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Abstract
Adenine base editors (ABEs) have been subjected to multiple rounds of mutagenesis with the goal of optimiz-
ing their function as efficient and precise genome editing agents. Despite an ever-expanding data set of ABE
mutants and their corresponding DNA or RNA-editing activity, the molecular mechanisms defining these
changes remain to be elucidated. In this study, we provide a systematic interpretation of the nature of these
mutations using an entropy-based classification model that relies on evolutionary data from extant protein
sequences. Using this model in conjunction with experimental analyses, we identify two previously reported
mutations that form an epistatic pair in the RNA-editing functional landscape of ABEs. Molecular dynamics sim-
ulations reveal the atomistic details of how these two mutations affect substrate-binding and catalytic activity, via
both individual and cooperative effects, hence providing insights into the mechanisms through which these two
mutations are epistatically coupled.

Introduction
The ability to introduce A�T to G�C base pair conversion

in the genetic code of an organism, in a precise, efficient,

and programmable manner, has the potential to correct

almost 60% of known pathogenic point mutations in

human beings.1 Targeted A�T to G�C conversions have

recently been realized through the development of ade-

nine base editors (ABEs).2

ABEs consist of two subunits: a catalytically impaired

Cas9 (Cas9n), which serves as a programmable DNA-

targeting module, and an engineered variant of a tRNA

adenosine deaminase enzyme TadA3 (hereafter referred to

as TadA*, where * indicates the incorporation of mutations

in the natural enzyme), which serves as the single-stranded

DNA (ssDNA)-editing module and enables the hydrolytic

deamination of targeted adenosines (A) into inosines (I).

Inosine is subsequently converted into guanosine (G) by

the DNA repair and replication machinery, completing

the A�T to G�C base pair conversion by ABEs (Fig. 1A).

ABEs continue to remain a focal point of interest for

the genome editing community, not only because of

their potential as therapeutic agents4–9 but also because

of the remarkable scientific effort that went into their

development. Extensive protein engineering and evolu-

tionary methods were employed to impart ssDNA-editing

capabilities onto an RNA-editing enzyme, the wild-type

Escherichia coli TadA (wtTadA), resulting in the seminal

ABE7.10 base editor.2

Although the mutations that gave rise to the original

ABE7.10 construct successfully imparted ssDNA-editing

capability onto TadA*, they did not suppress the inher-

ent RNA-editing activity of TadA*. It was subsequently

demonstrated that ABE7.10 induces considerable gRNA-

independent off-target RNA editing throughout the

transcriptome.10–12

Since the development of ABE7.10, major efforts have

been devoted to its further mutagenesis on two separate

fronts (Fig. 1B). First, additional rounds of directed evo-

lution were employed to increase the on-target ssDNA-

editing activity by TadA, resulting in ABE8.2013 and

ABE8e.14 Second, structural analyses of the TadA–RNA

complex followed by rational engineering was employed
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to decrease the off-target RNA-editing activity by TadA,

resulting in ABE7.10F148A,15 ABE7.10V106W,16 and

SECURE-ABEs.17

Due to the lack of naturally occurring ssDNA-editing

enzymes (cytosine deaminases are a rare exception18),

the expansion of the existing base editing repertoire

will inevitably require evolution and engineering strate-

gies on new enzymes analogous to those used in the

development of ABEs. The success of structure-based

protein engineering efforts is highly dependent on the

availability of appropriate X-ray or cryo-EM structures

of the protein–nucleic acid complexes. Even when struc-

tural data are available to guide this process, most muta-

tions, especially those concentrated near the active site of

the enzyme, are likely to have detrimental effects on the

enzyme’s function.16,17,19

Thus, to facilitate the design of future base editors, es-

pecially with reduced off-target RNA editing activities, it

is important to understand fully the atomistic features that

are essential for the native RNA-editing function of

TadA*, and how specific mutations can affect changes

to its substrate binding and catalytic mechanism.

To date, many studies have mutated ABEs to manipu-

late its DNA- and RNA-editing abilities, producing a

large amount of experimental data associated with muta-

tions at 46 of the 167 residue sites of TadA* (Fig. 1B

and C). To gain fundamental insights into ABE’s editing

activity from this ever-expanding pool of mutational

information and to guide future efforts in the development

of new base editors, we carried out a systematic data-

driven computational study combined with experimental

assays to understand better, in atomistic detail, the effects

of individual mutations on the activity of TadA*.

