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Abstract

It has been known since 1904 that, in humans, diverse cognitive traits are positively inter 

correlated. This forms the basis for the general factor of intelligence (g). Here, we directly 

test whether there is a partial genetic basis for individual differences in g using data from 

seven different cognitive tests (N = 11,263 to N = 331,679) and genome-wide autosomal single 

nucleotide polymorphisms. A genetic g factor accounts for an average of 58.4% (SE = 4.8%) of 

the genetic variance in the cognitive traits, with the proportion varying widely across traits (range: 

9% to 95%). We distill genetic loci that are broadly relevant for many cognitive traits (g) from loci 

associated specifically with individual cognitive traits. These results contribute to elucidating the 

etiology of a long-known yet poorly-understood phenomenon, revealing a fundamental dimension 

of genetic sharing across diverse cognitive traits.

Scores on psychometric tests of cognitive abilities are prospectively associated with 

educational performance, socio-economic attainments, everyday functioning, health, and 

longevity1–3. In 1904, Charles Spearman identified a positive manifold of intercorrelations 

among school test results and estimates of intelligence, leading him to propose that they 

arise from a single general dimension of variation, which he termed general intelligence (and 

which he denoted as g)4. He theorized that most of the remaining variance in each cognitive 

test was accounted for by a factor specific to that test, which he called s. Thus, some 
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variance in each cognitive test was thought to be shared with all other cognitive tests (g), and 

some was thought to be specific to that test (its s). Hundreds of studies have since replicated 

the finding that, when many diverse cognitive tests are administered to a sizeable sample 

of people, a g factor is found that accounts for between about 25% and 50% of the total 

test variance, depending on the specific composition of the participants and test battery5–7. 

Considerable efforts over the past century have been placed on identifying biological 

associations with g, spanning levels of analysis from molecular, to neuroanatomical, to 

cognitive8–12.

Psychometrically, a hierarchical structure of cognitive abilities is commonly agreed, with 

cognitive tests’ variance accounted for by three different strata of variation (Supplementary 

Figure 1), representing: (1) each test’s specific variance (s); (2) broad domains of cognitive 

function (e.g. reasoning, processing speed, memory); and (3) g5. All cognitive tests have 

some g loading, though this varies from test to test. Twin studies that have employed 

multivariate methods to examine genetic associations within the hierarchy of cognitive test 

score variance13 indicate a strong heritable basis for g, suggesting that cognitive traits are 

positively correlated substantially because of strongly-overlapping genetic architecture14–18. 

Multivariate approaches, however, have not yet been combined with modern molecular 

genetic methods needed to separate general from specific genetic associations with cognitive 

traits at the level of individual genetic loci.

Genome-Wide Association Studies (GWAS) have been applied to individual cognitive 

measures or composite scores formed from multiple such cognitive measures19–23. However, 

existing univariate approaches are limited in their capabilities to separate g from s variance. 

In the case of GWASs of individual cognitive tests, e.g. a measure of verbal declarative 

memory or processing speed, the identified loci could either be related to g and/or to the 

named cognitive property22,23. This is a common limitation in both phenotypic and genetic 

cognitive studies24. Here we sought to test for a genetic g factor directly, using Genomic 

Structural Equation Modelling (Genomic SEM25), a multivariate genome-wide molecular 

genetics approach. We model shared and unique genome-wide architecture in aggregate 

across the entirety of the genome and we distinguish individual variants that are broadly 

relevant for many cognitive traits (via genetic g) from those associated with only individual 

cognitive traits (via genetic s factors). Thus, this investigation attempts to provide insights 

into the shared genetic architecture across multiple cognitive traits and affords the explicit 

identification of genetic variants underlying g.

Results

Data for the present study came from the UK Biobank, a biomedical cohort study that 

collects a wide range of genetic and health-related measures from a population-based 

sample of community-dwelling participants from the UK. Participants were measured 

on up to seven cognitive traits using tests that often show substantial concurrent 

validity with established psychometric tests of cognitive abilities, and modest to good 

test-retest reliability26: Reaction Time (RT; n = 330,024; which assesses perceptual motor 

speed), Matrix Pattern Recognition (n = 11,356; nonverbal reasoning), Verbal Numerical 

Reasoning (VNR; n = 171,304; verbal and numeric problem solving; the test is called 
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‘Fluid intelligence’ in UK Biobank), Symbol Digit Substitution (n = 87,741; information 

processing speed), Pairs Matching Test (n = 331,679; episodic memory), Tower Rearranging 

(n = 11,263; executive functioning), and Trail Making Test–B (Trails-B; n = 78,547; 

executive functioning). Scores on all tests were coded such that higher scores represented 

more optimal (i.e., faster or more accurate) performance.

Phenotypic Covariance Structure

A positive manifold of phenotypic correlations was observed across the seven cognitive 

traits. All correlations were positive, ranging from 0.074 to 0.490, indicating that more 

optimal performance on a given test is associated with more optimal performance on 

the other tests (Supplementary Figure 1; Supplementary Table 1). The mean phenotypic 

correlation was 0.232. In principal components analysis (PCA), the first unrotated 

component accounted for a total of 35.8% of the phenotypic variance. A confirmatory factor 

model with a single common g factor (Figure 1, bottom panel) fit the phenotypic covariance 

matrix well (χ2(14) = 740.748, p < 0.001; SRMR=0.024; CFI=0.985; RMSEA = .013). 

Table 1 reports both the proportion of phenotypic g:phenotypic s variance for each cognitive 

trait, and the respective absolute contributions. The g factor accounted for 26.5% (SE = 

0.2%) of the variance in the seven cognitive traits. That this proportion is appreciably lower 

than that obtained from that obtained from PCA highlights the distinction between factor 

analysis, which formally models the effects of factors on constellations of variables, from 

PCA, which simply seeks to maximize variance of a weighted linear composite of those 

variables. All of the standardized loadings were statistically significant, ranging from 0.231 

to 0.766 (M = 0.48, SD = 0.19).

Multivariate Genome-Wide Architecture

We next aimed to estimate the extent of genetic sharing across the cognitive traits using 

molecular genetic data. We used a multivariable version of Linkage Disequilibrium Score 

Regression (LDSC)27 implemented in Genomic SEM25 to estimate genetic correlations 

among the cognitive traits. Prior to this formal modelling, we conducted descriptive analyses 

of the cognitive traits’ genetic correlations, similar to those often conducted on cognitive 

phenotypes. We report those descriptive analyses’ results first.

