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OBJECTIVE

Suboptimal nutrition in pregnancy is associated with worse offspring cardiometa-
bolic health. DNA methylation may be an underlying mechanism. We meta-ana-
lyzed epigenome-wide association studies (EWAS) of maternal dietary glycemic
index and load with cord blood DNA methylation.

RESEARCH DESIGN AND METHODS

We calculated maternal glycemic index and load from food frequency question-
naires and ran EWAS on cord blood DNA methylation in 2,003 mother-offspring
pairs from three cohorts. Analyses were additionally stratified by maternal BMI
categories. We looked-up the findings in EWAS of maternal glycemic traits and
BMI as well as in EWAS of birth weight and child BMI. We examined associations
with gene expression in child blood in the online Human Early Life Exposome
eQTM catalog and in 223 adipose tissue samples.

RESULTS

Maternal glycemic index and load were associated with cord blood DNA methylation
at 41 cytosine-phosphate-guanine sites (CpGs, P < 1.17 × 1027), mostly in mothers
with overweight/obesity.We did not observe overlap with CpGs associated with ma-
ternal glycemic traits, BMI, or child birth weight or BMI. Only DNA methylation at
cg24458009 and cg23347399 was associated with expression of PCED1B and PCDHG,
respectively, in child blood, and DNAmethylation at cg27193519 was associated with
expression of TFAP4, ZNF500, PPL, and ANKS3 in child subcutaneous adipose tissue.

CONCLUSIONS

We observed multiple associations of maternal glycemic index and load during
pregnancy with cord blood DNA methylation, mostly in mothers with over-
weight/obesity; some of these CpGs were associated with gene expression. Addi-
tional studies are required to further explore functionality, uncover causality, and
study pathways to offspring health.

Glycemic index and glycemic load are measures to classify carbohydrate-containing
foods according to the blood glucose response they evoke after consumption (1).
Glycemic index represents the postprandial rise in blood glucose in response to a
specific carbohydrate- containing food, fed as 50 g of net carbohydrate and
compared with 50 g of pure glucose, and expressed as a percentage of the post-
prandial response to glucose. A higher glycemic index corresponds to a higher
blood glucose–raising property of the food. Glycemic load incorporates both the
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glucose-raising properties of a food and
the consumed amount of that food (2).
Thus, a certain food always has the same
glycemic index, but the glycemic load dif-
fers based on the amount consumed.
Individuals with a low glycemic–index

diet or a low glycemic–load diet have a
decreased risk of type 2 diabetes (3)
and improved metabolic health (2,4,5).
Additionally, compared with a conven-
tional or high glycemic–index diet, a low
glycemic–index diet reduces glycated
hemoglobin (HbA1c) in individuals with
diabetes (6).
Evidence on the association of prenatal

dietary glycemic index or load with neo-
natal outcomes is mixed (7–9). Of three
previous observational studies, one re-
ported a positive association of maternal
dietary glycemic index with offspring adi-
posity measures at birth (8), one found
negative associations (7), and one found
no associations (9). One study in obese
pregnant women did not find associations
of a diet and physical activity intervention
with offspring large-for-gestational-age
status, despite, among other factors, a re-
duced dietary glycemic load (10).
A potential biological mechanism un-

derlying associations of maternal diet
with offspring health is differential DNA
methylation. Some large-scale meta-
analyses of epigenome-wide association
studies (EWAS) have previously linked
adverse maternal nutrition-related expo-
sures during pregnancy (e.g., BMI [11]
and plasma folate concentrations [12])
with cord blood DNA methylation. How-
ever, not much is known about the asso-
ciation of maternal dietary glycemic
index or load during pregnancy with off-
spring DNA methylation. Two previous
studies provided some first evidence that
maternal dietary glycemic index and load
may be related to DNA methylation in
placental tissue (13) and in cord blood
(14), although sample sizes were rather
limited. DNA methylation may have
functional consequences via changes
in gene expression that potentially lead
to changes in health outcomes. We

therefore conducted a meta-analysis to
investigate the association of maternal
dietary glycemic index and load during
pregnancy with offspring cord blood
DNA methylation. In this EWAS, we took
a hypothesis-free approach, analyzing
DNA methylation at all cytosine-phos-
phate-guanine sites (CpGs) measured on
the array in relation to glycemic index
and load. After running the EWAS, we
compared the results with previous
EWAS of cardiometabolic phenotypes to
examine whether the CpGs identified
in our study were also related to cardio-
metabolic phenotypes. Lastly, because
women with overweight are more likely
to be insulin resistant (15), we therefore
additionally stratified analyses by mater-
nal weight status.

RESEARCH DESIGN AND METHODS

An explanation of the cohorts used for
meta-analysis and all following statisti-
cal analyses is presented in the flow-
chart in Fig. 1.