Methods
Data curation and sequence entropy
Extant homologs were obtained with the BLAST pro-

gram20 using E. coli wtTadA as the initial query sequence,

FIG. 1. (A) Schematic representation of base editing by adenine base editors (ABEs; PDB ID: 6VPC).56 The binding
of Cas9n to the target genomic locus unwinds the DNA double helix and exposes a small region of single-stranded
DNA. TadA* hydrolytically deaminates the adenine (A) to form inosine (I), which is subsequently converted to guanine
(G) by cellular DNA repair and replication machinery. (B) Engineering efforts in the field to generate and improve upon
ABEs, starting from Escherichia coli wtTadA. (C) Primary and secondary structure of E. coli wtTadA with key mutations
indicated. The line colors correspond to colors shown in (B), indicating the ABE version in which these mutations were
identified. Solid lines are mutations that were incorporated into final ABEs, while dashed lines are mutations that were
experimentally tested in previous work but not incorporated into final ABEs. Color images are available online.
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with an e-value cutoff of 0.1 in the SWISSPROT data-

base.21 We further filtered the data set by removing se-

quences with >40% gap percentage and to minimize

redundant sequences with >95% identity to the query

sequence. The final filtered data set is composed of 35

homologs. The resultant data set was used to calculate

the sequence entropy score, defined as:

Hi � � +N
n = 1 p inð Þlog20p inð Þ for i 2 1, . . . , Lf g (1)

where p inð Þ refers to the statistical probability of having a

particular amino acid n at site i, and N is the total number

of amino acids. Further details regarding the data set and

entropy calculation can be found in the Supplementary

Materials and Methods.

Experimental methods

Cloning. All plasmids used in this study were produced

using USER cloning with ABE0.122 as a template, using

Phusion U Hot Start DNA Polymerase (Thermo Fisher

Scientific). All DNA vector amplification was carried

out using NEB 10-beta competent cells (New England

Biolabs). All plasmids were purified using the Zymo-

PURE II Plasmid Midiprep Kit (Zymo Research).

Cell culture. HEK293T (ATCC CRL-3126) cells were

cultured in DMEM-GlutaMAX (Gibco) media supple-

mented with 10% (vol./vol.) fetal bovine serum (FBS;

Gibco) and 100 IU/mL penicillin-streptomycin (Gibco)

at 37�C with 5% CO2. Prior to transfection, the media

was replaced with antibiotic-free media.

Transfections. DNA samples for transfections were pre-

pared with 750 ng of a base editor plasmid and 250 ng of a

nontargeting sgRNA plasmid. Each sample was diluted to

12.5 lL with Opti-MEM� (Gibco). Lipofectamine 2000

(L2000; Invitrogen) was diluted with Opti-MEM at a

ratio of 1.5 lL L2000 to 11 lL Opti-MEM, with 12.5 lL

of this mixture being added to each DNA sample. After

15 min of incubation at room temperature, each transfec-

tion sample was added to a well containing 9:5 · 105

HEK293T cells suspended in 250 lL DMEM-GlutaMAX

(Gibco) supplemented with 10% FBS.

High-throughput RNA sequencing. Cells were lysed

36 h after transfection with 300 lL RNA lysis buffer

(Zymo Research), and RNA was extracted with either a

Zymo Quick-RNA Miniprep Kit or a Qiagen RNeasy

Mini Kit following the manufacturer’s instructions. RNA

was reverse transcribed to produce cDNA using the Super-

Script III First-Strand Synthesis System (Invitrogen) fol-

lowing the manufacturer’s instructions. Target sites were

amplified from cDNA using two rounds of polymerase

chain reaction (PCR). The first round used site-specific

primers (Supplementary Tables S1 and S2) to amplify

the target sequence from cDNA.

Target amplification was confirmed with gel electro-

phoresis. The product from the first round of PCR was

used as a template in the second round of PCR, which

added unique sets of p5/p7 Illumina barcodes to each

sample. Amplification was confirmed with gel electro-

phoresis. Then, amplicons of similar size were pooled,

and gel purified on a 2% agarose gel. The target amplicon

was excised from the gel and dissolved in three volumes

QG buffer by incubating at 42�C for 10 min. After chill-

ing on ice for 5 min, 1/3 volume of 100% isopropanol was

added, and the sample was run through a Qiaquick PCR

purification column on a vacuum manifold. The column

was washed with 750 lL of PE wash buffer, and residual

ethanol was removed by spinning the column at 16,000 g

for 3 min.

PCR products were eluted with 30 lL HyClone water.

Pooled libraries were quantified by Qubit and sequenced

on an Illumina MiniSeq according to the manufacturer’s

protocol.