As was first reported at the phenotypic level by Spearman in 19044, we identified, using 

LDSC, a positive manifold of genetic correlations among the UK Biobank cognitive traits, 

ranging from 0.135 to 0.869 (M = 0.53, SD = 0.22; Supplementary Figure 3; Supplementary 

Tables 2–3). The mean genetic correlation was 0.530, and the first principal component 

accounted for a total of 62.17% of the genetic variance. Using genomic-relatedness based 

restricted maximum-likelihood (GCTA-GREML)28,29, a different estimator of the genetic 

correlations among the seven cognitive traits (Supplementary Figure 4), the mean genetic 

correlation was 0.502, and the first principal component accounted for 61.24% of the genetic 

variance. The correlation between LDSC- and GCTA-GREML-derived genetic correlations 

was r = 0.947, indicating very close correspondence between results of the two methods 

(Supplementary Figure 5).
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We then proceeded with Genomic SEM to formally model the genetic covariance matrix. 

This allowed us to evaluate the fit of the genetic g factor model, estimate SEs for model 

parameters, estimate genetic correlations with collateral phenotypes, and incorporate genetic 

g explicitly into multivariate discovery. We applied Genomic SEM to fit a single common 

factor model to the LDSC-derived genetic covariance matrix among the seven cognitive 

traits. This model specified the genetic component of each cognitive trait to load on a 

single common factor, which we term genetic g. For each trait, we additionally estimated 

residual, trait-specific genetic variance components (genetic ss). Thus, we formally distill 

the molecular genetic contributions of g and s to heritable variation in each of the cognitive 

traits, and test the fit of this model. Fit indices (χ2(14) = 117.019, p < 0.001; CFI = 

0.970; SRMR = 0.088) indicated that the factor model closely approximated the observed 

genetic covariance matrix (Supplementary Figures 7–8). Figure 1 displays the standardized 

estimates for this model (top panel) and the standardized estimates from a phenotypic factor 

model (bottom panel) fitted to the phenotypic covariance matrix (Supplementary Figure 5; 

Supplementary Table 1). A factor model that constrained the standardized genetic factor 

loadings to be equal to the standardized point estimates for loadings from the phenotypic 

model produced a substantial decrement in model fit (χ2(7) = 823.037, p < 0.001), 

indicating that the genetic and phenotypic factor structures were not strictly equivalent. 

Indeed, the standardized genetic factor loadings were consistently higher in magnitude 

than the standardized phenotypic factor loadings, but there was a strong linear association 

between them (Supplementary Figure 6). Table 1 reports both the proportions of genetic g 
and genetic s variance for each cognitive trait, and the respective absolute contributions. The 

genetic g factor accounted for 58.36% (SE = 4.84%) of the genetic variance in the seven 

cognitive traits. All of the standardized loadings on genetic g were statistically significant, 

ranging from 0.308 to 0.976 (M = 0.74, SD = 0.22).

The proportion of genetic variation in each trait accounted for by genetic g differed 

substantially across traits. Supporting this inference, a factor model that constrained the 

standardized genetic factor loadings to be equal across traits produced a substantial 

decrement in model fit (χ2(12) = 749.122, p < 0.001). Four of the cognitive traits have 

a genetic contribution to their variance that is principally from genetic g and much less 

from a genetic s; these are Trails-B (95.26% genetic g; 4.74% genetic s), Tower (72.76% 

genetic g; 27.20% genetic s), Symbol Digit (69.06% genetic g; 30.94% genetic s), and 

Matrices (68.23% genetic g; 31.77% genetic s). VNR (51.41% genetic g; 48.59% genetic 

s) and Memory (42.38% genetic g; 57.62% genetic s) are more evenly split. RT has the 

majority of its genetic influence from a genetic s (9.49% genetic g; 90.51% genetic s). We 

emphasize one important implication of these results, i.e. that univariate genetic analyses 

(e.g. GWAS) of some of these individual traits will largely reveal results relevant to g rather 

than to the specific abilities thought to be required to perform the test24. As the pre-specified 

model was parsimonious and the fit was close, we chose to forego implementing data-driven 

exploratory steps to further improve fit. Supplementary Tables 4–5 report full parameter 

estimates for genetic and phenotypic factor models.

de la Fuente et al. Page 4

Nat Hum Behav. Author manuscript; available in PMC 2022 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multivariate Genome-Wide Discovery

We next aimed to determine the contributions of individual genetic loci specifically to 

genetic g, and to distill those from loci associated with other levels of the cognitive 

hierarchy. We fit a multivariate GWAS of genetic g within Genomic SEM25 to distinguish 

loci relevant to genetic g from loci whose patterns of association across the individual traits 

is inconsistent with their operation on genetic g, as indexed by the heterogeneity statistic, Q. 

We provide detailed explication of the Q statistic and how it can be appropriately interpreted 

in the Interpreting the Heterogeneity Statistic section of the Supplementary Materials.

The GWAS results for genetic g and Q are displayed in Figure 2 as a Miami plot, with 

further information provided in Table 2. Our method distinguishes four types of genome-

wide significant loci. First, highlighted in red are genome-wide significant loci for genetic g 
that are not genome-wide significant loci for the univariate GWAS analyses of the individual 

traits. These are loci influencing general intelligence identified by leveraging the joint 

genetic architecture of the traits. Second, highlighted in blue are genome-wide significant 

loci for g that are also genome-wide significant loci in the univariate GWAS analyses for 

at least one individual cognitive trait. These loci might otherwise have been interpreted as 

relevant specifically to the individual trait, when in fact the multivariate results indicate that 

they are relevant to genetic g24. Third, highlighted in green are genome-wide significant 

loci for the univariate phenotypes that are not genome-wide significant loci for g. These 

might be loci that are specific to the individual traits, but not genetic g. Fourth, highlighted 

in yellow are loci that evince genome-wide significant heterogeneity (Q), indicating that 

they show patterns of associations with the cognitive traits that depart from the pattern that 

would be expected if they were to act on the traits via genetic g. Q findings that exceed 

the genome-wide significance threshold for genetic g (yellow triangles) are implicated as 

false discoveries on genetic g that are likely driven by a strong signal in a subset of the 

cognitive traits or in a single cognitive trait. The Q statistic helps to safeguard against 

these false discoveries. The Q findings that do not surpass the genome-wide significance 

threshold for genetic g (yellow diamonds) are not significantly related to genetic g but 

are significantly heterogeneous in their patterns of associations with the cognitive traits. 