Participants
Three population-based birth cohorts
participated in this individual partici-
pant meta-analysis: 658 mother-off-
spring pairs from the Avon Longitudinal
Study of Parents and Children (ALSPAC)
from the U.K. (16,17), 998 mother-off-
spring pairs from the Generation R
Study (Generation R) from the Nether-
lands (18), and 347 mother-offspring
pairs from the INfancia y Medio Ambi-
ente (INMA) Project from Spain (19).
We excluded mothers with gestational
diabetes or prepregnancy type 1 or 2 di-
abetes, because glycemic response
changes with insulin resistance and with
antidiabetes medication. After cohort-
specific quality control on the food fre-
quency questionnaires (FFQs), described
in the cohort-specific Supplementary
Methods, we additionally excluded
mothers with maternal glycemic index
and load values outside ±5 SD from the
cohort mean. We further excluded mul-

tiple pregnancies and if mothers had
multiple children (i.e., nontwin siblings)
in the cohort. We included only one
child per mother, based on complete-
ness of data and, if equal, randomly.
Subjects with missing data on any of
the covariates were excluded from
analyses.

Maternal Dietary Glycemic Index and
Glycemic Load During Pregnancy
Cohort-specific methods, including refer-
ences, are described in detail in the
Supplementary Methods. The FFQs were
all validated and contained 47, 293, and
101 items in ALSPAC, Generation R, and
INMA, respectively. We used FFQ data
with information on consumption fre-
quency, and portion size was extracted
from the FFQ or from cohort-specific set
portion sizes. Cohorts’ calculated total
energy intake and carbohydrate content
for each food was based on their na-
tional food composition tables. We used
the total amount of consumed carbohy-
drates per food (g/100 g) and only cal-
culated glycemic index and load for
foods with >1 g total carbohydrate per
100 g. We then linked the foods to the
glycemic index values of the country-spe-
cific reference database: Diogenes-UK for
ALSPAC, Diogenes-NL for Generation R
(20), and Atkinson for INMA (21). Foods
that could not be found in the country-
specific glycemic index reference data-
base were linked to the glycemic index
values of reference databases of other
countries. Per person, the dietary glyce-
mic index was then calculated as the
weighted average of the glycemic index
values of all foods consumed (2):

Mean dietary glycemic index 5

S
n

i51
GIi � CHOið Þ=S

n

i51
CHOi

GIi (%) 5 the glycemic index of food i,
relative to glucose; CHOi 5 the amount
of food i consumed (g/day, from the raw
FFQ data set) × carbohydrate content
from food i (g/g, from the reference
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database); and n 5 number of foods
eaten per day.

The mean dietary glycemic load is then
calculated as (2):

Mean dietary glycemic load 5

S
n

i51
Gli � CHOið Þ=100

Offspring Cord Blood DNA
Methylation
Offspring cord blood DNA was isolated
from cord blood drawn directly after
birth, and DNA methylation was mea-
sured using the Illumina 450K array. Each
cohort performed their own laboratory
analyses, quality control, and normaliza-
tion (Supplementary Methods). We used
untransformed b values, with values be-
tween 0 and 1, as the outcome measure
and excluded extreme DNA methylation
outliers according to the Tukey method:
outliers outside the range of (25th per-
centile � 3*interquartile range [IQR]) to
(75th percentile1 3*IQR) were excluded.
We removed control probes, X and Y
chromosome probes, and cross-reactive
probes (22,23), resulting in a maximum
of 428,328 remaining CpG sites. After
meta-analysis, we flagged potentially
polymorphic sites (22,23) or methylation
quantitative trait loci (mQTLs) (24).

Statistical Analyses
Each cohort ran EWAS using robust linear
regression models for glycemic index and

load with each CpG site individually, using
lmFit() in the limma R package (25), ac-
cording to a prespecified analysis plan
and R script. The fully adjusted models
had maternal glycemic index or load as
the exposure and cord blood DNA meth-
ylation as the outcome and were ad-
justed for sex, maternal education, age,
smoking during pregnancy, total energy
intake, batch, and cell types. We addi-
tionally ran these models stratified on
maternal pre-pregnancy or early preg-
nancy (#16 weeks of gestation) normal
body weight (BMI 18 to <25 kg/m2) and
overweight or obesity (BMI $25 kg/m2).
Mothers with underweight were re-
moved from these stratified analyses be-
cause the sample size was too low.

Sex of the child was obtained from
birth records. Maternal educational level
was based on self-reported question-
naires during pregnancy and assigned to
two (ALSPAC and Generation R) or three
(INMA) levels, depending on cohort pref-
erence (Supplementary Methods). Ma-
ternal age was self-reported in the
questionnaire during pregnancy. Mater-
nal smoking during pregnancy was self-
reported in the questionnaire during
pregnancy and defined as no smoking
during pregnancy, as stopped smoking
before the second trimester, as sustained
smoking in Generation R and INMA, and
as sustained smoking versus no smoking
or quit before second trimester in AL-
SPAC. Maternal total energy intake dur-
ing pregnancy (kcal/day) was calculated

from the self-reported FFQ during preg-
nancy that was also used to calculate
the glycemic index and load. Each cohort
included their preferred variable to ad-
just for batch: Generation R used plate
number as reported by the laboratory,
ALSPAC used surrogate variable analysis
(26), and INMA used ComBat (27). We
used a cord blood methylation-based
reference set to estimate cell type com-
position (28) (CD8 T cells, CD4 T cells,
natural killer cells, B cells, monocytes,
granulocytes, nucleated red blood cells).