HTS data analysis. Sequencing reads were demulti-

plexed in MiniSeq Reporter (Illumina), and individual

FASTQ files were analyzed using CRISPResso2.23

Computer simulations
The TadA*0.1 model was built using the crystal struc-

ture of E. coli TadA (PDB ID: 1Z3A).24 Given the se-

quence homology between Staphylococcus aureus

TadA and E. coli TadA, we combined the saTadA-

RNA structure (PDB ID: 2B3J) with the TadA*0.1

model to build the TadA*0.1–RNA model.25 The

TadA*0.1 was transformed into the various ABE mu-

tants using the swapaa command in Chimera.26 For

both apo-TadA* and TadA*–RNA models, all crystallo-

graphic water molecules within 3 Å distance of the sur-

face of the protein or the RNA were preserved during

the modeling procedure. All titratable residues were

protonated using the H++ server employing the default

settings.27,28

The protein was represented using Amber ff14SB,29

and the RNA was represented using RNA.OL3 force

field.30–32 The metal-containing active site of TadA*

was represented with custom force field parameters

obtained using the MCPB.py approach at B3LYP/

6-31G* level of theory.33 LEap tool from AmberTools

was used to immerse the apo-TadA* and TadA*–RNA

complexes into a pre-equilibrated truncated octahedron

box of explicit TIP3P water, with a 15 Å buffer distance.
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Varying numbers of Na+ ions were added to each of the

systems to maintain electroneutrality, and the simulation

cell was then replicated infinitely in three dimensions to

impose periodic boundary conditions.

All MD simulations were performed under periodic

boundary conditions using the CUDA accelerated version

of PMEMD implemented in the Amber18 suite of pro-

grams.34–37 The structures were first relaxed using a

combination of steepest descent and conjugate gradient

minimization. This was followed by 1 ns heating to

298.15 K and multistep equilibration under progressively

decreasing harmonic restraints for 40 ns. Subsequently,

we removed all restraints and carried out *1 ls unbiased

MD simulations for the four TadA* mutants and corre-

sponding TadA*–RNA complexes.

We calculated the free-energy binding profiles of the

TadA*–RNA complexes along the collective variable

corresponding to the distance between the centers of

mass of the protein and the RNA substrate. For each

TadA*–RNA complex, the PMF along this collective

variable was calculated using umbrella sampling (US)

simulations.38 Starting from the equilibrated TadA*–

RNA structures, we conducted four independent sets of

US simulations for all the four TadA*–RNA complexes,

and the final PMFs were reconstructed using the weighted

histogram analysis method (WHAM) algorithm.39,40

Additional error analysis was carried out using a custom

block averaging script based on the method described by

Zhu and Hummer.41

The free energy changes for the deprotonation of the

activated water molecule by the Glu59 residue for the

TadA* (and TadA*–RNA) models were computed for

the various systems through a hybrid quantum mechani-

cal/molecular mechanical (QM/MM) approach. The

QM subsystem consisted of the side chains of the active

site residues (His57, Glu59, Cys87, and Cys90), the Zn+2

ion, and the activated water for both the apo-TadA*

and TadA*–RNA models. These QM atoms were treated

using self-consistent charge density functional tight bind-

ing (DFTB) method implemented within Amber18.42 The

atoms beyond this active site cluster were represented

the MM subsystem and were treated using the force fields

as in the unbiased MD.

The difference of the distances between the active site

water oxygen atom and shared proton and the Glu59 O

and shared proton was chosen as the collective variable

to monitor the deprotonation reaction. For both the apo

TadA* and TadA*–RNA complexes, the reaction profile

along this collective variable was calculated using US

simulations following a procedure similar to the one

employed for the calculation of the TadA*–RNA binding

profiles as summarized above.

The CPPTRAJ module implemented within Amber18

was used to analyze all the MD trajectories.43,44 The

visualization of the MD trajectories was rendered using

Chimera, and data were plotted using Matplotlib.45

Additional details for all simulation protocols can be

found in the Supplementary Materials and Methods. Sup-

plementary Table S3 summarizes all the simulations that

were carried out during this study.

Results
Sequence entropy calculation
The principal tenet of biochemistry is that the primary

sequence of amino acids comprising a protein dictates

its three-dimensional molecular structure, which then

determines its biological function.46 To date, most ABE

engineering efforts have relied on the second and third

tiers of this tenet: structural analyses15–17 followed by

site-directed mutagenesis and experimental measure-

ments of the resulting functional properties of TadA (sec-

ond tier), or directed evolution where TadA is randomly

mutated and functional variants are identified through a

selection scheme (third tier)2,13,14 (Fig. 1B).

Due to the time- and resource-intensive nature of these

second- and third-tier methods, we decided to begin our

investigations by focusing instead on the first tier of this

tenet—that is, investigating how the primary sequence

of TadA can be used to rationalize the effects that indi-

vidual mutations, identified experimentally, have on the

native function of TadA* (i.e., RNA-editing activity;

Fig. 1C).

