additionally, it is important to consider why CCC cells

undergo apoptosis under SSH to understand how LD confers a
survival advantage to CCC cells. Cells store excess FA as a
component of triglyceride, thereby protecting them from
lipotoxicity [6]. Mild lipophagy in CCC cells under mild O2 and
lipid deprivation likely generates FA from LD to compensate for
impaired exogenous lipid supply and FA unsaturation [6].
However, aggressive SSH-driven lipophagy may produce excess
unsaturated and saturated FAs, which is toxic rather than
beneficial (Fig. 5e). Inhibition of β-oxidation [46] may accelerate
this process (Fig. 5e, orange T-bar). Additionally, inhibition of
fatty acid unsaturation under hypoxia may promote a buildup of
toxic saturated FAs [6] (Fig. 5e, magenta T-bar). Our data suggest
that FA uptake under hypoxia prevents SSH-driven cytotoxicity
via LD biogenesis (Fig. 5e, red symbols). Oleate incorporated
into LD may play roles in suppression of saturated FA-driven
lipotoxicity [6]. Our data showing that unsaturated oleic acid
rescues whereas saturated palmitic acid promotes SSH-driven

cell death, respectively (Fig. 2b), support these arguments. When
exogenous FAs are unavailable, ICAM-1 synthesised in response
to SSH might replace impaired LD functions and confer
resistance against apoptosis via currently unknown mechanisms
(Fig. 5e, blue T-bar).
Our results suggest that lipophagy contributes to stabilisation of

NFκB binding to the ICAM1 promoter region, presumably through
association of hTERT and Sam68 with the NFκB complex (Fig. 5d).
However, lipophagy does not contribute to the activation process
of NFκB, which includes mTOR and TNF-α (Fig. 5d). This is in
contrast to a previous report showing that cytokine-induced
autophagy activates NFκB, but this is not associated with ICAM1
expression in endothelial cells [47]. Activities of hTERT and Sam68
are regulated by phosphorylation of their amino acid residues
[39, 48]. Peroxisome proliferator-activated receptors (PPARs) are
cellular receptors of free FAs and involved in lipid metabolism [25].
The PPARγ-hTERT axis contributes to prevention of endothelial cell
apoptosis [49]. Thus, phosphorylation of hTERT and Sam68
through FAs released by lipophagy-driven degradation of LD
might contribute to SSH-driven ICAM-1 expression. Future studies
are necessary to uncover how lipophagy facilitates the association
between NFκB and these coactivators (Fig. 5d, red-dashed arrow).
In summary, the present study revealed that lipophagy

connects SSH-driven ICAM1 gene expression and fatty acid
deficiency. Considering that expression of ICAM-1 is associated
with poor survival of CCC patients, suppression of the lipophagy-
ICAM-1 pathway may be a promising therapeutic strategy.
Currently, the mechanisms of how ICAM-1 confers a survival
advantage to CCC cells are unclear. Future elucidation of this topic
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together with the application of existing drugs may result in
effective therapeutic options for ovarian cancer patients.
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