All cohort EWAS results passed qual-
ity control using the QCEWAS R package
(29). We then meta-analyzed the co-
hort-specific EWAS results using the
fixed-effects inverse variance weighted
method in METAL (30) at Erasmus MC
and consecutively shadowed this meta-
analysis at ISGlobal using GWAMA (31).
Results were confirmed. We used a
Bonferroni-corrected P-value threshold
of <1.17 × 10�7 to define CpGs to take
forward for further analyses, and we
also present the false discovery rate
(FDR).

Lookup in Older Ages
We tested whether the CpGs that
reached the Bonferroni threshold in the
full group meta-analyses or in the analy-
ses stratified on maternal BMI showed
persistent associations with maternal gly-
cemic index or load during pregnancy
when DNA methylation was measured at
later ages. We performed lookups in 1)

Figure 1—Flowchart of the study design.
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early childhood: meta-analysis of INMA
(mean: 4.5 years) and Generation R (6.1
years), 2) late childhood: meta-analysis
of ALSPAC (7.5 years), INMA (8.8 years),
Generation R (9.8 years), and 3) adoles-
cence: ALSPAC (17.1 years). These analyses
were adjusted for the same covariates
as the cord blood analyses plus child
age at DNA methylation measurement.
For cell types, we used the adult blood
methylation-based reference (32,33) (CD8
T ells, CD4 T cells, natural killer, B cells,
monocytes, and granulocytes). We cor-
rected for multiple testing in these look-
ups using a Bonferroni P-value cutoff of
<0.0012 (0.05/41 tests).

Functional Analyses
We examined potential functionality of
the identified CpGs using several analy-
ses. First, we looked up the top hits
from the full group and stratified meta-
analyses in recently published EWAS on
related exposures: maternal late-preg-
nancy glycemic traits (34), maternal
early-pregnancy blood glucose and insu-
lin concentrations (35), and maternal
early-pregnancy BMI (11); and in EWAS
of cord blood DNA methylation and
child health outcomes: birth weight (36)
and BMI in childhood or adolescence
(37). We corrected for multiple testing
in this lookup using a Bonferroni P-value
cutoff <0.0012 (0.05/41 tests).
Second, we used the cell type-adjusted

Human Early Life Exposome (HELIX) cata-
log of 13.6 million autosomal expression
quantitative trait methylation (cis-eQTMs)
in children to check whether the top
CpGs from our EWAS were associated
with gene expression in childhood blood
(38). We additionally tested associations
of the top CpGs from our EWAS with
RNA transcript levels in subcutaneous adi-
pose tissue in 223 participants (0–21
years old) from the Leipzig Childhood Adi-
pose Tissue Cohort (39). Participating chil-
dren underwent elective surgery, mostly
orthopedic, and were free of severe dis-
eases (diabetes, generalized inflamma-
tion, malignant disease, and genetic
syndromes, or were not permanently im-
mobilized) and medication potentially
influencing adipose tissue biology. We fo-
cused on CpGs #500 kilobase of the
transcription start site of the transcript.
We applied Bonferroni correction using
the total number of CpGs tested (33,
since 8 CpGs were discarded prior to the

statistical analysis) and the number of
tests per each unique CpG-transcript pair.
Detailed methods are described in the
Supplementary Methods.

Third, we used missMethyl (40) to
run functional enrichment pathway
analyses using gene ontology (GO) and
Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG). For these pathway anal-
yses we used several selections of
CpGs: 1) all CpGs that reached Bonfer-
roni threshold in either the full group or
stratified analyses for both glycemic in-
dex and load combined, to explore com-
mon pathways; and 2) CpGs with P <
0.0001 in each of the six analyses of
maternal glycemic index or load in the
full group or the stratified analyses
separately.

Fourth, we explored in the EWAS Cata-
log (41) if the top hits from the full group
meta-analyses were previously identified
to be associated with other traits.

Fifth, for those CpGs that reached
the Bonferroni threshold in the full
group and stratified meta-analyses and
that were flagged as potentially poly-
morphic sites (22,23) or methylation
quantitative trait loci (mQTLs) (24), we
created distribution plots using the Gen-
eration R data to check bimodality of
the distribution.

Sixth, using all CpGs associated with
glycemic index and load in the full group
and stratified meta-analyses, we exam-
ined enrichment for tissue-specific DNa-
seI hypersensitivity regions using eForge
version 2.0 (42).

Lastly, we examined between-cohort
heterogeneity of the top CpGs with a
combination of the I2 statistic, forest
plots, and leave-one-out plots.

RESULTS

Participants
We included 2,003 mother-child pairs
from the three cohorts. Descriptives per
cohort are presented in Table 1, Supple-
mentary Fig. 1A–C, and the Supple-
mentary Methods. The mean maternal
glycemic index ranged between 50.8 and
58.3, and the mean maternal glycemic
load ranged between 107.6 and 154.6.