With the expansion of reliable protein sequence data-

bases,21,47 the statistical analyses of protein homologs

have already enabled the successful prediction of muta-

tional effects on the function of several enzymes,48 in-

cluding cytosine base editors.49

For our sequence-based analyses of the ABE mu-

tations, we used the amino acid sequence of E. coli

wtTadA3 as our query for a BLAST search20 of its extant

homologs in the SWISSPROT database,47 which gener-

ated a data set of 75 homologs. However, as our primary

focus is to identify residues essential for the function of

TadA on its native RNA substrate, we filtered out distant

homologs using stringent percentage identity and cover-

age length cutoff values (Fig. 2A). This filtering resulted

in a more focused data set, as it removed functionally dis-

tinct and redundant sequences from our initial BLAST

search. Despite reducing the size of the data set consider-

ably (to 35 homologs), this filtered data set still captures

the diversity of our initial unfiltered data set (Fig. 2A).

To visualize the sequence space captured by our unfil-

tered and filtered data sets and to highlight relation-

ships among these wtTadA homologs, we performed a
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dimensionality reduction of the data set using princi-

pal component analysis. This allowed us to project the

hyperdimensional sequence space associated with the ho-

mologs onto two dimensions, while still preserving the

relationships among the various homologs. By partition-

ing the data set into four representative clusters (Supple-

mentary Fig. S1), the outcome of filtering becomes more

apparent, as each cluster consists of functionally similar

homologs. These clusters are represented by different

colors (purple, brown, red, and blue) in Figure 2A.

From this analysis, it can be observed that this filtered

data set indeed captures the overall diversity of the unfil-

tered data set, as three of the four clusters are represented.

The purple cluster (containing the query sequence) con-

sists primarily of TadAs and their eukaryotic equivalents

(ADAT2s), and hence has the greatest number of filtered

sequences (26 of the 35 filtered sequences).

The next most populated cluster, the brown cluster,

consists of 22 sequences in the unfiltered set, and six se-

quences after filtering. Only 3 out of 11 sequences were

selected from the red cluster, with two of these sequences

belonging to the cytidine deaminase superfamily (and

having 50% similarity to the query sequence) and the

third sequence corresponding to a guanine deaminase.

Given the distance between the blue cluster and the

query sequence (i.e., the lack of similarity between

these sequences, as they represent the catalytically inac-

tive Tad3 and ADAT3 proteins), no sequences were

selected from this cluster upon the implementation of

our filters.

It is important to note that our filtered data set consists

entirely of RNA-editing enzymes, demonstrating the

effectiveness of our filters. We therefore reasoned that

any primary sequence analyses of our filtered data set

would be highly biased toward illuminating aspects of

RNA-editing activity by the wtTadA (Supplementary

Fig. S1B).

Having obtained a reliable data set of extant TadA

homologs, we next sought to quantify the evolutionary

conservation and functional importance of individual res-

idues of wtTadA. An extensively studied and widely used

approach to address this problem is the evaluation of

information theory-inspired sequence entropy (Hi) scores

(Fig. 2B).50–53 The value of Hi ranges between 0 and 1,

with an entropy value of 0 indicating that the site has

only one unique amino acid represented within the data

set (suggesting that the site is highly conserved from an

evolutionary standpoint), and an entropy value of 1 indi-

cating that the site has every possible amino acid repre-

sented within the data set (suggesting that such a site is

naturally more tolerant to mutations).

Applying equation 1 to the filtered data set of TadA

homologs (Fig. 2A), we calculated the site entropy for

the entire wtTadA sequence (Fig. 2C). The active site

FIG. 2. (A) The top two principal components of the pairwise sequence distance matrix of extant homologs
comprising the filtered (indicated with circles and dots) and unfiltered data sets. Based on the similarity of the
sequences, the data set is clustered into four separate sets, colored purple, brown, red, and blue. The sequences in
the filtered data set are highlighted in each cluster. (B) Multiple sequence alignment of extant homologs of wtTadA
to calculate the statistical probability of occurrence of individual amino acids at residue site i p inð Þð Þ. This is
subsequently used to assign a conservation score to site i, using Shannon’s definition of information entropy Hið Þ
equation 1. (C) Information entropy of individual residue sites of the wtTadA query, with its secondary structure
elements mapped below in (D). I Entropy values mapped on to the three-dimensional structure of E. coli TadA
using a color gradient to signify conserved residues and mutational hotspots. Color images are available online.
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of wtTadA consists of a zinc ion tetrahedrally coordi-

nated by Cys87, Cys90, His57, and a water molecule.

