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Gut neuroendocrine signaling regulates synaptic
assembly in C. elegans
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Abstract

Synaptic connections are essential to build a functional brain. How
synapses are formed during development is a fundamental ques-
tion in neuroscience. Recent studies provided evidence that the
gut plays an important role in neuronal development through
processing signals derived from gut microbes or nutrients. Defects
in gut–brain communication can lead to various neurological disor-
ders. Although the roles of the gut in communicating signals from
its internal environment to the brain are well known, it remains
unclear whether the gut plays a genetically encoded role in
neuronal development. Using C. elegans as a model, we uncover
that a Wnt-endocrine signaling pathway in the gut regulates
synaptic development in the brain. A canonical Wnt signaling path-
way promotes synapse formation through regulating the expres-
sion of the neuropeptides encoding gene nlp-40 in the gut, which
functions through the neuronally expressed GPCR/AEX-2 receptor
during development. Wnt-NLP-40-AEX-2 signaling likely acts to
modulate neuronal activity. Our study reveals a genetic role of the
gut in synaptic development and identifies a novel contribution of
the gut–brain axis.
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Introduction

The human brain contains billions of neurons wired through tril-

lions of highly specific synaptic connections. These connections

provide the structural bases of brain functions. Synaptic structures

are largely formed during the early development stage and precisely

regulated by evolutionally conserved molecules and signaling path-

ways, among which is the well-known Wnt signaling (Salinas &

Zou, 2008; Farias et al, 2010; Dickins & Salinas, 2013; Zwamborn

et al, 2018; Ohkawara et al, 2021; Teo & Salinas, 2021).

Wnt signaling is highly conserved cross animal kingdom and

plays critical roles in various steps of neuronal development

including synaptogenesis (Zacharias et al, 1999; Packard et al,

2002; Klassen & Shen, 2007; Jing et al, 2009; Oliva & Inestrosa,

2015). In this process, the Wnt ligands secreted either from the

nervous system or from the neighbor tissues bind to the receptors

on neurons or the postsynaptic cells (Hall et al, 2000; Packard

et al, 2002; Klassen & Shen, 2007), which activate the downstream

signaling cascades. Wnts function through either the b-catenin-
dependent canonical or the independent noncanonical pathway

(Moon et al, 2002; Veeman et al, 2003). However, the detail mecha-

nisms underlying synaptic development regulated by Wnts are

not well understood. Interestingly, recent studies showed that

Wnt signaling participates in brain–gut communication (Zhang

et al, 2018). Metagenomic analysis also shows that Wnt signaling is

upregulated in psoriasis patients’ gut microbiota (Xiao et al, 2021),

indicating that it may be involved in gut–brain communication.

However, direct evidence regarding whether and how the intestinal

Wnt signaling is involved in regulating brain development or func-

tions is still missing.

The gastrointestinal (GI) tract plays a critical role in regulating

brain development and function. It not only provides the nutrients,

but also directly senses the gut environmental stimuli. Through the

gut–brain axis, diets and gut microbes regulate neurogenesis, micro-

glia and astrocyte activation, myelination, blood brain barrier

permeability, synaptic pruning and plasticity (Cryan et al, 2019).

Dysregulation of the gut–brain axis is highly correlated with various

neurodevelopmental or neurodegenerative disorders including

autism spectrum disorders, Alzheimer’s disease, and Parkinson’s

disease (Mulak & Bonaz, 2015; Li & Zhou, 2016; Quigley, 2017;

Kowalski & Mulak, 2019; Chidambaram et al, 2020). Although

accumulative evidence indicates that gut microbiota regulates

neuronal development and function in the brain, it remains largely

unknown whether the gut plays any environment-independent,

genetically encoded role in regulating brain development.

C. elegans is an excellent model for addressing the mechanisms

underlying synaptic formation due to its simple and amendable

nerve system (Zhen et al, 2000; Jin, 2005). For example, the presy-

naptic structure can be labeled and visualized with fluorescence-

tagged synaptic vesicles or active zone proteins at the single cellular

level (Baum et al, 1999; Colon-Ramos et al, 2007; Mizumoto &

Shen, 2013). Similarly, postsynaptic receptors can be fluorescently

tagged (Brockie & Maricq, 2003; Mizumoto & Shen, 2013). With
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those tools, many conserved synaptic regulators have been identi-

fied including IgG family members, Netrin/DCC, and Wnts (Hendi

et al, 2019). However, the underlying molecular mechanisms for

most regulators remain unidentified.

In this study, we uncovered that a Wnt-neuroendocrine pathway

in the gut regulates presynaptic formation in the nerve ring. Wnt

signaling functions by upregulating the NLP-40 neuropeptides in the

gut. NLP-40 peptides are secreted and then promote synaptic forma-

tion most likely through GPCR/AEX-2 mediated neuronal activity.

Therefore, we uncovered a genetically encoded role of gut in regu-

lating synaptogenesis in the nerve ring, which reveals a novel mode

of gut–brain interaction.

Results

Wnt signaling in the gut regulates AIY presynaptic formation

C. elegans AIY neurons are a pair of bilateral and symmetric interneu-

rons located in the nerve ring, which is a structure analogous to verte-

brate’s brain (Fig 1A) (White et al, 1986). AIY neurites form

presynaptic structures with a stereotypic and highly reproducible

pattern (Fig 1A’) (White et al, 1986; Colon-Ramos et al, 2007).

Wnt signaling pathways are highly conserved and play diverse

roles in regulating synaptic formation, plasticity, and maintenance

(Dickins & Salinas, 2013; McLeod & Salinas, 2018; Yang &

Zhang, 2020). We previously found that components in a canonical

Wnt signaling pathway including Wnt/CWN-2, Frizzled/CFZ-2,

Disheveled/DSH-2, b-catenin/SYS-1, and TCF/POP-1 were required

for Zone 2 presynaptic clustering (Shi et al, 2018). This Wnt signal-

ing pathway acts both in the nervous system and in the intestine to

regulate AIY presynaptic morphology (Shi et al, 2018). To further

address the role of Wnt signaling in AIY presynaptic formation, we

first quantified the fluorescence intensity of the AIY synaptic vesicle

marker GFP::RAB-3 in cwn-2(ok895), cfz-2(ok1201), pop-1(hu9)

loss-of-function mutants and sys-1 RNAi animals, and found that the

GFP intensity was robustly reduced as compared to that in the wild-

type animals (Fig 1B–H). To confirm the role of Wnt signaling in

AIY presynaptic formation, we examined additional presynaptic

makers including the active zone protein GFP::SYD-1, synaptic vesi-

cle protein YFP::SNB-1. Similarly, both SYD-1 and SNB-1 reporters

were reduced in the Wnt mutants (Figs 1B’–H0 and EV1A–E).