Meta-analysis of Glycemic Index and
Glycemic Load in the Full Group
In the full-group analyses, we observed
an association between maternal glycemic
index and cord blood DNA methylation

level of cg21301148 (0.099% increase
in DNA methylation per 1-unit increase
in glycemic index, SE 5 0.019, P 5
1.00 × 10�7 (Table 2 and Supplementary
Table 1). Maternal glycemic load was as-
sociated with cord blood DNA methyla-
tion levels of cg09874107, cg21301148,
and cg27528695 (Table 2 and Supple-
mentary Table 2). Manhattan plots are
presented in Fig. 2.

Meta-analyses Stratified by Maternal
Weight Status
In 1,509 mothers with normal weight,
maternal glycemic index was associ-
ated with two CpGs, cg02079551 and
cg21301148, and maternal glycemic
load was associated with two CpGs,
cg02920421 and cg26729101 (Table 2
and Supplementary Tables 3 and 4). In
463 mothers with overweight or obesity,
maternal glycemic index was associated
with DNA methylation of 31 CpGs, and
maternal glycemic load was associated
with DNA methylation of 4 CpGs (Table 2).
Full epigenome-wide results for these
stratified analyses are presented in
Supplementary Tables 5 and 6. We
found no overlap between the hits
from these stratified analyses, except
for cg21301148, which was associated
with the glycemic index in the full group
as well as in mothers with normal
weight. Of the total of 39 CpGs that
were identified in at least one of the
stratified analyses, 19 (48.7%) showed
opposite directions of association be-
tween the mothers with normal weight
and those with overweight or obesity.
Manhattan plots are presented in Fig. 2.
In total, glycemic index or load were as-
sociated with 41 CpGs in either the full
group or the stratified analyses. Results
for all (full group and stratified) meta-
analyses for these 41 CpGs are shown in
Supplementary Table 7.

Lookup in Older Ages
We tested persistence of associations
of maternal glycemic index or load
during pregnancy when DNA methyla-
tion was measured in early childhood
(n 5 554), late childhood (n 5 1,255),
and adolescence (n 5 711). None of
the CpGs persisted at later ages in re-
lation to the same exposure. Although
7 of the 41 CpGs reached Bonferroni-
corrected P < 0.0012 in one or more
of the models in early childhood, late
childhood, or adolescence (bold and
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underlined in Supplementary Tables
8–10), these associations were ob-
served in other models than the initial
meta-analysis in cord blood (e.g.,
these were associated with glycemic

load in the lookup rather than glyce-
mic index in the cord blood analysis).
Additionally, nine CpGs reached nomi-
nal significance in the same model as
in the main cord blood analyses.

Functional Analyses

None of the 41 CpGs from the full group
and stratified analyses was associated
with maternal early and late pregnancy
glycemic traits or maternal BMI in

Table 1—Cohort-specific descriptive statistics

ALSPAC Generation R INMA

All mothers (n 5 658) (n 5 998) (n 5 347)
Glycemic index 58.3 ± 2.8 57.62 ± 3.2 50.8 ± 2.7
Glycemic load 126.2 ± 34.4 154.6 ± 45.4 107.6 ± 31.5
Sex of the child – female 342 (52.0) 504 (50.5) 171 (49.3)
Educational level*

Low 324 (49.2) 599 (60.0) 88 (25.4)
Middle — — 149 (42.9)
High 334 (50.8) 399 (40.0) 110 (31.7)

Maternal age (years) 29.8 ± 4.3 31.7 ± 4.1 31.5 ± 4.0
Maternal smoking*

No smoking during pregnancy 593 (90.1)* 769 (77.1) 246 (70.9)
Smoked, stopped before 2nd trimester — 97 (9.7) 54 (15.6)
Smoked throughout pregnancy 65 (9.9) 132 (13.2) 47 (13.5)

Maternal pre-/early-pregnancy weight status
BMI < 18 kg/m2 — 15 (1.5) 16 (4.6)
BMI $ 18 and < 25 kg/m2 538 (81.8) 735 (73.6) 236 (68.0)
BMI $ 25 kg/m2 120 (18.2) 248 (24.8) 95 (27.4)

Maternal total energy intake (kcal) 1,753 ± 453 2,152 ± 493 2,063 ± 476
Maternal total carbohydrate intake (g) 216.2 ± 57.3 265.5 ± 72.8 213.4 ± 59.2
Maternal total carbohydrate intake (energy %) 49.5 ± 4.7 49.2 ± 6.0 41.4 ± 6.1

Mothers with pre-/early-pregnancy normal weight (n 5 538) (n 5 735) (n 5 236)

Glycemic index 58.2 ± 2.8 57.5 ± 3.2 50.6 ± 2.8
Glycemic load 127.5 ± 35.8 156.1 ± 46.0 108.1 ± 30.7
Sex of the child – female 281 (52.2) 377 (51.3) 125 (53.0)
Educational level*

Low 253 (47.0) 410 (55.8) 53 (22.5)
Middle — — 102 (43.2)
High 285 (53.0) 325 (44.2) 81 (34.3)

Maternal age (years) 29.85 ± 4.28 31.79 ± 4.10 31.43 ± 4.03
Maternal smoking*

No smoking during pregnancy 484 (90.0)* 568 (77.3) 166 (70.3)
Smoked, stopped before 2nd trimester 75 (10.2)
Smoked throughout pregnancy 54 (10.0) 92 (12.5) 32 (13.6)