This water molecule is activated for deamination reac-

tion by the highly conserved Glu59 residue. Consistent

with the importance of these residues for the canonical

RNA-editing activity of TadA, we observed Hi = 0 for

these four active site residues. This active site is further

stabilized by a b-sheet core, and the entropy values for

24 of these 38 core residues are also low Hi 2 0, 0:4f gð Þ.
The surface-exposed residues have relatively higher val-

ues of Hi, with the C- and N-terminal residues having the

highest values (Hi > 0:4; Fig. 2D).

By mapping these entropy scores onto the structure of

wtTadA24 (Fig. 2E), the correlation between the entropy

values and the three-dimensional structure of TadA is

clearly apparent. Thus, this sequence-based entropy

model is capable of representing the structural informa-

tion encoded by the amino acid sequence of wtTadA.

Sequence entropy as a binary classifier of TadA*
RNA-editing activity
Building upon these results, we used the sequence-based

entropy model to rationalize the role played by different

amino-acid mutations that have been experimentally

shown to modulate the function (i.e., RNA-editing activ-

ity) of ABEs (Fig. 1B and C). Based on the biochemical

interpretation of the two extreme entropy values, we

chose Hi = 0:5 as an initial cutoff value to distinguish

the functional implications of the entropy data obtained

for the wtTadA sequence (Fig. 2C and E) in the context

of all mutations reported for the ABEs (Fig. 1B and C).54

Within this model, we hypothesize that residue sites hav-

ing Hi > 0:5 will either induce no change in the activity of

wtTadA or, if mutated appropriately, can have a favorable

impact on the native activity (i.e., RNA-editing activity) of

wtTadA. Conversely, sites with Hi < 0:5 are predicted to

have adverse effects on the canonical RNA-editing activity

of wtTadA.15–17 It should be noted that since our data set

comprises of only RNA-editing enzymes, we are primarily

referring to the impact that individual mutations have on

the native function of the wtTadA sequence (SI sequences

and Supplementary Fig. S1B).

To quantify the performance of the sequence-based

entropy model, we computed a confusion matrix where

each prediction (Fig. 3A and B) is validated against the cor-

responding experimental editing outcome for 46 total mu-

tations2,13–17 (Fig. 3C). By construction, the main diagonal

elements (running from top left to bottom right) of the con-

fusion matrix thus correspond to correct predictions, while

the off-diagonal elements indicate incorrect predictions.

We found that our sequence-based entropy model

exhibits an accuracy of 89.1% and an F1 score of 0.92

(Fig. 3C). Specifically, the model correctly predicts the

impact of all the mutations that reduced the RNA-editing

activity of TadA* for which there are data, but incorrectly

predicts the impact of five low-entropy mutations, which

increased the RNA-editing activity of TadA*.

Sequence entropy as a binary classifier of TadA*
DNA-editing activity
Given the vast amount of experimental data available

regarding the mutations that impact the ssDNA-editing

efficiency of TadA*, we were additionally interested in

assessing the performance of the entropy-based model

on these mutations. Hence, mutations that increase the

ssDNA-editing ability of ABEs (as discovered using

either directed evolution2,13,14 or site-directed mutagene-

sis17) are deemed to be correctly classified using our

information entropy-based model if their Hi value is

greater than 0.5 (Fig. 3D).

Despite being entirely derived from the information

content of amino-acid sequences contained in a highly bi-

ased RNA-editing data set, the sequence-based entropy

model applied to all the reported ABE mutations that

have data regarding ssDNA-editing activity exhibits a re-

markable accuracy of 86.9% and an F1 score of 0.91

(Fig. 3F). In certain cases, residues have been or can be

mutated in multiple different ways, which may lead to

conflicting editing outcomes (Supplementary Table S4).

To resolve these conflicts and classify such sites, prece-

dence was given to the editing outcome produced by

the most chemically conserved mutation at such sites.

Here, we found our model to predict the effects of six

mutations incorrectly, all of which correspond to residues

with low entropy values that were experimentally found

to increase ssDNA-editing activity. Specifically, we

found that site 82 (Val in the wild-type enzyme), which

has a low entropy value (Hi = 0:14), results in enhanced

ssDNA editing in ABE8s when mutated to Ser.13 Nota-

bly, mutation of this residue to Gly abrogates just the

RNA-editing activity of TadA* in SECURE-ABEs,

while its mutation to Trp abrogates both the RNA as

well as ssDNA editing by the ABEs,17 which was cor-

rectly predicted by our RNA-editing data set (Supple-

mentary Table S4). This suggests higher predictability

of the entropy classifier regarding the native RNA-editing

activity of TadA* than its ssDNA-editing activity, as

expected.