Furthermore, we also examined the endogenous synaptic marker

using split GFP approaches to cell-specifically label AIY presynaptic

sites. We knocked in GFP11 at the N-terminal of endogenous RAB-3

through Crispr/Cas9 and expressed GFP1-10 with AIY-specific ttx-3

promoter. As we could not detect GFP signals when GFP::RAB-3

expression level is low (unpublished data), we knocked in 7xGFP11,

which can significantly increase GFP level (Kamiyama et al, 2016).

With this split GFP tagged marker, we observed the same results as

with other presynaptic markers (Fig EV1F–K). To exclude the possi-

bility that the reduction in the presynaptic marker is specific to the

green fluorophore, we quantified the mCherry::RAB-3 and obtained

similar results (Appendix Fig S1A–G), which suggests the reduction

of synaptic signals in Wnt mutants is not fluorophore specific.

Finally, to exclude the possibility that the decrease of synaptic

marker in AIY is due to the effect of Wnt signaling on the ttx-3

promoter or on AIY morphogenesis, we quantified the cytoplasmic

mCherry driven by the same promoter and found that the fluores-

cence intensity and the AIY morphology did not change in the cfz-2

(ok1201) or pop-1(hu9) mutants (Fig EV2A–C and F). These results

suggest that the reduction of AIY presynaptic marker is not due to

the effect of Wnt signaling on ttx-3 promoter or AIY morphogenesis.

These data collectively support the following two conclusions. First,

Wnt signaling is required for AIY synaptic formation. Second, all

synaptic markers we examined are similarly regulated by the Wnt

signaling pathway. Therefore, for convenience, unless specified, we

used the integrated GFP::RAB-3 (wyIs45) for the rest of analysis.

To determine the site of action, we conducted tissue-specific

RNAi. We used the RNA transport sid-1 mutants with sid-1 trans-

gene specifically expressed in either the gut or the nervous system

(Calixto et al, 2010; Melo & Ruvkun, 2012). We confirmed the

specificity and the efficiency of RNAi by knocking down the cyto-

plasmic GFP reporters, and found that both efficiency and specificity

of intestinal-specific RNAi was robust (no GFP changed in nervous

system, 99.5% reduction in the intestine). Notably, although the

efficiency for neuronal-specific RNAi was also robust, the specificity

was not perfect (GFP was reduced by 70.24% in nervous system,

43.01% in the intestine) (Appendix Fig S2A–D). With this system,

we found that the AIY presynaptic markers were reduced when Wnt

signaling components were knocked down in the intestine (Fig 1I–

N), but not in the nervous system (Fig 1I’–N’). These results suggest

▸Figure 1. AIY presynaptic formation requires intestinal Wnt signaling.

A A bright field image of a wild-type adult C. elegans. The position of the AIY interneurons in the head is indicated with green, and the gut is outlined with dashed
lines.

A’ A cartoon diagram of the C. elegans head modified from wormatlas with permission. The AIY processes and soma are indicated in gray, and the presynaptic sites
are marked with green (Altun & Hall, 2021).

B–G’ Confocal images of the AIY labeled with synaptic vesicle marker GFP::RAB-3 (B–G, green) and active zone marker GFP::SYD-1 (B’-G’, pseudo-red) in wild-type (B, B’),
cwn-2(ok895) (C, C’), cfz-2(ok1201) (D, D0), pop-1(hu9) (E, E’) and sys-1 RNAi (G, G’) animals.

H–H’ Quantification of the fluorescence intensity of AIY RAB-3 (H) and SYD-1 (H’) for the indicated genotypes.
I–M’ Confocal images of AIY labeled with mCherry::RAB-3 (pseudo-green) (I-M), or GFP::RAB-3 (I’-M’) of tissue-specific RNAi treatment for control (I-I’), cwn-2(J-J’), cfz-2

(K–K’), sys-1(L-L’) and pop-1(M-M’).
N–N’ Quantification of the fluorescence intensity of AIY mCherry::RAB-3 or GFP::RAB-3 for the indicated RNAi treatment.

Data information: The scale bar in (B) and (I) are 10 lm and applies to (C–G’) and (I’–M’), respectively. Asterisks indicate AIY soma. The AIY synaptic region was quantified
for the synaptic intensity analysis. For (H–H’, N–N’), each dot represents one animal, data were collected from at least three independent experiments. Statistical
analyses are based on one-way ANOVA followed by Dunnett’s test (for mutants) or two-tailed Student’s t-test (for RNAi). ns: not significance (P > 0.05), ****P < 0.0001
as compared to the wild-type or control RNAi. Error bars represent SEM.
Source data are available online for this figure.
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that Wnt signaling is required in the intestine. It is interesting that

neuronal-specific RNAi against Wnt components did not affect the

synaptic phenotype even though it also knocked down the intestinal

expression. One possible explanation is that the knockdown effi-

ciency is not enough. To confirm the action site, we performed

tissue-specific rescue experiments. Consistently, we found that cfz-2

(ok1201) mutants were only rescued by the intestinal-specific, but

not by neuronal-specific, expression of cfz-2 cDNA (Appendix

Fig S3A–F), indicating that Wnt signaling in the intestine is suffi-

cient for regulating AIY synaptic formation. Together, these data

indicate that the canonical Wnt pathway acts in the intestine to

regulate AIY presynaptic formation.

Intestinal neuropeptide/NLP-40 is required for synaptogenesis

The intestine communicates with the brain via neuroendocrine

signaling (Dimaline & Dockray, 1994; Campbell et al, 2004; Nassel

et al, 2019). To test whether the Wnt signaling regulates AIY

synaptogenesis through intestine-expressed neuropeptides, we first

examined if EGL-3/KC2, a key proprotein convertase for neuropep-

tide synthesis (Li & Kim, 2008; Hung et al, 2014), was required for

AIY synaptic formation. Indeed, the fluorescence intensity of AIY

presynaptic markers was robustly reduced in egl-3(n589) mutants

(P < 0.0001, Fig 2A). To ask whether egl-3 acts in the intestine,

we performed tissue-specific rescue experiments. We found that

egl-3 rescued the presynaptic defects when expressed either in

the intestine or in the nervous system (Fig EV3A–E), suggesting

that egl-3 functions in both intestine and nervous system. Further-

more, we examined whether the intestine-specific proprotein

convertase AEX-5/KC3 (Pauli et al, 2006; Li & Kim, 2008) is

required for AIY presynaptic formation. We found similar presy-

naptic defects in aex-5(sa23) mutants (P < 0.0001, Fig 2A). These

data suggest that intestinal neuropeptides are required for the AIY

presynaptic formation.