These loci may be relevant to specific cognitive traits, or to cognitive domains that are 

intermediate in specificity and generality between g and s, but not to general intelligence 

(see Supplementary Figure 1). Note that these four types of genome-wide significant loci 

are represented both in the top and bottom panels of the Miami plot, with their locations 

corresponding to the −log10(p) of their associations with genetic g in the top panel, and the 

−log10(p) of their Q statistic in the bottom panel.

Overall, we identified 30 genome-wide significant (p < 5×10−8) loci associated with genetic 

g. Of these, 18 (60%) have been previously reported as hits for cognitive tests (5 loci) and/or 

cognitively-relevant phenotypes, such as educational attainment or highest math course 

taken (16 loci) in GWAS that did not include data from UKB. Of the 18 genetic g hits that 

replicated outside of UKB, 16 were also hits on at least 1 cognitive test included in the 

multivariate UKB analysis. Of the 30 total genetic g loci, 12 loci were discoveries specific 

to UKB, 5 of which were discoveries specific to the present study’s multivariate modeling, 

and 7 of which were also hits on at least 1 cognitive test included in the multivariate UKB 
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analysis. Thus, of the 30 total loci that were found here to be associated with genetic g, 

23 were common with the univariate GWAS of the individual cognitive traits that served 

as the basis for our multivariate analysis, indicating that 7 loci were discoveries specific to 

multivariate modelling (Supplementary Tables 15 and 22). An LDSC analysis of genetic g 
GWAS summary statistics yielded an intercept slightly below 1.0, indicating that inflation 

of the test statistics (Mean χ2(1) = 1.471; λGC = 1.373) was attributable to true polygenic 

signal, rather than under-controlled population stratification.

We identified a total of 24 genome-wide significant loci for Q, 3 of which were significantly 

associated with genetic g (and therefore likely to be relevant to more specific cognitive 

traits, and false discoveries on g) and 15 of which were significantly associated with at least 

one individual cognitive trait in the test-specific GWASs (and may therefore be interpreted 

as hits for more specific cognitive traits, rather than for a general dimension of cognitive 

function). Of the 24 loci for Q, 5 (21%) have been previously reported as hits for cognitive 

tests (1 locus) and/or cognitively-relevant phenotypes (4 loci) in GWAS that did not include 

data from UKB, and 19 loci were specific to UKB (Supplementary Tables 16 and 23). Two 

of the Q loci previously reported in non-UKB GWAS were also genetic g loci (but, because 

they were Q hits, are most likely to be false discoveries for genetic g and more relevant to 

specific cognitive traits).

Inspection of the univariate GWAS results for the individual traits may help to determine the 

sources of heterogeneity for the Q findings. For instance, a SNP (rs429358) within APOE, 

which is a known risk factor for Alzheimer’s Disease30, was a significant Q finding. With 

the exception of its association with VNR, this SNP displayed a pattern of associations 

with the traits that corresponded closely with the degree to which they represented genetic 

g. However, consistent with the inference that APOE is specifically relevant for cognitive 

aging, the SNP displayed a negligible null association with VNR (p = .142), which is a test 

that shows minimal age-related differences in the UK Biobank data31. Another example of a 

Q finding is located on Chromosome 17 (chr17: 44021960- 44852612), which was reported 

to be significantly associated with both general cognitive ability and Reaction Time19. From 

the univariate GWAS results, the largest association for this locus was with Reaction Time, 

a measure of psychomotor speed with a relatively low loading on genetic g. This locus 

may have a particularly pronounced association with speeded abilities, rather than a general 

association with genetic g. The third Q locus which is also significant for genetic g is 

located on chromosome 3 (chr3:49120040-50234126). This locus has previously-reported 

associations with general cognitive ability, educational attainment, intelligence, and math 

ability19–21,32. In the current study, this locus demonstrates significant heterogeneity and 

displays its largest associations with VNR, Tower, Matrices, and Trails-B, all measures 

of higher-order cognition. Its associations with measures of speed and episodic memory 

(arguably more basic cognitive processes) are negligible.

Genetic Correlations with External GWAS Traits

As expected, the genetic g factor identified here displayed strong but imperfect genetic 

correlations (as estimated with LDSC) with general cognitive function from Davies et al.,19 

(rg = 0.90, SE = 0.02), and Savage et al.,21 (2018) (rg = 0.87, SE = 0.05), which were 
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univariate GWASs of broad cognitive phenotypes, and that of Hill et al.,20 (rg = 0.80, SE = 

0.02), which was a GWAS of intelligence that incorporated educational attainment GWAS 

summary statistics to boost power via multi-trait analysis of GWAS (MTAG)33. As reported 

in Supplementary Table 6, genetic g had a positive genetic correlation with Educational 

Attainment32 (rg = 0.48, SE = 0.02) that is lower than those found between Education 

and previous GWASs of cognitive ability (all estimated at r > 0.69)19–21. To determine 

whether this lower association was driven by the inclusion of RT, or more generally with 

speeded measures as indicators of genetic g, we re-estimated the genetic correlations using 

a genetic g factor formed from the cognitive traits that excluded either RT or all speeded 

measures (RT, Trails-B, and Symbol Digit). The version of the genetic g factor that excluded 

RT accounted for 66.76% (SE = 5.85%) of the genetic variance in the six remaining 

cognitive traits, and the version that excluded all speeded tests accounted for 69.66% (SE 

= 8.08%) of the genetic variance in the four remaining cognitive traits. These versions of 

genetic g produced somewhat higher genetic correlations between genetic g and Educational 

Attainment (rg = 0.50 when excluding RT, rg = 0.55 when excluding all three speeded 

measures) that continued to be lower than those found between Educational Attainment and 

previous GWASs of general cognitive ability.

Negative genetic correlations were found between genetic g and Alzheimer’s disease34 

(rg = −0.34, SE = 0.06), Schizophrenia35 (rg = −0.38, SE = 0.03), and ADHD36 (rg = 

−0.23, SE = 0.04). Additionally, genetic g had significant positive genetic associations 

with total Brain Volume37 (rg = 0.20, SE = 0.04), and Longevity38 (rg = 0.26, SE = 

0.03) (Supplementary Table 6). Notably, the negative genetic association between genetic 

g and Schizophrenia was substantially stronger than that obtained for associations between 

other GWASs of cognitive function and Schizophrenia, and contrasts substantially with the 

mild positive genetic correlation that has been reported between educational attainment 

and schizophrenia39. Genetic associations between genetic g and Alzheimer’s Disease, 

Autism Spectrum Disorder, ADHD, Total Brain Volume, and Longevity were similar to 

those obtained for other GWASs of cognitive function, particularly when the speeded tests 

were removed from the genetic g factor.