Furthermore, both sites 84 (Leu in wtTadA) and 108

(Asp in wtTadA) are associated with low entropy values

but were mutated to enhance ssDNA-editing activity dur-

ing the development of the foundational ABE7.10.2 Sim-

ilarly, a low entropy value is found for site 149

(phenylalanine in wtTadA, Hi = 0:37), which was mutated
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to enhance DNA-editing activity in ABE8e14 and was

found to have no significant impact on the RNA-editing

activity in the SECURE-ABEs.17

Overall, these misclassifications are restricted to muta-

tions that impact the ssDNA-editing efficiency of TadA*,

thus highlighting that the entropy model, just like other

sequence-based coevolutionary methods, is limited by

quality of the sequence data set.55

Binned evaluation of sequence entropy by
considering the chemical nature of sidechains
To understand these six misclassified residues better and

to identify possible deficiencies of our model and refine

our classification scheme, we sought to analyze the

amino acid distribution at these residue sites further

(Fig. 3A and D).

The Asp108Asn mutation was the critical first muta-

tion that led to the onset of ssDNA-editing activity of

TadA*.2 Moreover, this residue is part of a surface-

exposed loop in the structure of TadA* (Fig. 3G).

Hence, we would expect this residue to display high

entropy. To dissect the anomalous misclassification

(Hi < 0:5) of site 108 through our entropy-based

model further, we analyzed the distribution of various

amino acids at this site within our data set (Fig. 3H).

We observed that although the mutational entropy of

FIG. 3. (A) and (D) Mutations reported to have beneficial or neutral effects on the RNA and DNA editing activity
of the ABEs, respectively. (B) and (C) Mutations reported to have detrimental effects on the RNA and DNA editing
activity of the ABEs, respectively. (C) and (F) Confusion matrix of the experimental data and the entropy-based
classifier. (G) Local environment of 84 and 108 residues in the wtTadA structure. (H) Binned entropy values and
distribution of amino acids at sites 84 and 108. Color images are available online.
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this site is marginally low, approximately 36% of the data

set sequences record an Asn at this site, making it the sec-

ond most probable amino acid at site 108 (Supplementary

Table S5).

This observation is particularly striking, given the im-

portance of the Asp108Asn mutation. It was observed

during the first round of directed evolution of the founda-

tional ABE7.10,2 and we recently discovered that rever-

sion of this mutation in the ABE7.10 construct resulted

in complete loss of ssDNA-editing activity by TadA*.22

It is therefore quite significant that a mutation that is so

critical for imparting novel ssDNA-editing functionality

to an RNA-editing enzyme has such a high incidence in

naturally occurring TadA homologs (Fig. 3G). Addition-

ally, this suggests that while the TadA* enzyme devel-

oped activity toward DNA substrates, it retained activity

toward its native RNA targets.

Upon conducting a similar distribution analysis for site

84, which is also a low entropy site that favorably affects

ssDNA editing, we found that while this core residue

has a low sequence entropy of Hi = 0:42 as defined by

Shannon’s entropy, 88.6% of sequences had an aliphatic

amino acid (Leu, Val, or Ile) at this position (Supplemen-

tary Table S5). In direct contrast, it was mutated to Phe

in ABE7.10 (Fig. 3G). Thus, unlike the D108N muta-

tion, the L84F mutation is a novel mutation that was

not explored by natural protein evolution.

In the case of the highly conserved phenylalanine at

site 149 (Hi = 0:37), which has been mutated to Ala with-

out abrogating either the ssDNA or the RNA-editing

activity of ABEs17 and also mutated to Tyr through the

directed evolution in ABE8e,14 the binned entropy anal-

ysis revealed that the Tyr is the second most preferred

amino acid (19.4%) at site 149 in the naturally occurring

TadA homologs. Hence, analogous to the analysis of site

108, the distribution of amino acids at site 149 also high-

lights that directed evolution explores sequence space

previously accessed by naturally evolved homologs.

The misclassification of site 82 (Hi = 0:14) also adheres

to this trend as the second most prevalent amino acid at

this position in the naturally occurring TadA homologs

is Thr, whose chemical properties are similar to Ser,

which has been shown to enhance the DNA-editing activ-

ity of TadA* in the evolved ABE8s.

This analysis of the distribution of the possible amino

acids based on their chemical nature helps identify the

types of mutations that are tolerated at various sites of

the TadA* sequence (Supplementary Fig. S2A). Hence,

we recalculated the entropy values for wtTadA by bin-

ning amino acid residues according to their side-chain

classifications: polar uncharged, positively charged, neg-

atively charged, hydrophobic-aliphatic, hydrophobic-

aromatic, and special (Gly, Pro). The resulting binned

entropy values (Supplementary Fig. S2B–D) are greater

than 0.5 for site 108 while remaining lower than 0.5 for

site 84 (Fig. 3G and H).