There are 131 neuropeptide encoding genes identified in

C. elegans genome (Nathoo et al, 2001; Van Bael et al, 2018). We

screened intestine-expressed NLP and FLP family neuropeptides

encoding genes through RNAi (Fig 2B) (Pauli et al, 2006; Li &

Kim, 2008; Spencer et al, 2011; Wang et al, 2013), and found that

knockdown of nlp-40 resulted in a dramatic reduction of the synap-

tic marker. These data suggest that NLP-40 peptides are required for

the AIY presynaptic formation (Fig 2C).

nlp-40 encodes a neuropeptide precursor protein, which contains

a N-terminal signal peptide sequence and four predicted mature

peptides (Wang et al, 2013). To validate the nlp-40 RNAi result, we

examined two independently isolated nlp-40 mutant alleles, tm4085

and vj3. nlp-40(tm4085) harbors an in-frame deletion that deletes

the neuropeptide P1, part of P2, and introduces a mutation from

A70 to V in P3 and an early stop deleting the last three amino acid

at the C-terminus of P4 (Fig 2D and Appendix Fig S4). vj3 deletes

the nlp-40 promoter, the first exon and first intron (Fig 2D) (Wang

et al, 2013). Similar to the RNAi results, we observed a robust

reduction of the AIY synaptic vesicles and active zone markers in

both nlp-40 mutants (Fig 2E–G and J, Appendix Fig S5A–D, A’–C0).
Furthermore, the AIY presynaptic defects in nlp-40(tm4085) and

nlp-40(vj3) mutants were rescued by a wild-type nlp-40 transgene

(Fig 2H–J). Because the vj3 allele also deletes part of a neighboring

gene (Wang et al, 2013), all further analyses of nlp-40 mutants were

made with the tm4085 allele.

To confirm the role of nlp-40 in synaptic formation, we examined

additional presynaptic markers including YFP::SNB-1 and the

endogenous RAB-3 GFP11 tag. We found a similar reduction of fluo-

rescence intensity with both synaptic markers (Appendix Fig S6A,

B, D, A’, B0, and D0). To exclude the possibility that the reduction of

AIY presynaptic marker is due to the effect of nlp-40 on AIY

morphology or the ttx-3 promoter activity, we quantified the inten-

sity of the transcription reporter Pttx-3::mCherry and found it was

not affected in the mutants (Fig EV2A, D and F). These data collec-

tively indicate that nlp-40 is required for AIY synaptogenesis.

The above data so far suggest a model in which nlp-40 func-

tions in the intestine. To test this model, we built Pnlp-40::NLP-

40::mNeonGreen fusion reporter and found that nlp-40 was highly

expressed in the gut beginning at an early embryonic stage and

observed NLP-40 peptides in the intestine and coelomocytes,

which is consistent with the previous report (Appendix Fig S7A–

D) (Wang et al, 2013). We then performed tissue-specific RNAi

and observed a robust reduction of AIY presynaptic marker GFP::

RAB-3 when nlp-40 were knocked down in the intestine (GFP::

RAB-3 expression was reduced by 54.48%. P < 0.0001; Fig 2K–M).

Finally, we performed tissue-specific rescue and found the AIY

presynaptic defects were rescued by the intestine-, but not neuron-

specific expression of nlp-40 (Fig EV4A–F). These data collectively

support a model that intestinal expressed nlp-40 is required for

AIY synaptic formation. We posit that NLP-40 peptides secreted

▸Figure 2. AIY presynaptic formation requires intestinal expressed nlp-40.

A Quantification of the fluorescence intensity of AIY GFP::RAB-3 in wild-type, egl-3(n589) and aex-5(sa23) mutants.
B A Schematic diagram describes the RNAi screen strategy to identify intestinal neuropeptides required for AIY synaptogenesis.
C Quantification of the fluorescence intensity of AIY GFP::RAB-3 for the indicated RNAi treatment. Candidates are intestinal expressed nlp or flp.
D Diagram of nlp-40 genomic structure. P1 to P4 indicates the predicted peptides encoded by nlp-40. The boxes and lines represent exons and introns. Black and gray

indicate translating and untranslating regions. The lines beneath indicate the deletion region.
E–I Confocal images of AIY labeled with GFP::RAB-3 in wild-type (E), nlp-40(tm4085) (F), nlp-40(vj3) (G), nlp-40(tm4085) (H) or nlp-40(vj3) with a wild-type nlp-40 trans-

gene (I).
J Quantification of the fluorescence intensity of AIY GFP::RAB-3 for the indicated genotypes. Transgenic data are averaged from at least two independent lines.
K–L Confocal images of AIY synaptic marker GFP::RAB-3 for the indicated intestinal-specific RNAi treatment.
M Quantification for (K) and (L).

Data information: The scale bar in (E) and (K) are 10 lm and applies to (F–I) and (L), respectively. Asterisks indicate AIY soma. The AIY synaptic region was quantified for
the synaptic intensity analysis. For (A, C, J, and M), each dot represents one animal. Data were collected from at least three independent experiments. Statistics are based
on one-way ANOVA followed by Dunnett’s test (C and J) or two-tailed Student’s t-test (A and M). **P < 0.01, ****P < 0.0001. Error bars represent SEM.
Source data are available online for this figure.
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from the gut likely travel to the nervous system and promote AIY

presynaptic assembly.

To address when nlp-40 is required for the AIY presynaptic

formation, we quantified the fluorescence intensity of AIY GFP::

RAB-3 in nlp-40(tm4085) mutants at the larval L1, L4 and adult Day

1 stage. We found that the fluorescent signal was dramatically

reduced in nlp-40(tm4085) mutants from newly hatched L1 stage

throughout the adult stage (Appendix Fig S7E–G, E’–G’, and H).