Replication of Positive Genetic Manifold and Polygenic Prediction in Generation Scotland

We sought to confirm key results in the independent Generation Scotland study (N=6,950 

unrelated individuals). The cognitive measures in Generation Scotland were Wechsler 

Logical Memory (episodic memory), Mill Hill Vocabulary (crystallized knowledge), 

Wechsler Digit Symbol Substitution (processing speed), and Verbal Fluency (semantic 

fluency), as described previously40,41. Because the sample size of Generation Scotland is 

too small to produce stable estimates of heritability and genetic correlation within LDSC, is 

was not feasible to directly integrate these analyses into the above Genomic SEM models 

to estimate joint models with the UKB phenotypes and other external GWAS traits. Instead, 

we estimated a genetic correlation matrix for the four cognitive tests in Generation Scotland 

using GCTA-GREML28,29, which is more appropriate than LDSC for moderately-sized 

samples, such as this. The average genetic correlation in this matrix was 0.517 and an 

eigen decomposition indicated that the percentage of genetic variance explained by a single 

principal component was 64.90%. These two values are similar to those obtained for UKB, 
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which we reiterate here for ease of comparison: mean rg LDSC = 0.530; mean rg GCTA-

GREML = 0.502; percentage of genetic variance accounted for by PC1 LDSC = 62.17%; 

percentage of genetic variance accounted for by PC1 GCTA-GREML = 61.24%.

Using summary statistics from the above-described UK Biobank analyses, we next created 

polygenic scores (PGSs) for genetic g and the individual UK Biobank cognitive traits and 

used them to individually and simultaneously predict, in Generation Scotland, variance in 

performance on the individual cognitive tests, the first unrotated principal component of all 

tests (to index phenotypic g), the first unrotated principal component of all tests except Mill 

Hill Vocabulary (to index a more fluid g), and educational attainment (Supplementary Table 

7). Consistent with the above findings that individual cognitive outcomes are associated 

with a combination of genetic g and specific genetic factors, we observed a pattern 

in which many of the regression models that included both the polygenic score (PGS) 

from genetic g and test-specific PGSs were considerably more predictive of the cognitive 

phenotypes in Generation Scotland than regression models that included only either a 

genetic g PGS or a PGS for a single test. A particularly relevant exception involved the 

Digit Symbol Substitution test in Generation Scotland, which is a similar test to the Symbol 

Digit Substitution test in UK Biobank, for which we derived a PGS. We found that the 

proportional increase in R2 in Digit Symbol by the Symbol Digit PGS beyond the genetic 

g PGS was <1%, whereas the genetic g PGS improved polygenic prediction beyond the 

Symbol Digit PGS by over 100%, reflecting the power advantage obtained from integrating 

GWAS data from multiple genetically correlated cognitive traits using a genetic g model. 

An interesting counterpoint is the PGS for the VNR test, which is unique in the UK 

Biobank cognitive test battery in partly indexing verbal knowledge26,31. Highlighting the 

role of domain-specific factors, a regression model that included this PGS and the genetic 

g PGS provided substantial incremental prediction relative to the genetic g PGS alone for 

those Generation Scotland phenotypes most directly related to verbal knowledge: Mill Hill 

Vocabulary (62.45% increase) and Educational Attainment (72.59%).

Discussion

Until now, research on the positive manifold of correlations among cognitive traits has 

been phenotypic in nature, or has made inferences regarding the roles of genes using 

twin approaches. Here we estimated and modeled the patterns of genetic sharing across 

diverse cognitive traits using genome-wide molecular data. Using data from seven different 

cognitive traits from UK Biobank, we identified a positive manifold of genetic correlations. 

We found that a genetic g factor accounts for an average of about 58% (SE = about 5%) of 

the genetic variance in the cognitive traits, with the proportion ranging widely (about 9% to 

about 95%) across the traits. We went on to distill specific genetic loci broadly relevant for 

many cognitive traits via genetic g from those displaying patterns of more associations with 

the individual cognitive traits.

The importance of our results may be seen by contrasting the results of Trails-B with 

Reaction Time. Analyses of multivariate genome-wide architecture indicated that, for Trails-

B, 95% of the genetic variance is accounted for by genetic g, and only 5% of the genetic 

variance is specific to Trails-B. Moreover, all seven loci for Trails-B have been previously 
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reported in GWAS of other cognitive phenotypes (Supplementary Table 19), and four of 

them were implicated as relevant for genetic g at nonsignificant levels of heterogeneity. In 

contrast, for Reaction Time, analyses of multivariate genome-wide architecture indicated 

that 9.5% of the genetic variance is accounted for by genetic g, and 90.5% of the genetic 

variance is specific to Reaction Time. Many of the 39 loci associated with RT have not been 

found in univariate GWASs of other cognitive traits (Supplementary Tables 17 and 24), and 

only four were implicated as relevant for genetic g at nonsignificant levels of heterogeneity. 

Therefore, when identifying loci associated with performance on an individual cognitive 

test, it is essential to know the extent to which its associations are broadly related to genetic 

g or specifically related to the phenotype under investigation.

Failure to take the multivariate structure of the cognitive traits into account may lead to 

incorrect inferences24—either that discoveries made in a univariate GWAS of a cognitive 

trait are generalizable to the broader universe of cognitive traits when they are in fact 

specific to that trait, or that discoveries made in a univariate GWAS of a cognitive 

trait are specific to that trait when they are in fact broadly associated with all traits 

that load on genetic g. For instance, our multivariate analysis indicates that a locus on 

chromosome 7 (chr7:104558814-104588161) is associated with genetic g. Similarly, we 

report an association of a locus on chromosome 8 (chr8:64496159-64842662) with Trails-B 

(an index of executive function, which is itself strongly genetically correlated with g14) in 

the univariate GWAS, and our multivariate analysis indicates that this locus is also related 

to genetic g. Lee et al.32 have previously reported both of these loci to be associated with 

math ability (Supplementary Table 22), but there are no previously-reported associations 

with general cognitive function or intelligence. The current results indicate that the loci are 

broadly relevant to many abilities via genetic g, not simply to math ability. Multivariate 

methods, such as that pioneered here, are necessary in order to distinguish whether a locus is 

narrowly relevant for an individual cognitive trait or broadly relevant to genetic g.