Maternal total energy intake (kcal) 1,772 ± 461 2,177 ± 496 2,067 ± 474
Maternal total carbohydrate intake (g) 218.9 ± 59.2 268.6 ± 73.5 212.9 ± 58.0
Maternal total carbohydrate intake (energy %) 49.6 ± 4.8 49.2 ± 5.9 41.2 ± 5.9

Mothers with pre-/early-pregnancy overweight or obesity (n 5 120) (n 5 248) (n 5 95)

Glycemic index 59.0 ± 2.8 57.9 ± 3.3 50.8 ± 2.6
Glycemic load 120.1 ± 26.6 149.2 ± 43.8 105.8 ± 29.8
Sex of the child – female 61 (50.8) 120 (48.4) 38 (40.0)
Educational level*

Low 71 (59.2) 180 (72.6) 30 (31.6)
Middle — — 42 (44.2)
High 49 (40.8) 68 (27.4) 23 (24.2)

Maternal age (years) 29.66 ± 4.60 31.50 ± 4.15 31.98 ± 3.97
Maternal smoking*

No smoking during pregnancy 109 (90.8)* 190 (76.6) 69 (72.6)
Smoked, stopped before 2nd trimester — 21 (8.5) 13 (13.7)
Smoked throughout pregnancy 11 (9.2) 37 (14.9) 13 (13.7)

Maternal total energy intake (kcal) 1,672 ± 407 2,066 ± 476 2,013 ± 456
Maternal total carbohydrate intake (g) 203.9 ± 46.3 254.8 ± 70.5 208.0 ± 56.5
Maternal total carbohydrate intake (energy %) 49.1 ± 4.3 49.2 ± 6.3 41.4 ± 6.5

Data are presented as mean ± SD or n (%). *Cohorts used their preferred categories for maternal educational level and maternal smoking
during pregnancy. We used two categories for ALSPAC: no smoking or quit before 2nd trimester vs. sustained smoking. Please see the cohort-
specific methods for these descriptions.
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previous EWAS (all P values >0.0012
[0.05/41]) (Supplementary Table 11).
Similarly, none of the 41 CpGs was previ-
ously associated with birth weight or
childhood or adolescence BMI (Supple-
mentary Table 11).

In the eQTM analyses, we found three
CpG-transcript cluster associations in child-
hood blood for cg24458009, with the PC-
esterase domain containing 1B (PCED1B)
gene annotated to this transcript cluster.
We further found one CpG-transcript

cluster association for cg23347399, with
the protocadherin g gene family (PCDHGA,
PCDHGB, PCDHGC) annotated to this tran-
script cluster (Table 3). These two CpGs
were both found in the EWAS for associa-
tions with glycemic index in mothers with

Table 2—CpGs associated with maternal glycemic index or glycemic load in the full group and stratified by maternal weight
status

CpG Chr Position# Nearest gene Polymorphic mQTL Effect* SE* P value Dir† I2

Glycemic index—all mothers (n 5 2,003)
cg21301148 14 23878195 MYH6 Yes No 0.099 0.019 1.00E�07 111 0

Glycemic load—all mothers (n 5 2,003)

cg09874107 3 184870896 C3orf70 No No 0.002 0.000 7.50E�08 111 67.6
cg27528695 1 109643479 SCARNA2 Yes Yes 0.010 0.002 9.74E�08 111 0

Glycemic index—mothers with normal weight (n 5 1,509)

cg02079551 10 107023377 SORCS3 Yes No �0.085 0.015 1.38E�08 ��� 0
cg21301148 14 23878195 MYH6 Yes no 0.120 0.021 1.78E�08 ��� 0

Glycemic index—mothers with overweight or obesity (n 5 463)