These data suggest that intestinal nlp-40 acts prior to hatching

and is required for AIY presynaptic formation during embryonic

development.

nlp-40 acts downstream of the Wnt signaling pathway to
promote AIY presynaptic formation

Thus far, we demonstrated that AIY presynaptic assembly requires

both Wnt and NLP-40 neuropeptide signaling from the gut. To deter-

mine whether Wnt signaling and neuropeptides act in the same

pathway, we examined the AIY presynaptic phenotype in three sets

of double mutants: cwn-2(ok895);nlp-40(tm4085), cfz-2(ok1201);

nlp-40(tm4085), and pop-1(hu9);nlp-40(tm4085) mutants. We

found that the fluorescence intensity of the AIY GFP::RAB-3 in all

double mutants was similar to that in nlp-40(tm4085) single

mutants, but slightly weaker than in Wnt signaling single mutants

(Fig 3A). Furthermore, we also found that the reduction of AIY

presynaptic reporters in cwn-2(ok895) or cfz-2(ok1201) mutants

was partially restored by expressing a wild-type nlp-40 transgene

(Fig 3B). However, expressing nlp-40 transgene in wild-type

animals did not increase the AIY presynaptic marker (Fig 3B), indi-

cating that the rescue of AIY presynaptic marker is due to restoring

nlp-40 expression in Wnt mutants, not nlp-40 overexpression.

Considering that nlp-40 could be regulated by Wnt signaling path-

way (as discussed below), we tried to restore the AIY synap-

tic defects by expressing nlp-40 with intestinal-specific, Wnt-

independent promoter vha-6. While the suppression efficiency was

improved as compared with nlp-40 promoter, it was not fully

restored to the wild-type levels (Fig 3B), suggesting that Wnt signal-

ing may also acts through an nlp-40-independent pathway. These

data are consistent with a model, in which nlp-40 acts downstream

of the Wnt signaling pathway to regulate AIY presynaptic assembly.

A simple model to explain the genetic interaction between nlp-40

and Wnt signaling is that Wnt signaling regulates nlp-40 expression.

To test this, we first quantified the nlp-40 mRNA levels by quantita-

tive reverse transcription PCR, and found that the mRNA levels

were significantly reduced in cwn-2(ok895), cfz-2(ok1201) or pop-1

(hu9) mutants compared to that in wild-type animals (Fig 3C).

Second, we examined the nlp-40 transcriptional reporter Pnlp-40::

GFP and observed a significant reduction in Wnt signaling mutants

or knockdown animals (Fig 3D–J). Lastly, to exclude the possibility

that Wnt signaling affects the overall expression of intestinal genes

in general, we examined the expression of intestinal-specific erm-1

and vha-6 reporters (Oka et al, 2001; Gobel et al, 2004). We found

that the expression of both reporters was not affected by mutations

or RNAi knockdown of the same set of Wnt components (Fig 3K–Q

and Appendix Fig S8A–F). Together, our data demonstrate that the

Wnt signaling pathway promotes AIY presynaptic assembly by

upregulating nlp-40 in the intestine.

GPCR/AEX-2 acts in the nervous system as the NLP-40 receptor to
regulate synaptic formation

AEX-2 serves as the NLP-40 peptides receptor that regulates rhyth-

mic behavior and anoxic survival (Wang et al, 2013; Doshi

et al, 2019). To test whether AEX-2 also acts as the NLP-40 peptides

receptor to regulate AIY presynaptic formation, we examined the

fluorescence intensity of AIY GFP::RAB-3 in aex-2(sa3) mutants

(Fig 4A), and found a robust GFP::RAB-3 reduction in the mutants

(76.84% reduction as compared to that in wild-type animals,

P < 0.0001; Fig 4B, D and L). The reduction of the AIY GFP::RAB-3

in aex-2(sa3) mutants was rescued by a wild-type aex-2 transgene

(Fig 4G and M). We also observed similar reduction in aex-2

mutants with YFP::SNB-1 and endogenous tagged RAB-3

(Appendix Fig S6A, C, D, A’, C0, and D0). In addition, we noticed

that aex-2 did not affect the expression of Pttx-3::mCherry

(Fig EV2A, E, and F), indicating that the reduction of fluorescence

intensity is specific to synaptic markers. The data suggest that aex-2

is required for AIY presynaptic formation.

If AEX-2 functions as the NLP-40 receptor, we would expect that

they act in the same genetic pathway. To test this model, we built

nlp-40(tm4085);aex-2(sa3) double mutants and found that AIY

GFP::RAB-3 intensity in the double mutants was similar to that in

either single mutants (Fig 4B–E and L), indicating that they indeed

act in the same pathway. In addition, expressing NLP-40 in aex-2

(sa3) did not suppress the AIY synaptic defect (Fig 4F and L). These

data are consistent with the model in which AEX-2 acts as the recep-

tor of NLP-40 peptides to regulate the AIY presynaptic formation.

We next sought to determine aex-2 action site. First, we built an

aex-2 transcriptional reporter Paex-2::mNeonGreen, and found that

▸Figure 3. Wnt signaling regulates AIY presynaptic formation by promoting nlp-40 expression.

A–C Quantification of the fluorescence intensity of AIY presynaptic marker GFP::RAB-3 (A, B) and nlp-40 mRNA level (C) for the indicated genotypes. The AIY synaptic
region was quantified for the synaptic intensity analysis.

D–I Confocal images of the transcriptional nlp-40 reporter (Pnlp-40::GFP) in wild-type (D), cwn-2(ok895) (E), cfz-2(ok1201) (F), pop-1(hu9) (G), and control or sys-1 RNAi
(H and I) animals at adult Day 1 stage.

J Quantification of the Pnlp-40::GFP fluorescence intensity for the indicated genotypes.
K–P Confocal images of an intestinal-specific reporter ERM-1::GFP in wild-type (K), cwn-2(ok895) (L), cfz-2(ok1201) (M), pop-1(hu9) (N), and control or sys-1 RNAi (O and

P) animals at the adult Day1 stage.
Q Quantification of the ERM-1::GFP fluorescence intensity for the indicated genotype.