Genetic g was highly, but imperfectly, genetically correlated with previous univariate 

GWASs of general cognitive function and intelligence. Moreover, genetic g displayed lower 

(albeit still sizable) genetic correlations with educational attainment than have previous 

univariate GWASs of general cognitive function and intelligence. This pattern suggests that 

previous GWASs of general cognitive ability might have tapped more academic forms of 

cognitive function (i.e. crystallized abilities, such as verbal knowledge) than those tapped 

by the present group of cognitive tests. Consistent with this hypothesis, a version of 

genetic g that excluded speeded tests—which are known to be among the most culturally 

decontextualized of the cognitive traits42—produced somewhat higher genetic correlations 

with educational attainment, though they continued be lower than those found between 

Educational Attainment and the previous univariate GWASs of general cognitive function 

and intelligence. A priority for future research will be to distinguish between genetic 

correlates of cognitive abilities that are driven by forms of higher order thinking and 

academic knowledge from those that are driven more so by forms of arguably more basic 

neurocognitive processing43. Moreover, given that the phenotypic gs from different cognitive 

test batteries administered to the same sample correlate very highly6, it will be useful in 

future research to discover whether genetic gs obtained from different test batteries also have 

very high correlations. The advantage of modern genomic methods, such as those used here, 
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is that it is not necessary for the same sample to be tested on both batteries, or even on the 

same tests within a given battery25.

Some researchers have adroitly argued that a positive manifold of test intercorrelations 

may, in principle, arise from a pattern in which individual genetic loci, biological 

mechanisms, or cognitive processes contribute to subsets of traits, with the subsets varying 

across loci, mechanisms, or processes44–46. Others have similarly argued that positive test 

intercorrelations may arise from reciprocal causation among abilities, or between abilities 

and external forces, and that genetic effects enter through specific points in the system and 

come to be correlated through dynamic propagation47–49. Here we have provided evidence 

not only of a positive manifold of genetic correlations at the aggregate, genome-wide, level 

of analysis, but also at the level of individual loci. Although these discoveries are themselves 

insufficient for determining the causes of the positive manifold, they do help to inform 

and constrain past and future accounts of the positive manifold and of the heritability of 

cognitive abilities.

It is important to consider this work in light of its key limitations. First, we had measures 

of different hierarchically-intermediate traits (e.g. processing speed, memory, reasoning), but 

we did not have multiple measures per intermediate trait. We were therefore unable formally 

to model genetic associations with intermediate traits as separate from those on s factors 

specific to the individual cognitive traits. In other words, based on the currently-available 

data, we have been well-positioned to discriminate between genetic loci that are broadly 

relevant for genetic g from those that display more heterogeneous patterns of relations with 

individual cognitive tests, but we are unable to distinguish loci relevant for very narrow 

traits captured by individual tests from those relevant to intermediately-broad traits. Future 

work that employs a denser battery of cognitive tests will be valuable for such discernment. 

Second, using data from Generation Scotland we closely replicated the positive manifold 

of genetic correlations observed in UKB, and we demonstrated the utility of polygenic 

scores for genetic g constructed on the basis of the UKB data, but Generational Scotland 

was not sufficiently powered to conduct individual SNP-level analyses. Several large-scale 

GWASs exist for intelligence, but UKB appears to be the only such large-scale dataset for 

which multiple tests spanning a broad range of cognitive traits is available. When large-scale 

datasets with multivariate cognitive data become available, it will be prudent to examine the 

replicability of the individual g and s loci identified here. Finally, our analyses were based 

exclusively on individuals of European ancestry residing in the United Kingdom. It may not 

be assumed that the results reported here will generalize beyond this population.

In summary, we have inferred a genetic g factor using molecular genetic data, and we 

have discerned genetic loci that are associated with genetic g from those that are associated 

with more specific cognitive traits. We emphasize the large extant explanatory gap between 

genetic variation and shared (i.e. general) variation in cognitive abilities.
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Methods

Sample

Data from the UK Biobank study was used for the present study (https://

www.ukbiobank.ac.uk/). The UK Biobank is a biomedical prospective cohort study, which 

collected a wide range of genetic and health related measures from a national sample of 

community dwelling participants from the UK. Ethical approval for the UK Biobank was 

granted from the Research Ethics Committee (11/NW/0382). This study uses European 

ancestry genome-wide genotyped data from seven cognitive tests with varying sample 

sizes across phenotypes. Individuals were removed sequentially based on non-British 

ancestry, high missingness, high relatedness (samples which have more than 10 putative 

third-degree relatives), and sex/gender mismatch between self-report and genetic data. 

Our analysis sample included 332,050 unrelated participants of European descent with 

high-quality genotyping. Participant ages ranged from approximately 40 to 70 years at the 

first assessment and approximately 45 to 75 years at later assessments in which further 

cognitive tests were administered. For each cognitive test, we included no more than one test 

administration per participant in analyses.

Cognitive Tests

Reaction Time (n = 330,024): This test was self-administered by participants at the baseline 

UK Biobank assessment. In this task, pairs of either identical or different cards were 

presented on a computer screen. If the two cards were identical, participants had to push 

a button as quickly as possible. Reaction time (RT) score corresponded with the time, in 

milliseconds, to identify the matching cards in four trials. Participants were presented with 

12 trials in total. The first five trails were used as a practice. Of the remaining seven trials, 

four presented identical cards. The score is the mean time, in milliseconds, for these four 

trials. Whereas there are only a few trials, internal consistency is good (Cronbach α = 0.85). 

Scores were multiplied by −1 such that higher scored indicated more optimal performance.

Matrix Pattern Recognition (n = 11,356): The non-verbal fluid reasoning Matrix Pattern 

Recognition test is an adaptation of the Matrices test included in the COGNITO battery50, 

which is similar to the well-known raven’s Progressive Matrices test. This test was self-

administered during the assessment centre imaging visit. This test involves inspection of an 

abstract grid pattern with a piece missing in the lower right-hand corner. The pattern has 

a logical order. The participant is asked to select the correct multiple-choice option at the 

bottom of the screen to complete the logical pattern both horizontally and vertically. This 

15-item test aims at assessing the ability to solve non-verbal, non-numerical problems using 

novel and abstract materials. The score is the total number of correctly solved items in three 

minutes.