These results thus indicate that the entropy-based anal-

ysis allows not only for the quantification of the muta-

tional propensity of individual wtTadA sites but also

for the characterization of the chemical properties that

make mutations to a specific class of amino acids rela-

tively more favorable (Supplementary Table S5). More-

over, we also speculate that residue sites having

marginally low Hi values can in fact be mutated based

on the amino acid distribution observed in the extant ho-

mologs to confer novel functionality to the enzyme (as

seen for D108N mutation) or to disrupt native functional-

ity (as seen for L84F).

Experimental analyses
We next sought to test experimentally our hypothesis that

the conservation scores and amino acid distributions

derived from the entropy-based model could be used to pre-

dict the effects of mutations on the RNA-editing activity of

TadA*. It is well known that later-generation ABEs induce

transcriptome-wide RNA editing, but it is unknown if this

is a ‘‘carryover’’ activity from wtTadA being able to edit

RNA sequences other than its native tRNA substrate, or

if the various mutations identified through directed evolu-

tion enhanced not only the ssDNA-editing activity of

TadA*, but also its nonspecific RNA-editing activity.

We first tested the ability of ABE0.1 (as both mono-

meric and dimeric wtTadA fused to Cas9n) to introduce

A-to-I edits in mRNA in a gRNA-independent manner.

We transfected HEK293T cells with constructs encoding

monomeric ABE0.1, dimeric ABE0.1, or heterodimeric

ABE7.10 (wtTadA-TadA*-Cas9n), extracted mRNA

after 36 h, and used high-throughput sequencing to quan-

tify A-to-I editing at six different sites throughout the

transcriptome that had previously been shown to be edi-

ted by ABE7.10 in a gRNA-independent manner.17 We

observed >50% A-to-I RNA-editing efficiencies at all

six sites by both wild-type constructs.

Moreover, consistent with the recent report comparing

the kinetics of ABEs on RNA substrates,56 the RNA-

editing activity of dimeric ABE0.1 was on average 21%

higher than ABE7.10, highlighting the remarkable shift

in substrate preference of wtTadA enzyme due to the

many mutations that were found through directed evolu-

tion for ABE7.10.

Our entropy-based analysis suggests that non-aliphatic

mutations at site 84 would diminish the RNA-editing

activity of wtTadA, while certain mutations at site 108

would retain (or even enhance) the RNA-editing activity
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of wtTadA (Fig. 3 and Supplementary Fig. S2). To test

this hypothesis, we generated six different monomeric

ABE variants (i.e., TadA*-Cas9n)—ABE1.1 (where

ABE1.1 = ABE0.1[D108N]2), ABE0.1(L84F), and ABE1.1

(L84F)—and their corresponding heterodimeric constructs

(i.e., wtTadA-TadA*-Cas9n), and compared their RNA-

editing activities with ABE0.1 and ABE7.10 at the same

six sites.

Each variant was tested as a monomer and a hetero-

dimer, as this has been shown to have drastic effects on

the off-target RNA editing activities of ABEs.13,17 While

the aim of this was to observe differences due to dimer-

ization, monomeric ABE8e has been shown to spontane-

ously dimerize in trans.56

Consistent with our hypothesis and the entropy-based

classification model, the D108N mutation leads to a

modest 11.2% (range 5.7–21.8%) increase in the A-to-I

RNA-editing activity of ABE1.1 compared to ABE0.1.

Moreover, the L84F mutation leads to a 25% (range

19.8–31.7%) or almost 1.7-fold decrease in RNA-editing

efficiency of the enzyme compared to ABE0.1 across the

six different RNA sites that were analyzed (Fig. 4). These

editing patterns were also observed at an additional

UACG motif within RNA site 1, although the editing

levels here were much lower than in the other six sites

(Supplementary Note 1 and Supplementary Fig. S3).

This loss of function due to the L84F mutation can

be restored either by dimerizing the protein with wtTadA

(as ABE0.1[L84F, heterodimer]) or by adding the D108N

mutation (as ABE1.1[L84F]). We speculate that in the

case of ABE0.1(L84F, heterodimer), the observed in-

crease in RNA editing is due to the addition of the

wtTadA subunit, which is capable of efficient RNA edit-

ing on its own (as in the ABE0.1 monomeric con-

struct). In the case of ABE1.1(L84F), whose activity is

comparable to ABE1.1, we observed a modest 4.3%

(range 1.6–13%) increase over ABE0.1.

This restoration of the RNA-editing efficiency upon the

combination of D108N and L84F mutations is particu-

larly interesting, as it highlights the nonadditive and epi-

static effect that mutations can have on enzyme function.