Data information: The scale bar in (D) is 50 lm and applies to (E–I, K–P). For (A, B, C, J, and Q),each dot represents one animal. Data were collected from at least three
independent experiments. Statistical analyses are based on one-way ANOVA followed by Dunnett’s test (for mutants) and two-tailed Student’s t-test (for RNAi).
**P < 0.01, ***P < 0.001, ****P < 0.0001, ns: not significant as compared to WT or control RNAi (P > 0.05). Error bars represent SEM.
Source data are available online for this figure.
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aex-2 was mainly expressed in the nervous system with some in the

posterior gut (Fig 4N), which is consistent with the previous report

(Wang et al, 2013). Second, we co-expressed Paex-2::mNeonGreen

with the AIY-specific marker Pttx-3::mCherry, and found that the

expression of those two reporters overlapped (Fig 4O–Q’), indicat-

ing that aex-2 is expressed in AIY interneurons. Lastly, we

performed tissue-specific aex-2 rescue experiments and found that

the AIY presynaptic defect was rescued only when aex-2 was

expressed in the nervous system or AIY, but not in the intestine

or body-wall muscle (Fig 4G–K and M). We also noticed that

the rescue was better with the pan-neuronal promoter than with

AIY-specific ones (Fig 4M), indicating that aex-2 functions both in

AIY and other neurons. These data indicate that aex-2 acts in the

AIY and other neurons to regulate presynaptic formation.
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nlp-40 and aex-2 regulate enteric muscle activity, and the corre-

sponding mutants show defects in alimentation (Wang et al, 2013). To

address whether mutants with alimentation defects also affect AIY

synaptic formation, we examined egl-19 and eat-2, which regulate

rhythmic defecation behavior and feeding behavior (Wang &

Sieburth, 2013; Kumar et al, 2019). We found that the fluorescence

intensity of AIY synaptic marker was not affected in either egl-19 or eat-

2 mutants (Appendix Fig S9). These data suggest that the reduction of

AIY synapses is not generally affected by alimentation defects.

Wnt-endocrine signaling regulates AIY activity

Neuropeptides can modulate ion channel and therefore neuronal activ-

ity (Matsushita & Arikawa, 1997; Rogers et al, 2001; Davis &

Ghosh, 2007). NLP-40 peptides activate GABAergic neurons (Wang

et al, 2013; Oliva & Inestrosa, 2015). To determine whether Wnt/nlp-

40/aex-2 regulates AIY activity, we recorded AIY calcium signaling

usingGCaMP6, a genetically encoded calcium indicator (Fig 5A and A’)

(Luo et al, 2014). In wild-type animals, AIY spontaneously fires about

six times per minute (Wang et al, 2021). In cfz-2(ok1201), nlp-40

(tm4085) or aex-2(sa3)mutants, although the firing amplitude was not

affected (Fig 5B and D), the frequency was significantly reduced

(Fig 5B and C), and the activity defects were rescued by expressing the

corresponding wild-type transgene (Fig 5B and C). These data collec-

tively suggest thatWnt-NLP-40 signaling pathway promotes AIY synap-

tic assemblymost likely bymodulating the neuronal activity.

Wnt-NLP-40 signaling pathway is required for the presynaptic
formation in the nerve ring

So far, we have demonstrated that Wnt-NLP-40 signaling in the

intestine is required for AIY presynaptic assembly. To determine

whether this regulation is specific for AIY neurons or more general,

we first quantified pan-neuronal synaptic GFP::RAB-3 (driven by

pan-neuronal rab-3 promoter) in the nerve ring region in Wnt

signaling mutants. The GFP::RAB-3 was significantly reduced in

cwn-2(ok895), cfz-2(ok1201), or pop-1(hu9) mutants (the intensity

was reduced by 33.98, 45.59, and 52.64%, respectively, P < 0.0001

as compared to that in wild-type animals, respectively; Fig 6A–E

and H). Then, we performed rescue experiments and found that the

reduction of the GFP::RAB-3 in cwn-2(ok895) was rescued by a

wild-type cwn-2 transgene (Fig 6I). Lastly, to exclude the possibility

that the GFP reduction is due to the effects of Wnt on rab-3

promoter, we quantified the expression of rab-3 by quantitative

reverse transcriptional PCR and found that the rab-3 mRNA levels

were not affected by Wnt mutants (Fig EV5G). Furthermore, we

quantified Prab-3::mCherry intensity and found the expression level

was not affected by Wnt signaling either (Fig EV5A–D, H). These

data collectively indicate that the Wnt signaling promotes the presy-

naptic formation in the nerve ring.

Next, we examined the presynaptic marker in nlp-40 and aex-2

mutants. We found that the GFP::RAB-3 intensity was dramatically

reduced in either nlp-40(tm4085) or aex-2(sa3) mutants (the inten-

sity was reduced by 44.89 and 49.65%, respectively, P < 0.0001

compared to WT; Fig 6F–H). The reduction of the presynaptic

marker was rescued by the corresponding wild-type transgene

(Fig 6I). We further showed that both the levels of rab-3 mRNA and

the Prab-3::mCherry were not affected by either nlp-40 or aex-2

mutations (Fig EV5A, E–H), which excludes the possibility that the

Prab-3::GFP::RAB-3 reduction is due to the effects of nlp-40 or aex-2

on rab-3 promoter. The results collectively indicate that nlp-40 and

aex-2 are required for presynaptic formation in nerve ring.

Discussion

We have demonstrated that a canonical Wnt signaling pathway

that includes Wnt/CWN-2, Frizzled/CFZ-2, b-catenin/SYS-1, and

TCF/POP-1 acts in the gut to promote synaptic assembly in the C.

elegans nerve ring. Wnt signaling exerts this effect by upregulating

the expression of nlp-40, which encodes a neuropeptide precursor.

NLP-40 neuropeptides promote synaptic assembly through the

neuronally expressed GPCR receptor AEX-2 (Fig 7). This gut Wnt-

neuroendocrine signaling promotes synaptic formation likely

through modulating neuronal activity. We therefore uncovered a

previously unidentified molecular mechanism by which gut regu-

lates synaptic formation in the nerve ring. These results highlight

the genetic role of gut in the neurodevelopment, and reveal a novel

function of gut–brain axis.

Wnt-Neuropeptide axis regulates synaptic formation

The genes encoding Wnt signaling pathway components and their

roles in synaptogenesis are highly conserved from C. elegans to

mammals (Park & Shen, 2012; He et al, 2018). However, the under-

lying mechanisms are not completely understood. In this study, we

◀ Figure 4. Neuropeptide/NLP-40 receptor GPCR/AEX-2 is required for AIY presynaptic formation.

A Diagram of aex-2 genomic structure. The boxes and lines represent exons and introns. Black and gray indicate translating and untranslating regions. The white
asterisk marks the location of the R232Q mutation site of sa3 allele.

B–K Confocal images of AIY presynaptic site labeled with GFP::RAB-3 in wild-type(B), nlp-40(tm4085)(C), aex-2(sa3)(D), nlp-40(tm4085); aex-2(sa3) (E) overexpression
NLP-40 in aex-2(sa3) mutants(F) and aex-2(sa3) with a wild-type aex-2 transgene driven by the endogenous promoter (Paex-2) (G), neuron-specific promoter
(Prab-3) (H), AIY-specific promoter (Pttx-3) (I) intestinal-specific promoter (Pges-1) (J) or muscle-specific promoter (Pmyo-3)(K).