Verbal Numerical Reasoning (n = 171,304): At the baseline assessment center visit, a 

sub-sample of UK Biobank participants self-administered the verbal-numerical reasoning 

test. Participants were asked 13 multiple-choice questions that assessed verbal and numerical 

problem solving. The score was the number of questions answered correctly in two 

minutes. This test has been shown to have adequate test-retest reliability (r = 0.65)51 and 
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internal consistency (Cronbach α = 0.62)31. The verbal-numerical reasoning test was also 

administered to three sub-samples of participants at the first repeat assessment visit, the 

assessment center imaging visit, and during the web-based cognitive assessment. In the 

web-based version of this test there was an additional question, thus the maximum score was 

14. In the current analysis the verbal numerical reasoning score used is from the first testing 

occasion for each participant.

Symbol Digit Substitution (n = 87,741): The symbol digit substitution test was self-

administered during both the assessment center imaging visit and the web-based cognitive 

assessment. Participants were shown a key, pairing shapes with numbers. Participants were 

asked to use the key to fill the maximum number of empty boxes with the corresponding 

number paired with shapes in a series of rows. The score is the number of correct symbol-

digit matches made in 60 seconds. Those with a score coded as 0 and those with a score 

greater than 70 had their score set to missing. In this analysis, the scores used were from the 

first testing occasion for each participant.

Memory – Pairs Matching Test (n = 331,679): At the baseline UK Biobank assessment, 

memory was measured using a ‘pairs matching’ task. In this self-administered task, 

participants are shown a randomly arranged, four by three grid of 12 ‘cards’, with six pairs 

of matching symbols, for five seconds. The symbols were then hidden, and the participant 

was instructed to select, from memory, the locations of the pairs that matched, in the fewest 

possible number of attempts. There was no time limit for this task. The memory score was 

the total number of errors made during this task before all pairs were identified. Scores were 

multiplied by −1 such that higher scored indicated more optimal performance.

Tower rearranging (n = 11,263): This test was self-administered during the imaging 

assessment center visit. It is similar to the well-known ‘Tower of Hanoi’ task. Participants 

were presented with a display (display A) containing three different colored hoops arranged 

on three pegs (towers). Another display (display B) was shown underneath display A, with 

the three hoops arranged differently. The task involves deciding how many moves it would 

take to change display A into display B. The score was the number of correctly-completed 

trials achieved in three minutes.

Trail Making Test – B (n = 78,547): This test is a computerized version of the Halstead-

Reitan Trail Making Test52. The trail making test was self-administered during both the 

assessment center imaging visit and the web-based cognitive assessment. In part B of the 

test, participants were presented with the numbers 1-13, and the letters A-L arranged quasi-

randomly on a computer screen. The participants were instructed to switch between touching 

the numbers in ascending order, and the letters in alphabetical order (e.g., 1-A-2-B-3-C) as 

quickly as possible. The score was the time (in seconds) taken to successfully complete the 

test. Those with a score coded as 0 (denoting “Trail not completed”) had their score set 

to missing. Scores were multiplied by −1 such that higher scored indicated more optimal 

performance. In this analysis, the scores used were from the first testing occasion for each 

participant.
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Genotyping

Prior to release of the UK Biobank genetic dataset, QC measures were applied; these are 

described in Bycroft et al53. Imputed dosage scores on up to 80,639,280 autosomal variants 

were analyzed (imputation reference panels included UK10K haplotype, 1000 Genomes 

Phase 3, and Haplotype Reference Consortium (HRC) panels); all variants had a minor allele 

frequency ≥ 0.000009 and an imputation quality (INFO) score of > 0.6.

Genome-wide association analyses

Univariate genome–wide association analyses were performed for the covariate-residualized 

scores on each UK Biobank cognitive phenotype using a linear association test in 

BGENIE53. As described above, the covariates were age, assessment center (where 

relevant), genotype batch, array, and 40 genetic principal components. For phenotypes which 

were collected across multiple testing occasions, a separate GWAS was performed for non-

overlapping participants from each occasion and an inverse-variance weighted meta-analysis 

was implemented in METAL54. As the size of the subsets of individuals for each phenotype 

vary greatly, an additional QC filter to remove SNPs with a minor allele count < 25 was 

applied to all GWAS summary results prior to further analyses.

Factor Models

We performed genetic factor analysis on the UK Biobank cognitive phenotypes with 

Genomic SEM25 and phenotypic factor analysis with the lavaan package for R55. In both 

genetic and phenotypic factor analysis, a common factor model specifies that k phenotypes 

are described as linear functions of a smaller set of m (continuous) latent variables: y = 
Λη+ε. In this equation, y is a k×1 vector of indicators, ε is a k×1 vector of residuals, η is 

an m×1 vector of common factors, and Λ is a k×m matrix of factor loadings, i.e. regressions 

relating the common factors to the set of indicators. In the genetic factor model, y represents 

the genetic components of the GWAS phenotypes, whereas, in the phenotypic factor model, 

y represents the phenotypes themselves. The model-implied covariance matrix of a CFA 

is Σ(θ) = ΛΨΛ′+Θ, where Ψ is an m × m latent variable covariance matrix (in the case 

of a single common factor, Ψ is simply equal to the variance of the factor, which we fix 

to 1 for scaling identification purposes), and Θ is a k×k matrix of covariances among the 

residuals, ε (typically a diagonal matrix, to indicate that all indicator residuals are assumed 

to be independent of one another). A set of parameters (θ) is estimated such that the fit 

function indexing the discrepancy between the model-implied covariance matrix, Σ(θ), and 

the empirical covariance matrix, S, is minimized.

For genetic factor modelling in Genomic SEM25, S is a genetic covariance matrix estimated 

using a multivariable extension of Linkage Disequilibrium Score Regression (LDSC)27. 

For phenotypic factor modelling in lavaan, S is a phenotypic covariance matrix that 

is empirically estimated from the raw phenotypic data using full information maximum 

likelihood estimation. For genetic factor modelling in Genomic SEM the fit function used 

to estimate the model parameters takes into account the precision of the elements of the S 

matrix, along with their sampling dependencies (which are needed to appropriately account 

for sample overlap across the GWAS phenotypes) in the form of a sampling covariance 

matrix, V, that is estimated using a jackknife resampling procedure in the multivariable 
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extension of LDSC available in Genomic SEM. Model fit is considered good when Σ(θ) 

closely approximates S. For Genomic SEM, the fit function used was Diagonally Weighted 

Least Squares (WLS), with a sandwich correction to adjust standard errors of model 

parameters based on the off-diagonal elements of V. For Phenotypic modeling, the fit 

function used was maximum likelihood.

