memory |
|
|
rat—acquisition and maintenance of memory |
2 mT, 50 Hz |
Liu et al. [232] |
rat—memory and corticosterone level |
0.2 mT, 50 Hz |
Mostafa et al. [233] |
spatial recognition memory in mice |
0.6/0.9/1.1/2 mT, 25/50 Hz |
Fu et al. [234] |
spatial memory disorder/hippocampal damage in Alzheimer’s disease rat model |
400 μT, 50 Hz |
Liu et al. [235] |
recognition memory task/hippocampal spine density in mice |
1 mT, 50 Hz |
Zhao et al. [236] |
human hippocampal slices—semantic memory |
1 μT, 5 min on/5 min off |
Richards et al. [237] |
stress |
|
|
behaviour/anxiety in rats |
520 μT, 50 Hz |
Balassa et al. [238] |
benzodiazepine system in hyperalgesia in rats |
0.5/1/2 mT, 60 Hz |
Jeong et al. [239] |
anxiogenic effect in adult rats |
2 mT, 50 Hz |
Liu et al. [240] |
anxiety level and spatial memory of adult rats |
2 mT, 50 Hz |
He et al. [241] |
stress-related behaviour of rats |
10 mT, 50 Hz |
Korpinar et al. [242] |
depression and corticosterone secretion in mice |
1.5/3 mT, 60 Hz |
Kitaoka et al. [243] |
anxiety, memory and electrophysiological properties of male rats |
4 mT, <60 Hz |
Rostami et al. [244] |
induction of anxiety via NMDA activation in mice |
1 mT, 50 Hz |
Salunke et al. [245] |
pain |
|
|
mice—pain thresholds |
2 mT, 60 Hz |
Jeong et al. [246] |
snail—analgesia |
141−414 μT, 30 & 60 Hz |
Prato et al. [247] |
human—analgesia/EEG |
200 μT, <500 Hz |
Cook et al. [248] |
attenuate chronic neuropathic pain in rats |
1 mT, 1/10/20/40 Hz |
Mert et al. [249] |
mice—inhibition of morphine-induced analgesia |
0.15-9 mT, 0.5 Hz |
Kavaliers & Osscnkopp [250] |
dopamine/serotonin/melatonin |
|
|
rat frontal cortex—dopamine and serotonin level |
1.8–3.8 mT, 10 Hz |
Siero et al. [251] |
rat brain—serotonin and dopamine receptors activity |
0.5 mT, 50 Hz |
Janac et al. [252] |
rat—central dopamine receptor |
1.8–3.8 mT, 10 Hz |
Siero et al. [253] |
rat—plasma and pineal melatonin levels |
1/5/50/250 μT, 50 Hz |
Kato et al. [254] |
human—melatonin concentration |
2.9 mT, 40 Hz |
Karasek et al. [255] |
genetic |
|
|
rat brain cells—increases DNA strand breaks |
0.5 mT, 60 Hz |
Lai & Singh [256,257] |
human HL-60 cells-steady—state levels of some mRNAs |
8 μT, 60 Hz |
Karabakhtsian et al. [258] |
hamster ovary K1cells—promotion in X-ray-induced mutations |
>5 mT, 50 Hz |
Miyakoshi et al. [230] |
HL-60 cells—CREB DNA binding activation |
0.1 mT, 50 Hz |
Zhou et al. [259] |
plasmids in E. coli—increase in the number of mutations |
5 mT, 60 Hz |
Komaya et al. [231] |
genetic analysis of circadian responses in Drosophila
|
300 μT, 3–50 Hz |
Fedele et al. [225] |
epigenetic modulation of adult hippocampal neurogenesis in mice |
1 mT, 50 Hz |
Leone et al. [260] |
circadian gene expression in human fibroblast cell |
0.1 mT, 50 Hz |
Manzella et al. [226] |
epigenetic modulation in human neuroblastoma cells |
1 mT, 50 Hz |
Consales et al. [261] |
calcium |
|
|
lymphocyte—calcium signal transduction |
42.1 μT, 16 Hz |
Yost & Liburdy [262] |
T cell—intracellular calcium oscillations |
0.1 mT, 50 Hz |
Lindströum et al. [263] |
rat pituitary cells—Ca2+ influx |
50 μT, 50 Hz |
Barbier et al. [264] |
Ca2+ channel protein in the cell membrane |
13/114 μT, 7/72 Hz |
Baurus Koch et al. [229] |
human skin fibroblast populations—intracellular calcium oscillations |
8 mT, 20 Hz |
Löschinger et al. [265] |
osteoblasts cells—intracellular calcium levels |
0.8 mT, 50 Hz |
Zhang et al. [266] |
C2C12 muscle cells—calcium handling and increasing H2O2
|
1 mT, 50 Hz |
Morabito et al. [267] |
rat ventricle cells—intracellular Ca2+
|
0.2 mT, 50 Hz |
Sert et al. [268] |
mesenchymal stem cells—Ca2+ intake |
1 mT, 50 Hz |
Özgün & Garipcan [269] |
brain tissue—radiation-induced efflux of Ca2+ ions |
μT, 15/45 Hz |
Blackman et al. [270] |
rat hippocampus—Ca2+ signalling and NMDA receptor functions |
50/100 μT, <300 Hz |
Manikonda et al. [271] |
entorhinal cortex neurons—calcium dynamics |
1/3 mT, 50 Hz |
Luo et al. [272] |