cg18202627 2 200776533 C2orf69 No No �0.093 0.012 7.96E�15 ��� 0
cg16169361 8 8751409 MFHAS1 Yes No �0.101 0.016 1.19E�10 ��� 24.4
cg24458009 12 47472775 AMIGO2 Yes Yes �0.211 0.033 1.22E�10 ��� 72
cg18290075 3 153840477 ARHGEF26 No Yes �0.099 0.016 2.52E�10 ��� 54.2
cg25832796 14 24038103 JPH4 Yes Yes �0.254 0.041 4.09E�10 ��1 94.8
cg12972275 4 122722461 EXOSC9 Yes No �0.047 0.008 4.83E�10 ��� 48.6
cg18211447 14 102771717 MOK No No �0.117 0.019 6.57E�10 ��� 89
cg04351062 12 24717058 SOX5 No Yes 0.089 0.015 1.30E�09 11� 81.8
cg01078248 7 123197661 NDUFA5 No No �0.077 0.013 1.31E�09 ��1 74.8
cg06591466 14 96505869 C14orf132 No No �0.107 0.018 2.05E�09 ��1 74.8
cg26474288 3 98451287 ST3GAL6-AS1 No No �0.108 0.019 1.28E�08 ��� 0
cg24688926 19 6737877 GPR108 No No �0.074 0.013 1.41E�08 ��� 83
cg00006032 14 66974439 GPHN No No �0.126 0.022 1.41E�08 ��1 69.3
cg06171242 6 24667490 ACOT13 No No �0.061 0.011 1.52E�08 ��� 49.5
cg13445358 12 53661749 ESPL1 Yes No �0.062 0.011 1.96E�08 ��1 0
cg17582259 17 33288330 CCT6B No No �0.094 0.017 1.97E�08 ��1 55.3
cg20927656 12 7863229 DPPA3 Yes Yes 1.355 0.242 2.12E�08 1?1 61.3
cg02725014 5 78809520 HOMER1 No No �0.113 0.02 2.30E�08 ��� 0
cg13721560 2 44222568 LRPPRC No No �0.068 0.012 2.83E�08 ��1 56.5
cg13358349 10 71211210 TSPAN15 Yes No �0.11 0.02 2.96E�08 ��� 28.9
cg16604801 17 2718310 RAP1GAP2 No No �0.071 0.013 3.34E�08 ��� 71.1
cg13740771 20 3026904 MRPS26 No No �0.113 0.021 4.36E�08 ��� 0.5
cg16031283 22 20861701 MED15 No No �0.092 0.017 5.79E�08 ��� 46.3
cg00367659 17 33288544 ZNF830 No No �0.132 0.024 6.40E�08 ��1 40.5
cg26985201 3 197517876 LRCH3 No No �0.085 0.016 6.75E�08 ��� 55.4
cg15225042 19 13044582 FARSA No No �0.077 0.014 6.83E�08 ��1 70.5
cg23347399 5 140766911 PCDHGA1 No Yes 0.4 0.075 8.30E�08 111 17.8
cg27193519 16 4714443 MGRN1 Yes Yes 0.292 0.055 8.58E�08 111 93.9
cg24340911 17 5342028 C1QBP No No �0.077 0.014 1.06E�07 ��� 71.5
cg07254608 8 41997973 AP3M2 No No �0.129 0.024 1.07E�07 ��� 11.5
cg09668030 1 27852173 AHDC1 No No 0.260 0.049 1.18E�07 11? 8.7

Glycemic load—mothers with normal weight (n 5 1,509)

cg02920421 1 32572534 KPNA6 Yes No �0.014 0.002 1.99E�08 1�� 74.3
cg26729101 16 229500 HBQ1 Yes No �0.007 0.001 1.01E�07 1�� 56.6

Glycemic load—mothers with overweight or obesity (n 5 463)

cg03223949 20 60397915 CDH4 Yes Yes �0.013 0.002 1.15E�08 ��1 42.7
cg23345004 18 44526430 KATNAL2 No Yes �0.035 0.006 2.81E�08 ��� 0
cg25044186 6 170494475 LOC154449 Yes Yes �0.013 0.002 8.99E�08 ��� 0
cg09480470 12 124556975 ZNF664-RFLNA No Yes �0.084 0.016 9.74E�08 �?� 0

Chr, chromosome; Dir, direction of association for each cohort. #Position is annotated using hg19. *Effect size and SE are presented as per-
centage change in DNA methylation per 1-point increase in the glycemic index or load. †Cohorts are ordered as ALSPAC, Generation R, and
INMA.
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overweight or obesity. In the analyses of
associations between DNA methylation
and RNA transcript levels in adipose tissue,
4 of the 561 CpG-transcript pairs tested
reached statistical significance. These all in-
volved cg27193519, showing a direct as-
sociation between DNA methylation and
expression levels of transcription factor
AP-4 (TFAP4), zinc finger protein 500
(ZNF500), periplakin (PPL), and ankyrin re-
peat and sterile a motif domain contain-
ing 3 (ANKS3). Correlation plots of these
four CpG-transcript pairs are shown in
Supplementary Fig. 2.

Functional enrichment analyses on all 41
CpGs from the full group or stratified
meta-analyses did not result in FDR signifi-
cant GO or KEGG pathways (Supple-
mentary Table 12). We further found no
functional enrichment for the 76 and 231
CpGs with P < 0.0001 from the full group
meta-analyses on glycemic index and load,
respectively. Similarly, there was no func-
tional enrichment for the 116 or 1,176
CpGs with P < 0.0001 from the stratified
analyses for glycemic index in mothers
with normal weight or overweight or obe-
sity, respectively, nor for the 222 or 265

CpGs with P < 0.0001 from the stratified
analyses for glycemic load, respectively.

We looked up the three CpGs from the
full-group meta-analyses in the EWAS Cat-
alog and found that cg21301148 was pre-
viously associated with (gestational) age,
clear cell renal carcinoma, fetal versus
adult liver gene expression, and alcohol
consumption (Supplementary Table 13).
Further, cg27528695 was associated with
age and HIV infection, but cg09874107
was not found in the EWAS Catalog.