In Genomic SEM, goodness-of-fit of the model is assessed by means of the standardized 

root mean square residual (SRMR), model χ2, Akaike Information Criterion (AIC), and 

Comparative Fit Index (CFI). For phenotypic factor modelling, we additionally consider 

Root Mean Square Error of Approximation (RMSEA). Hu and Bentler56 have proposed the 

following criteria for a good fit: Comparative Fit Index (CFI) >0.95; Root Mean Squared 

Error of Approximation (RMSEA) < 0.08.

Estimation of SNP-based heritability and genetic correlations using GCTA-GREML

Our primary means of estimating the UK Biobank’s cognitive phenotypes’ SNP-based 

heritability and genetic correlations was with the multivariable version of LDSC 

available in Genomic SEM, as described above. However, in order to verify that the 

estimated genetic correlation matrix was consistent across estimation methods relying on 

different assumptions, we additionally implemented GCTA-GREML to estimate SNP-based 

heritability29 and genetic correlations28. Due to computational requirements for the bivariate 

GCTA-GREML analyses a subset of individuals was created and used for all of the GCTA-

GREML analyses. This subset was created by performing listwise deletion for reaction time, 

memory, VNR, symbol digit substitution, and TMT-B; n = 72,583. The same covariates were 

included in all GCTA-GREML analyses as for the SNP-based association analyses. One 

individual was excluded from any pair of individuals who had an estimated coefficient of 

relatedness of >0.05.

Genetic correlations with neural phenotypes and longevity

We extended the factor models in Genomic SEM to estimate the genetic correlations 

between the genetic g factor from the UK Biobank cognitive phenotypes and each of 

nine collateral phenotypes in turn: Educational Attainment32; general cognitive function 

from Davies et al.19, Savage et al.21, and Hill et al.20; total brain volume from UKB37; 

Alzheimer’s disease34, Schizophrenia35, Attention Deficit Hyperactive Disorder (ADHD)36, 

Autism Spectrum Disorder (ASD)57, and longevity38.

Multivariate GWAS in Genomic SEM

Using the univariate summary statistics for each of the seven UK Biobank cognitive 

phenotypes, Genomic SEM25 was used to conduct a multivariate GWAS, with the genetic 

g factor as the GWAS target (see left portion of Supplementary Figure 9). As the typical 

unit variance scaling cannot be directly specified in a model in which the latent factor 

is a dependent variable, we specified unit loading scaling (with Matrices as the reference 

indicator; Supplementary Table 29). Genomic SEM provides a SNP-specific heterogeneity 

statistic, Q, which indexes the extent to which the specified factor model is insufficient to 

account for the SNP effects on the individual traits analyzed. High Q values for a given 

SNP, indicate that a model which estimates SNP associations with each individual trait (see 
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right portion of Supplementary Figure 9) fits better than a model which estimates a single 

SNP association with the factor. In other words, SNPs with genome-wide significant Q 

values may be interpreted as SNPs that do not affect the genetic g. A detailed explanation 

of the Q statistic is provided in the supplemental online text (“Interpreting the Heterogeneity 

Statistic”).

For multivariate GWAS in Genomic SEM, summary statistics for the individual tests were 

restricted to SNPs with a MAF > 1%, an INFO score > 0.6, and to SNPs that were present 

for all seven cognitive tests. The summary statistics were also filtered to SNPs present in the 

European only 1000 Genomes Phase 3 reference panel, as the SNP minor allele frequencies 

from the reference panel are necessary to obtain their variances for inclusion in the genetic 

covariance (S) matrix. Using these QC steps, 7,857,346 SNPs were present across all 

seven cognitive tests. Note that all cognitive phenotypes had already been residualized for 

covariates when conducting the univariate GWASs, summary statistics for which enter into 

multivariate analyses within Genomic SEM, such that further covariate-adjustment was not 

needed at this stage.

We adopt the field standard alpha threshold of 5×10−8 for GWAS. This threshold amounts 

to a Bonferroni correction for the theoretical number of independent tests in the genome 

given known LD structure58. As all seven phenotypes are highly genetically correlated, it is 

inappropriate to perform an additional Bonferroni correction for the 7 additional phenotypes, 

and we do not focus our interpretation on results of the seven univariate GWASs. Rather, 

we focus on results of the multivariate GWAS within Genomic SEM for which there are 

two families of theoretical tests, each constituting a single set of GWAS-type statistics: 

(1) genome-wide SNP associations with genetic g, and (2) genome-wide SNP-specific 

heterogeneity indices (Q).

Genome-wide significant loci using FUMA

Genome-wide significant loci were defined from the SNP-based association results, using 

Functional Mapping and Annotation of genetic associations (FUMA)59. The SNP2GENE 

function was used to identify independent significant SNPs defined as SNPs with a P-value 

of ≤5 × 10−8 and independent of other genome wide significant SNPs at r2 < 0.6. Tagged 

SNPs, for use in subsequent annotations, were then identified as all SNPs that had a MAF 

≥ 0.0005 and were in LD of r2 ≥ 0.6 with at least one of the independent significant 

SNPs. These tagged SNPs included those from the 1000 genomes reference panel and 

need not have been included in the GWAS performed in the current study. Genome-wide 

significant loci that were 250 kb or closer were merged into a single locus. Lead SNPs 

were defined as independent significant SNPs that were independent from each other at r2 

< 0.1. We performed lookups on all tagged SNPs (r2 > 0.6) within each locus, including all 

1000 genomes SNPs; previously reported genome-wide significant findings are detailed in 

Supplementary Tables 22–28.

Polygenic prediction

Generation Scotland: the Scottish Family Health Study (GS) is a family-structured, 

population-based cohort study recruited between 2006 and 2011. Participant recruitment 
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occurred in Glasgow, Tayside, Ayrshire, Arran, and North-East Scotland, yielding a total 

sample size of 24,084 with an age range between 18 and 100 years, and up to four 

generations per family, of which we selected one participant per family. A full cohort 

description is provided elsewhere40,41 and online at http://www.generationscotland.org/. 

Ethical approval for GS was obtained from the Tayside Committee on Medical Research 

Ethics (on behalf of the National Health Service). Genotyping, using the Illumina 

HumanOmniExpressExome-8 v1.0 chip, was performed at the Edinburgh Clinical Research 

Facility, University of Edinburgh60. Participants were removed from GS if they had 

contributed to both GS and UK Biobank (n = 622). For the PGS analyses 6,950 unrelated GS 

participants were retained.

The cognitive measures available in GS were Wechsler Logical Memory (episodic memory), 

Mill Hill Vocabulary (crystallized knowledge), Wechsler Digit Symbol Substitution 

(processing speed), and Verbal Fluency (semantic fluency), as described previously40,41. 

