Skip to main content
. 2022 Aug 3;19(193):20220325. doi: 10.1098/rsif.2022.0325

Table 4.

Extremely low-frequency (less than 3 kHz) magnetic field effects on reactive oxygen species (ROS) levels.

system magnetic field references
ROS
ageing via ROS involvement in brain of mongolian gerbils 0.1/0.25/0.5 mT, 50 Hz Selakovi et al. [273]
hippocampus mitochondria via increasing H2O2 in mice 8 mT, 50 Hz Duan et al. [274]
neural differentiation/H2O2 elevation in mesenchymal stem cells 1 mT, 50 Hz Park et al. [275]
H2O2 production in neuroblastoma cell 2 ± 0.2 mT, 75 ± 2 Hz Osera et al. [276]
pro-Parkinson’s disease toxin MPP+/H2O2 increase in SH-SY5Y cells 1 mT, 50 Hz Benassi et al. [277]
rat peritoneal neutrophils-oxidative burst 0.1 mT, 60 Hz Roy et al. [278]
cortical synaptosomes of Wistar rats-oxidative stress 0.7 mT, 60 Hz Túnez et al. [279]
pro-oxidant effects of H2O2 in human neuroblastoma cells 2 mT, 75 Hz Falone et al. [280]
reducing hypoxia/inflammation damage ROS-mediated in neuron-like and microglial cells 1.5 ± 0.2 mT, 75 Hz Vincenzi et al. [281]
mouse brain-antioxidant defense system 1.2 mT, 60 Hz Lee et al. [282]
rat-cortical neurons-redox and trophic response/reducing ROS 1 mT, 50 Hz DiLoreto et al. [283]
human monocytes-cell activating capacity/ROS modulation 1 mT, 50 Hz Lupke et al. [284]
HL-60 leukaemia cells-proliferation/DNA damage implicating ROS 1 mT, 50 Hz Wolf et al. [285]
human monocytes-alteration of 986 genes/modulating ROS 1 mT, 50 Hz Lupke et al. [286]
prostate cancer cells-apoptosis through ROS 0.2 mT, 60 Hz Koh et al. [287]
K562 cells-O·−2 formation and HSP70 induction 0.025–0.1 mT, 50 Hz Mannerling et al. [288]
K562 Cells-differentiation via increasing O·−2 production 5 mT, 50 Hz AySe et al. [289]
K562 leukaemia cell-number of apoptotic cells via increasing O·−2 production 1 mT, 50 Hz Garip & Akan [290]
PC12 cells-H2O2 increase 1 mT, 50 Hz Morabito et al. [291]
carcinoma cells-cisplatin via increasing H2O2 1 mT, 50 Hz Bułdak et al. [292]
human carcinoma cells-morphology and biochemistry implicating ROS 0.1 mT, 100&217 Hz Sadeghipour et al. [293]
rats- DNA strand breaks in brain cells by modulating ROS 0.1–0.5 mT, 60 Hz Lai & Singh [294]
cardiomyocytes-injury treatment implicating ROS 4.5 mT, 15 Hz Ma et al. [295]
genomic instability/oxidative processes in human neuroblastoma cells 100 μT, 50 Hz Luukkonen et al. [296]
expression of NOS and O·−2 in human SH-SY5Y cells 1 mT, 50 Hz Reale et al. [297]
ROS-related autophagy in mouse embryonic fibroblasts 2 mT, 50 Hz Chen et al. [298]
healing via reducing ROS production in artificial skin wounds <40 μT, 100 Hz Ferroni et al. [299]
apoptosis via oxidative stress in human osteosarcoma cells 1 mT, 50 Hz Yang et al. [300]
increase O·−2 in erythro-leukemic cells 1 mT, 50 Hz Patruno et al. [301]
Genomic instability/H2O2 increase in SH-SY5Y cells 100 μT, 50 Hz Kesari et al. [302]
NOX-produced ROS in hAECs 0.4 mT, 50 Hz Feng et al. [303]
mitochondrial permeability via increasing H2O2 in human aortic endothelial cells 0.4 mT, 50 Hz Feng et al. [304]
apoptotic via mitochondrial O·−2 release in human aortic endothelial cells 0.4 mT, 50 Hz Feng et al. [305]
antioxidant activity implicating H2O2 in human keratinocyte cells 25 − 200 μT, 1–50 Hz Calcabrini et al. [306]
antioxidative defense mechanisms via ROS in human osteoblasts 2 − 282 μT, 16 Hz, Ehnert et al. [307]
astrocytic differentiation implicating ROS in human bone stem cells 1 mT, 50 Hz Jeong et al. [308]
reduce mitochondrial O·−2 production in human neuroblastoma cells 100 μT, 50 Hz Höytö et al. [309]
ROS production in human cryptochrome 1.8 mT, <100 Hz Sherrard et al. [222]
proliferation by decreasing intracellular ROS levels in human cells 10 mT, 60 Hz Song et al. [310]
cytotoxic effect in by raising intracellular ROS in human GBM cells 1–58 mT, 350 Hz Helekar et al. [311]