L–M Quantification of the fluorescence intensity of AIY GFP::RAB-3 for the indicated genotypes. Each dot represents one animal. Data were collected from at least three
independent experiments. Transgenic data are averaged from at least two independent lines. tg: Paex-2::aex-2, Pttx-3::aex-2 or Pges-1::aex-2 transgene, +: wild-
type; �: mutant or without tg. The AIY synaptic region was quantified for the synaptic intensity analysis.

N–Q’ Confocal images of Paex-2::mNeonGreen of whole animal with bright field (N), the head region labeled with Paex-2::mNeonGreen and Pttx-3::mCherry with green
channel (O), red channel (P) and the merged channels (Q). (O’0–Q’) are the cross sections corresponding to the dashed line sites.

Data information: The scale bar in (B) and (O) are 10 lm, and applies to (C–K) and (P–Q’), respectively; the scale bar in (N) is 50 lm. Asterisks indicate AIY soma.
Statistical analyses are based on one-way ANOVA followed by Dunnett’s test. ns: not significance (P > 0.05), ****P < 0.0001. Error bars represent SEM.
Source data are available online for this figure.
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demonstrated that intestinal Wnt signaling promotes synaptic

formation in the nerve ring. This Wnt signaling promotes synaptic

assembly by upregulating expression of the intestinal secreted NLP-

40 peptides, which act through the neuronal expressed GPCR/AEX-2

receptor.

Wnt ligands are expressed either in the nervous system or in

non-neuronal tissues to regulate synaptic assembly or plasticity.

However, the receptors or downstream components have only been

shown to act in neurons or the postsynaptic target cells. For exam-

ple, the Wnt ligands, LIN-44 and EGL-20, expressed in the tail

suppress presynaptic assembly through the Frizzled receptor LIN-17

or MIG-1 in DA8, DA9, and DB7 neurons (Klassen & Shen, 2007;

Mizumoto & Shen, 2013). Presynaptic CWN-2 and LIN-44 regulate

activity-dependent postsynaptic localization of the acetylcholine

A A′

B

C

D

Figure 5. Wnt/NLP-40 signaling pathway modulates AIY activity.

A–A’ Representative confocal images showing inactive (A) and active(A’) state of AIY::GCaMP6s (with mod-1 promoter) colabeled with mCherry (with ttx-3 promoter)
(red). Dashed ovals mark the AIY zone 2 region where GCaMP was quantified.

B Representative AIY calcium activity over 60 s for the indicated genotypes.
C, D Quantification of the peak frequency and amplitude of AIY::GCaMP6s in for the indicated genotypes.

Data information: The scale bar in (A) is 10 lm and applies to (A’). Each dot represents one animal. Data were collected from at least three independent experiments.
Transgenic data were collected from at least two independent lines. Statistical analyses are based on one-way ANOVA followed by Dunnett’s test. ns: not significance
(P > 0.05); **P < 0.01, ***P < 0.001, ****P < 0.0001. Error bars represent SEM.
Source data are available online for this figure.
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Figure 6. Synaptic formation in the nerve ring requires Wnt-NLP-40 neuropeptide signaling.

A A cartoon diagram of the C. elegans head modified from wormatlas with permission (Altun & Hall, 2021). Green marks the presynaptic region in the nerve ring.
B–G Confocal images of Prab-3::GFP::RAB-3 in the nerve region corresponding to the dashed box in (A) of wild-type (B), cwn-2(ok895) (C), cfz-2(ok1201) (D), pop-1(hu9)

(E), nlp-40(tm4085) (F) and aex-2(sa3) (G) mutants.
H–I Quantification of the GFP::RAB-3 intensity in the nerve ring synaptic region for the indicated genotypes. Each dot represents one animal. Data were collected from

at least three independent experiments. Transgenic data are averaged from at least two independent lines.

Data information: The scale bar in (B) is 10 lm and applies to (C–G). Statistical analyses are based on one-way ANOVA followed by Dunnett’s test (H and I) and two-
tailed Student’s t-test (cwn-2 vs. cwn-2;tg, nlp-40 vs. nlp-40;tg, aex-2 vs. aex-2;tg). ****P < 0.0001. Error bars represent SEM.
Source data are available online for this figure.
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receptor ACR-16 mediated by LIN-17 and CAM-1 receptors in

the postsynaptic muscle cells (Jensen et al, 2012; Pandey

et al, 2017). Through the b-catenin/BAR-1 and TCF/LEF/POP-1

transcription factor, unidentified Wnt signaling regulates the abun-

dance of the postsynaptic glutamate receptor GLR-1 (Dreier

et al, 2005). Here, we identified that a canonical Wnt signaling,

including the ligand CWN-2, Frizzled receptor CFZ-2, b-catenin/
SYS-1, and TCF/POP-1, in the gut promotes synaptic assembly in

the C. elegans brain.

NLP-40 belongs to the neuropeptide-like proteins (NLPs) family

and is required for rhythmic defecation, anoxia survival, and

axon regeneration (Husson et al, 2005; Wang et al, 2013; Doshi

et al, 2019; Lin-Moore et al, 2021). Neuropeptides are small

bioactive signal peptides including insulin-like peptides (INS),

FMRFamide-related peptides (FLPs), and neuropeptide-like proteins

(NLPs) (Li & Kim, 2008). Those peptides are expressed both in the

nervous system and in the non-neuronal tissues with a broad spec-

trum of biological functions (Li & Kim, 2008; Hu et al, 2011; Hu

et al, 2015; Chew et al, 2018; De Fruyt et al, 2020; Chai et al, 2021;

Ramachandran et al, 2021; Sun & Hobert, 2021). For example, INSs

regulate aversive learning behavior (Lee & Mylonakis, 2017) and

feeding state-dependent gene expression in ADL neurons (Gruner

et al, 2016). FLPs modulate the locomotion and body wave

and head search behaviors (Reinitz et al, 2000; Li, 2005; Chikka

et al, 2016). Similarly, NLPs regulate locomotion, body posture, and

rhythmic behaviors (Couillault et al, 2004).

The role of Wnt in synaptic development is highly conserved in

vertebrates (Budnik & Salinas, 2011; Park & Shen, 2012; He

et al, 2018). For example, Wnt7a and Wnt5a play critical roles in

pre- or postsynaptic development in mammals (He et al, 2018).