We created a phenotypic g using the first unrotated principal component of the cognitive 

measures, and also a fluid g using the first unrotated principal component of the cognitive 

measures excluding the Mill Hill Vocabulary scores.

Polygenic profile scores were created using PRSice version 2 (https://github.com/

choishingwan/PRSice) using a pre-specified p-value threshold of 1.0, i.e. all SNPs61. 

Summary results from the genetic g and univariate cognitive test GWAS were used to create 

polygenic profile scores for the GS individuals. Prior to creating these scores SNPs with a 

MAF < 0.01 were removed and clumping was used to obtain SNPs in linkage disequilibrium 

with an r2 < 0.25 within a 250 kb window. Polygenic profile scores for the individual 

cognitive tests were created using all available SNPs from the GWAS summary results. For 

genetic g, all SNPs located within significant Q loci were removed from the GWA summary 

results prior to the profile scores being created.

Linear regression models were used to examine the associations between the polygenic 

profile scores and cognitive performance and educational attainment in GS. All models 

included age at measurement, sex, and 10 genetic principal components to adjust for 

population stratification. We created regression models fitting each polygenic score 

individually, a multivariate model including all eight polygenic scores (genetic g, reaction 

time, memory, matrix, symbol digit substitution, trail making test B, and tower rearranging) 

and, a series of models which fitted the genetic g polygenic score plus one individual 

cognitive test score. From these models we were able to determine contributions of genetic 

g and each individual UK Biobank cognitive test to prediction of variance in cognitive 

performance and educational attainment in an independent sample, GS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Standardized genetic (top) and phenotypic (bottom) factor solutions for the covariance 

structure of seven UK Biobank cognitive traits used in the present study. Squares represent 

observed variables, i.e. the phenotypes that are directly measured. Circles represent latent 

variables that are statistically inferred from the data, i.e. the genetic and phenotypic g 
factors that are inferred through factor analysis, and the genetic components of the observed 

phenotypes that are inferred through LD Score Regression. Arrows are standardized factor 

loadings, which can be interpreted as standardized regression relations with the arrow 

pointing from the predictor variable to the outcome variable. Genetic factor models were 

estimated using Genomic SEM (26), and phenotypic models were estimated using the 

lavaan package for R (41). Matrix = Matrix Pattern Completion task; Memory = Memory 

– Pairs Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution 

Task; Trails-B = Trail Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal 

Numerical Reasoning Test. All variables are scaled such that higher scores indicate better 
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cognitive performance. The genetic g factor accounts for an average of 58.37% of the 

genetic variance in the seven cognitive traits. The phenotypic g factor accounts for an 

average of 26.50% of the observed phenotypic variance in the seven cognitive traits.
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Figure 2. 
Miami plot of unique, independent hits for genetic g (top) and Q (bottom) (7,857,346 

variants). The heterogeneity statistic (Q) indexes whether a SNP evinces patterns of 

associations with the cognitive traits that departs from the pattern that would be expected 

if it were to act on the traits via genetic g. Thus, genetic g loci in common with Q loci 

are false discoveries on genetic g. The dotted grey horizontal lines are the genome-wide 

significance threshold (p < 5×10−8). The genome-wide significant loci represented by the 

triangles, circles, and diamonds are represented both in the top and bottom panels of the 

Miami plot, with their locations corresponding to the −log10(p) of their associations with 

genetic g in the top panel, and the −log10(p) of their Q statistic in the bottom panel.

Red triangles : genetic g loci unique of univariate loci.

Blue triangles : genetic g loci in common with univariate loci.

Green circles : univariate loci unique of genetic g loci.

Yellow triangles : genetic g loci in common with Q loci.

Yellow diamonds : Q loci unique of genetic g loci.
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Table 1.

Common factor solutions for the genetic (top section) and phenotypic (bottom section) covariance structure of 

seven UKB cognitive traits.

Standardized Factor 
Loadings Common (g) and specific (s) sources of genetic variation

Genetic g Proportion of genetic variation 
explained by genetic g and genetic s

Proportion of phenotypic variation explained by 
genetic g and genetic s (HapMap3 Common 

Variants Only)

Cognitive 
Trait Estimate SE Common (g) Specific (s) Common (g) Specific (s) Total SNP h2

Matrices 0.826 0.070 68.23% 31.77% 10.60% 4.90% 15.50%

Memory 0.651 0.031 42.38% 57.62% 1.70% 2.30% 4.00%

RT 0.308 0.026 9.49% 90.51% 0.70% 6.70% 7.40%

Symbol 0.831 0.034 7.60% 3.40% 11.00%

Digit 69.06% 30.94%

Trails-B 0.976 0.035 95.26% 4.74% 14.20% 0.70% 14.90%

Tower 0.853 0.080 72.76% 27.24% 8.30% 3.10% 11.40%

VNR 0.717 0.024 51.41% 48.59% 10.90% 10.30% 21.20%

Mean % 58.36% 41.64% 7.71% 4.49% 12.20%

Phenotypic g
Proportion of phenotypic variation 

explained by phenotypic g and 
phenotypic s

Cognitive 
Trait Estimate SE Common (g) Specific (s)

Matrices 0.501 0.009 25.10% 74.90%

Memory 0.257 0.003 6.60% 93.40%

RT 0.231 0.003 5.34% 94.66%

Symbol Digit 0.628 0.004 39.44% 60.56%

Trails-B 0.766 0.003 58.68% 41.32%

Tower 0.487 0.009 23.72% 76.28%

VNR 0.514 0.003 26.42% 73.58%

Mean % 26.50% 73.50%

Note. Matrices = Matrix Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit 
Substitution Task; Trails-B = Trail Making Test - B; Tower = Tower Rearranging Task; VNR = Verbal Numerical Reasoning Test. All traits are 

scaled such that higher scores indicate higher cognitive performance. Total SNP h2 = total proportion of phenotypic variance in the corresponding 
cognitive trait accounted for by all tagged common variants. By definition, the common (g) and specific (s) proportional contributions to total 

phenotypic variation sum to the total SNP h2, and the common (g) and specific (s) proportional contributions to genetic variation sum to 100%. 
Note: Standardized factor loadings indicate the standardized linear relationship between the factor and each of the cognitive outcomes. Models are 
fit to LDSC-derived genetic covariance matrices using Genomics SEM. As per best practices for LDSC, genetic covariance matrices were derived 
using HapMap3 SNPs with minor allele frequencies > 1%, excluding SNPs with INFO < 0.9 and those from the MHC region.
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