Distribution plots for all of the 41 CpGs
that were flagged as either potentially

Figure 2—Manhattan plots for the associations of maternal glycemic index and load with offspring DNAmethylation (DNAm) in the full group and strat-
ifiedmeta-analyses. Maternal glycemic index and offspring with DNAm—all mothers (A), mothers with normal weight (B), and mothers with overweight
(C). Maternal glycemic load and offspring with DNAm—all mothers (D), mothers with normal weight (E), and mothers with overweight (F).
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polymorphic or mQTL mostly showed
unimodal distributions. On the basis
of visual inspection, only four CpGs
had a marginal indication of bimodality:
cg00006032, cg26474288, cg02725014,
and cg06591466 (Supplementary Figs. 3–5).
Further interpretation of these four CpGs
needs consideration of potentially poly-
morphic or mQTL effects.

Finally, using the set of 41 CpGs, we
found no evidence of enrichment for
tissue-specific DNaseI hypersensitivity
regions.

The I2 value was >50 for 20 of the
41 CpGs, which might indicate between-
cohort heterogeneity. To examine this in
further detail, we created forest plots
and leave-one-out plots for all 41 CpGs
(Supplementary Figs. 6–17). Based on
the forest plots, we found no indication
that one cohort consistently caused het-
erogeneity in the meta-analysis. Leaving
out one cohort at a time, the direction
of effect never changed, as can be seen
in the leave-one-out plots. However, for
a limited number of CpGs, a combined
exploration of the plots and I2 statistic in-
dicated one cohort had relatively strongly
influenced the meta-analysis result. A
sensitivity analysis rerunning the func-
tional enrichment analysis only based on
the 21 CpGs that reached the Bonferroni
threshold and had an I2 <50 also did not
result in FDR significant GO or KEGG
pathways. Of the three CpGs that were
associated with gene expression, two had
an I2 >50.

CONCLUSIONS

This is the first large-scale EWAS to
study associations of maternal dietary
glycemic index and load during preg-
nancy with offspring DNA methylation.
Overall, 41 unique CpGs were associ-
ated with glycemic index or load. We
identified 3 of these in the full group
analyses, 4 were identified when the
sample was restricted to mothers with
a normal weight, and 35 were identified
when the sample was restricted to
mothers with overweight or obesity. We
found no persistence of the associations
into childhood or adolescence. There
was no overlap between our top CpGs
and CpGs associated with maternal gly-
cemic traits or BMI, or with birth weight
or childhood BMI. We found no com-
mon pathways in functional enrichment
analyses. However, two CpGs, associated

with glycemic index in mothers with
overweight or obesity were associated
with gene expression in child blood, and
one CpG was associated with gene ex-
pression in adipose tissue. On the basis
of exploration of I2, forest plots, and
leave-one-out plots, some CpGs need
careful interpretation. For example, es-
pecially interesting for interpretation of
our expression findings are cg24458009
and cg27193519; these might have been
driven by one cohort.

In the full-group meta-analyses, ma-
ternal glycemic index or load were asso-
ciated with three CpGs: cg21301148,
cg09874107, and cg27528695. First,
cg21301148 was associated with both
glycemic index and glycemic load, and it
is annotated to the transcription start
site of the myosin heavy chain 6 (MYH6)
gene. MYH6 has previously been associ-
ated with cardiomyopathy (43). Second,
cg09874107, associated with glycemic
load, is annotated to the transcription
start site of the chromosome 3 open
reading frame 70 (C3orf70) gene, which
may play a role in neural and neurobe-
havioral development (44). DNA methyl-
ation of another CpG in C3orf70 has
been associated with fat-free mass in Eu-
ropean children (45). Third, cg27528695,
associated with glycemic load, is located
close to the small Cajal body-specific
RNA 2 (SCARNA2) gene. To the best of
our knowledge, SCARNA2 has not been
associated with cardiometabolic disease.

Because women with overweight are
more likely to be insulin resistant (15)
and opposite directions of association
with blood glucose and insulin were
previously observed between mothers
with normal weight versus mothers
with overweight or obesity (35), we
tested a potential modifying effect of
maternal weight status on the associa-
tion between glycemic index or load
and cord blood DNA methylation by
running analyses stratified on maternal
BMI categories. Only one CpG over-
lapped between two of our EWAS mod-
els: cg21301148 was associated with
glycemic index in mothers with normal
weight as well as in the full group.
We found most hits in mothers with
overweight or obesity. In these moth-
ers, maternal glycemic index and load
were associated with DNA methylation
levels at 31 and 4 CpGs, respectively.
This may indicate a stronger effect of
glycemic index or load on biological

pathways in offspring of mothers with
overweight or obesity, for example,
through altered insulin sensitivity in these
mothers. Indeed, for 20 of the 39 CpGs
from the stratified analyses, we observed
stronger effect sizes in mothers with over-
weight or obesity. For 19 of the 39 CpGs,
the effect sizes were in opposite direc-
tions between strata, explaining the fact
that there were no findings for these
CpGs in the full group.