Although the role of Wnt-neuropeptide in synaptic development

was previously unknown, Wnts can regulate the expression of

gut hormone/neuropeptides (Garcia-Martinez et al, 2009; Garcia-

Jimenez, 2010; Kim et al, 2015). This suggests that Wnt-

neuropeptide interactions are evolutionally conserved. In addition,

hormones/neuropeptides are also involved in synaptic assembly

and function in mammals (D’Ercole et al, 2002; Garcia et al, 2014;

Corvino et al, 2015; Wang et al, 2015). Collectively, these studies

suggest that the function of Wnt-neuropeptide axis in synaptic

formation is most likely conserved in vertebrates.

A genetic role of gut in synaptic development

Through tissue-specific RNAi or tissue-specific rescue experiments,

we demonstrated that the Wnt-NLP-40 axis acts in the gut to regu-

late presynaptic assembly of nerve ring neurons. Furthermore, we

showed that the effect of the Wnt-NLP-40 axis on synaptic formation

starts at the newly hatched L1 stage, suggesting this pathway

acts during embryogenesis before feeding. We propose that the

Wnt-NLP-40 axis acts as an intrinsic genetically encoded program.

Gut–brain communication plays an important role in coping with

unfavorite environmental conditions. For example, under stress

conditions, intestinal signaling regulates locomotion by modulating

synaptic transmission at the neuromuscular junctions (D’Ercole

et al, 2002; Staab et al, 2013; Zheng et al, 2021). Intestinal infec-

tions can affect the host’s learning and behavior by neuroendocrine

Figure 7. A model describing synaptic assembly regulated by a Wnt-neuropeptide signaling from gut.

A canonical Wnt signaling pathway including Wnt/CWN-2, Frizzled/CFZ-2, b-catenin/SYS-1 and TCF/POP-1 acts in the gut to promote the synaptic assembly in the
C. elegans brain. The Wnt signaling does so by regulating nlp-40, which encodes neuropeptides. NLP-40 peptides secreted from gut promote the synaptic assemble by
activating the neuronal activity through the neuronal expressed receptor GPCR/AEX-2.
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signaling pathways (Singh & Aballay, 2019). Intestinal immune

responses can also protect neurons from degeneration (Chikka

et al, 2016). However, the genetic role of gut in the brain develop-

ment is largely unexplored. Our finding provides a molecular mech-

anism underlying this novel gut–brain interaction.

In vertebrates, the gut–brain–microbiota axis plays a vital role in

mediating brain development and brain function, such as locomo-

tion, exploratory and risk-taking behaviors and spatial memory

(Bercik et al, 2011; Diaz Heijtz et al, 2011; Gareau et al, 2011;

Neufeld et al, 2011). Endocrine is a highly conserved signaling path-

way mediated the gut–brain communication (Matafome et al, 2017;

Farzi et al, 2018; Sun et al, 2018). Although it is unknown if gut–

brain axis plays any intrinsic role in neural circuit formation in

vertebrates, we posit that the signaling pathway regulating synaptic

formation is probably conserved given the conservation of the gut–

brain axis, Wnt signaling, and neuroendocrine signaling.

Neural activity regulates synaptic formation

The invertebrate neural circuits were initially thought to be geneti-

cally hardwired (Jin et al, 1999; Gally & Bessereau, 2003; Hiesinger

et al, 2006; Klassen & Shen, 2007), although neural activity can

regulate the remodeling or plasticity (Zhao & Nonet, 2000; Sachse

et al, 2007; Tessier & Broadie, 2009; Thompson-Peer et al, 2012;

Hart & Hobert, 2018; Cuentas-Condori et al, 2019). However, recent

studies have shown that neuronal activity during embryogenesis

regulates neuronal differentiation (Horowitz et al, 2019), presynap-

tic subcellular specificity (Wang et al, 2021) in C. elegans, indicating

the important role of experience-independent activity in circuit

development. In vertebrates, it is well known that neural activity

regulates synaptic formation and plasticity (Hooks & Chen, 2020;

Pan & Monje, 2020). During embryogenesis, neurons fire sponta-

neously before receiving any stimulation. Spontaneous activity is

required for circuit formation in the visual system (Galli & Maf-

fei, 1988; Shatz & Stryker, 1988; Sretavan et al, 1988; Herrmann &

Shatz, 1995), auditory system (Moore & Kitzes, 1985; Kitzes

et al, 1995), olfactory system (Yu et al, 2004), hippocampus (Ben-

Ari et al, 1989), cerebellum (Watt et al, 2009), and somatosensory

cortex (Anton-Bolanos et al, 2019). However, the underlying mech-

anisms are largely unknown.

Neuronal activity can regulate the trafficking of synaptic compo-

nents (Tiruchinapalli et al, 2003; Sears & Broadie, 2017; Lorenz-

Guertin & Jacob, 2018). In this study, we showed that Wnt-

neuroendocrine signaling pathway is required for AIY activity and

synaptic formation. Together, we could propose a model in which

Wnt-neuroendocrine signaling in the gut regulates synaptic forma-

tion through neuronal activity-dependent synaptic component traf-

ficking. This model not only provides mechanistic insights into the

synaptic formation during development, but also reveals a novel

gut–brain interaction.

Materials and Methods

Strains and maintenance

All C. elegans strains were grown with E. coli OP50 on standard

NGM plates at 21°C (Brenner, 1974). A detailed information of all

the strains is listed in Table EV1. Animals were used in this study at

adult Day 1 stage unless specified.

Plasmids and transformation

Constructs were made either with pSM (derivation of pPD49.26)

(Mello & Fire, 1995; Shen & Bargmann, 2003) or with L4440 vector

(derivation of pPD129.36) (Kamath & Ahringer, 2003). Detailed

information is described in Table EV2.

Transgenic strains were generated by microinjections as previ-

ously described (Mello & Fire, 1995). We used Phlh-17::mCherry

(20 ng/ll), Punc-122::GFP (20 ng/ll), Prab-3::mCherry (20 ng/ll)
or Pttx-3::sl2::mCherry (20 ng/ll) as co-injection markers. Detailed

information is described in Table EV1.

RT and qRT-PCR

qRT-PCR was performed as the previous study (Shen et al, 2012).

In brief, for mRNA, total RNA was prepared by traditional Trizol

extraction methods from ~ 100 worms. cDNA was subsequently

generated by GoScriptTM Reverse Transcription system for RT-qPCR

(Bio-Rad). qRT-PCR was performed with 2xNovoStart�SYBR qPCR

SuperMix Plus (Novoprotein) on a CFX384 TouchTM Real-Time PCR

Detection System (Bio-Rad). Three technical replicates were

performed in each reaction. The housekeeping gene actin (act-1)

was used as internal control in the qRT-PCR experiments and nlp-40

mutants were used as references for mRNA quantification, the

results were from at least three biological replicates. qRT-PCR

primers for nlp-40 were designed and was listed in Table EV2.

Endogenous synaptic GFP reconstruction

The split GFP system was conducted as previous study (Kamiyama

et al, 2016). To visualize the endogenous synaptic proteins, we built

HA::GFP11x7 knock-in strain PHX2157(rab-3(syb2157), which was

conducted by SunyBiotech (http://www.sunybiotech.com), then

expressed cytoplasmic GFP1-10 in a transgene. Specifically, to label

RAB-3 in AIY interneurons, a codon-optimized GFP1-10 was driven

by ttx-3 g promoter in a transgene. The integrated array shcIs54

[Pttx-3::sl2::GFP1-10; Pttx-3::mCherry] was used in this study.

RNA interference

RNAi constructs were transformed into HT115. RNAi feeding experi-

ments were performed based on the previous study(Fraser

et al, 2000). For tissue-specific RNAi experiment, we used the worm

strain FDU2851[sid-1(qt9), alxIs9(Pvha-6::sid-1::sl2::GFP), olaIs12

(Pttx-3::mCherry::rab-3, Phlh-17::GFP)] and FDU3111[sid-1(pk3321),

uIs69(Punc-119::sid-1, Pmyo-2::mCherry); wyIs45(Pttx-3::GFP::rab-3,

Punc-122::RFP)] for gut and neuronal-specific RNAi, respectively.

To test the efficiency of tissue-specific RNAi, we used the worm

strain FDU4186[sid-1(qt9), alxIs9(Pvha-6::sid-1::sl2::GFP), jsIs682

(Prab-3::GFP::rab-3)] and FDU4288[sid-1(pk3321), auIs69 (Punc-

119::sid-1; Pmyo-2::mCherry), jsIs682(Prab-3::GFP::rab-3), syIs319

(Pnlp-40::gfp)], then transferred 10 synchronized Day 1 adults to

the control and GFP RNAi plates, allow them to lay eggs for 2 h,

then remove those adults. Finally, we quantified the GFP fluores-

cence intensity in the nerve ring or intestinal region of the F1s at the
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adult Day 1 stage. We used the same procedure to screen the intesti-

nal neuropeptide encoding genes (nlp-1, nlp-2, nlp-6, nlp-8, nlp-9,

nlp-13, nlp-14, nlp-15, nlp-16, nlp-18, nlp-20, nlp-21, nlp-27, nlp-29,

nlp-40, nlp-47, nlp-67, flp-21).

Calcium imaging

The animals of FDU424[olaIs17(Pmod-1::GCaMP6, Pttx-3::mCherry,

Punc-122::dsRed)], FDU3631[cfz-2(ok1201), olaIs17(Pmod-1::GCaMP6,

Pttx-3::mCherry, Punc-122::dsRed)], FDU4566[cfz-2(ok1201), shcEx2340

(Pcfz-2::cfz-2, Plin-44::GFP), olaIs17(Pmod-1::GCaMP6, Pttx-3::mCherry,

Punc-122::dsRed)], FDU4567[cfz-2(ok1201), shcEx2341(Pcfz-2::cfz-2,

lin-44::GFP), olaIs17(Pmod-1::GCaMP6, Pttx-3::mCherry, Punc-122::

dsRed)], FDU3604[nlp-40(tm4085), olaIs17(Pmod-1::GCaMP6, Pttx-3::

mCherry, Punc-122::dsRed)], FDU4562[nlp-40(tm4085), shcEx2336

(Pnlp-40::nlp-40, Plin-44::GFP), olaIs17(Pmod-1::GCaMP6, Pttx-3::

mCherry, Punc-122::dsRed)], FDU4563[nlp-40(tm4085), shcEx2337

(Pnlp-40::nlp-40, Plin-44::GFP), olaIs17(Pmod-1::GCaMP6, Pttx-3::

mCherry, Punc-122::dsRed)] and FDU3632[aex-2(sa3), olaIs17(Pmod-1::

GCaMP6, Pttx-3::mCherry, Punc-122::dsRed)], FDU4558[aex-2(sa3),

shcEx2332(Paex-2::aex-2, Plin-44::GFP), olaIs17(Pmod-1::GCaMP6,

Pttx-3::mCherry, Punc-122::dsRed)], FDU4559[aex-2(sa3), shcEx2333

(Paex-2::aex-2, Plin-44::GFP) olaIs17(Pmod-1::GCaMP6, Pttx-3::mCherry,

Punc-122::dsRed)] were used for AIY calcium imaging. The Pttx-3::

mCherry were used as an internal control. Calcium imaging of adult

Day 1 animals was performed on 10% agarose pads immobilized

with 0.1 lM polystyrene beads and covered with glass coverslip.

Images were captured with Andor Dragonfly Spinning Disc

Confocal Microscope with 60× objectives, 488 or 561 nm laser. Indi-

vidual animals were imaged for 60 s at a rate of 2 Hz. Data were

analyzed using custom-written scripts in R Studio, and the images

rotation and brightness/contrast were processed with Adobe photo-

shop CC. The 60 s video was exported with Imaris 4.0.

Fluorescence microscope and confocal imaging

For general microscopy experiments, worms were anesthetized on

3% agarose pads with 50 mM muscimol. Images were captured

with Andor Dragonfly Spinning Disc Confocal Microscope with 10×

or 40× objectives, 488 nm (for GFP) or 561 nm (for mCherry) laser.

The fluorescence intensity was quantified with Imaris 4.0/Image J,

and the images rotation and brightness/contrast were processed

with Adobe photoshop CC.

Quantification and statistical analysis

We quantified the fluorescence intensity using Imaris. The density

obtained by cropping the AIY synaptic region (zone 2 and zone 3 in

Fig 1A’), the whole intestine or nerve ring region (showed in Fig 6A

dashed box) in Imaris or Image J (Fig EV4). To monitor the tempo-

ral role of indicated genes, we quantified the phenotype for L1, L4

and Day 1 adult after eggs laid for 12, 42, and 66 h, respectively. All

quantified data were collected from at least three biological repli-

cates. For data with transgenic animals, at least two independent

lines were used. The statistics were made with GraphPad Prism 6.0

(GraphPad Software). Statistical analysis between two groups were

based on Student’s t-test (two-tailed), among more than two groups

were based on one-way ANOVA followed by Dunnett’s test, as

indicated in the figure legends. All quantitative data were collected

blindly.

Data availability

Source data are available online for all figures. This study includes

no data deposited in external repositories.

Expanded View for this article is available online.
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