Interestingly, the three CpGs that were
associated with gene expression were
all found in the EWAS for associations
with glycemic index in mothers with
overweight or obesity. In child blood,
cg24458009 was associated with expres-
sion of PCED1B, and cg23347399 was as-
sociated with expression of PCDHG. These
genes do not have a known function in
processes associated with cardiometa-
bolic phenotypes (46,47). In subcutane-
ous adipose tissue, cg27193519 was
associated with expression of TFAP4,
ZNF500, PPL, and ANKS3. TFAP4 has been
associated with lipid metabolism (48).
ANKS3 is associated with congenital kid-
ney disease (49). ZNF500 and PPL are not
known to be associated with cardiometa-
bolic diseases. However, as mentioned,
cg24458009 and cg27193519 showed rel-
atively high heterogeneity and thus need
to be carefully interpreted.

We found no overlap between our
findings and previously reported associa-
tions of maternal glucose, insulin, and
the glucose area under the curve for a 2-
h oral glucose tolerance test or BMI dur-
ing pregnancy (11,34,35) with cord blood
DNA methylation. This could be because
we measured glycemic traits based on
dietary intake, while these previous stud-
ies measured BMI or different glycemic
traits as blood concentrations; moreover,
glycemic index values for a food are av-
erage for everyone, whereas individual
biological responses to specific foods are
likely to vary (50). It could also be be-
cause we excluded mothers with gesta-
tional diabetes, while the two previous
glycemic trait EWASs did not (34,41). We
could not establish a potentially mediat-
ing role of cord blood DNA methylation
in the association of maternal glycemic
index or load with later child health,
since none of the CpGs from our EWAS
were previously found to be associated
with birth weight (36) or child or adoles-
cent BMI (37). However, power might
have been limited, and future studies
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with larger sample sizes need to investi-
gate this further.
We found no persistence of differen-

tial DNA methylation into childhood or
adolescence. However, seven CpGs
reached the Bonferroni threshold for as-
sociations with the other glycemic phe-
notype (i.e., glycemic index instead of
load or in mothers with normal weight
instead of mothers with overweight or
obesity). This may indicate that DNA
methylation at those CpGs is associated
with general glycemic processes, poten-
tially with varying strengths at different
time points. Additionally, nine CpGs
reached nominal significance in the
same model as in the main cord blood
analyses, which might indicate a lack of
power to detect persistence due to
lower sample sizes. Future studies might
focus on increasing sample size for such
a lookup in older ages. We previously
observed a similar lack of persistence of
differential DNA methylation in relation
to birth weight (36). Exposure to mater-
nal factors rapidly diminishes after deliv-
ery, and many postnatal exposures may
affect DNA methylation, which might
explain the lack of persistence. How-
ever, even without this persistence, dif-
ferential DNA methylation in the critical
period of organ development may have
already initiated structural functional al-
terations that might have long-term
consequences independent of persistent
differential DNA methylation or via dif-
ferential DNA methylation in other
tissues.
Limitations of this study include the

self-reported dietary data, the difference
in number of food items in the FFQs be-
tween cohorts, ranging from 47 to 293,
and the difference in glycemic index ref-
erence databases used in the cohorts.
However, the calculation of glycemic in-
dex and load and the EWAS analyses
were performed in all cohorts according
to a prespecified harmonized analysis
plan and R script, and with extensive
quality control of dietary data. Further,
cohorts had comparable distributions of
glycemic index and load, and the ranking
of mothers based on glycemic index and
load will not have differed substantially.
Additionally, maternal dietary intake was
registered at �12 weeks of gestation in
Generation R and INMA, with the refer-
ence time window being the first tri-
mester, while the FFQ was registered at
�32 weeks in ALSPAC, with the reference

time window “nowadays.” We do not ex-
pect this to be a problem, since it has
been shown that micronutrient intake
and diet quality generally do not change
during pregnancy (51). Dietary intake
might be influenced by many genetic, en-
vironmental, and behavioral factors. We
adjusted our analyses for many covariates
to exclude potential confounding, but as
in all observational studies, residual con-
founding could still be present. The Illu-
mina 450K array covers <2% of all CpG
sites in the human genome.We therefore
cannot exclude that maternal glycemic in-
dex or load is associated with DNA meth-
ylation at unmeasured CpG sites. Further,
DNA methylation is tissue specific. There-
fore, DNA methylation in pancreatic, liver,
or adipose tissue might be more relevant
than cord blood, which is also why we
did a lookup of associations with gene
expression in adipose tissue. However, in
the large-scale birth cohorts that we used,
cord blood is easily accessible, as opposed
to these other tissues. Unfortunately, gene
expression data were not available in cord
blood. We were also limited in sample size
for the stratified analyses, and would
therefore recommend future studies to
focus on increasing sample size specifi-
cally for analyses stratified on maternal
weight status.

To conclude, in this meta-analysis we
identified associations of maternal gly-
cemic index and load during pregnancy
with offspring cord blood DNA methyla-
tion levels of 41 CpGs, mostly in moth-
ers with overweight or obesity. These
CpGs did not overlap with previously
published CpGs associated with mater-
nal glycemic traits or with child birth
weight or BMI. Although we found no
enrichment for specific biological path-
ways, three CpGs were associated with
expression of PCED1B, PCDHG, TFAP4,
ZNF500, PPL, and ANKS3 and might there-
fore have functional effects. Further study
is required to explore functionality in more
detail, uncover causality of these findings,
and study pathways to offspring health.
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