Thus, upon combining a high entropy mutation with a

low entropy mutation, the resultant double mutant exhib-

its high activity rather than an average of the two activi-

ties. Furthermore, this double mutant exhibits increased

activity toward a different substrate (ssDNA).

Intriguingly, the RNA-editing activity of ABE7.10,

which has 12 other mutations in addition to D108N

and L84F, is slightly lower than that of ABE0.1 by

8.9% (range 2.5–13.8%) or 1.2-fold (Fig. 4). This ob-

servation further reinforces the nonadditivity of the

TadA* mutations identified using directed evolution

of ABEs. The early mutations led to a broadening of

the substrate specificity of TadA* (i.e., imparting

ssDNA-editing capabilities on to TadA) and later muta-

tions enhanced the ssDNA-editing activity while poten-

tially suppressing the RNA-editing activity (as with the

L84F mutation).

Interaction and binding of RNA with TadA*
In a previous study,22 we demonstrated that the effects

of individual mutations on the ssDNA-editing activity

FIG. 4. A-to-I base editing efficiencies in HEK293T cells by various ABE mutants at six different gRNA-independent
RNA off-target sites. Fold-decrease values associated with the reduction in the RNA editing upon incorporation
of the L84F mutation in ABE0.1 are indicated. Values and error bars reflect the mean and standard deviation
of three independent biological replicates performed on different days. Color images are available online.
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of ABEs can be studied using a minimalistic model of

the system, composed of the TadA* mutants and the

nucleic acid substrates, while ignoring Cas9, which

acts as a mere carrier of the nucleotide editing module

to its target genomic locus. Moreover, it has been ex-

perimentally proven that the off-target RNA editing

by ABEs occurs in a Cas9 (or gRNA)-independent man-

ner, which reinforces the notion that only the TadA*

portion of the ABEs act on the RNA off-target

substrates.10,13–16,57

To understand the complex epistatic relationship

between the L84F and the D108N mutations in the con-

text of the RNA-editing activity of ABEs (Figs. 3 and 4),

we modeled the ABE–RNA systems by combining the

experimentally resolved structure of wild-type E. coli

TadA (PDB :1Z3A)24 and its native 14-mer RNA-hairpin

substrate (5¢-UUGACUACGAUCAA-3¢) (PDB :2B3J).25

The RNA sequence in our simulation models, as well

as the off-target RNA sites that we tested experimentally

(Fig. 4), have the same consensus sequence (-UACG-) as

that reported previously10,17 (Supplementary Fig. S4).

Moreover, the secondary structures for three out of six

RNA editing sites (sites 1, 2, and 4) are predicted to

resemble the hairpin loop structure of the native target

of TadA* that we simulated, indicating the strong prefer-

ence of TadA* for its native substrate (Supplementary

Fig. S5).

Having generated thesemodels,we thencarried out molec-

ular dynamics (MD) simulations for each of the four TadA*–

RNA complexes for 1 ls and examined the trajectories for

changes in interactions between individual TadA* residues

and the nucleic acid substrate. Since the mutations we are in-

terested in lie near the active site of the TadA*, we focused

predominantly on the interactions between the nucleotide

bases splayed in the active site, that is, the target adenine

and its 5¢ and 3¢ flanking bases (UACG) and neighboring

TadA* residues. To home in on the amino acids in direct

contact with these nucleotides, we carved out a 4 Å search

radius around these bases, and then projected the residues

that lie within this sphere onto asteroid plots (Fig. 5A–D

and Supplementary Fig. S6).

In these plots, the nucleotides in the active site are rep-

resented collectively as the central node, and the peripheral

nodes correspond to all amino acids within the first inter-

action shell of the nucleotides in the active site. The size of

the encircling nodes is proportional to the time that the cor-

responding residues spend within the first interaction shell

of the RNA bases throughout the entire MD trajectory. The

hydrogen bonds (H-bonds) between these residues and the

RNA bases are depicted as arrows connecting the relevant

nodes in each asteroid plot, with the thickness of the ar-

rows being proportional to the stability of the H-bond

itself, which is defined as the frequency of appearance of

that H-bond during the simulation.

FIG. 5. Asteroid plots for the analysis of the interaction of (A) TadA*0.1, (B) TadA*1.1, (C) TadA*0.1(L84F), and
(D) TadA*1.1(L84F) with substrate RNA. I Binding affinity comparisons for the various TadA*–RNA complexes.
(F) The collective variable (n) used to monitor the binding/unbinding of the TadA*–RNA complexes. (G) Parameters
associated to harmonic functions fitted to binding energy curves shown in I. Color images are available online.
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The comparisons between the TadA*0.1/TadA*0.1(L84F),

TadA*0.1/TadA*1.1, and TadA*1.1/TadA*1.1(L84F) mu-

tants indicate that the D108N mutation leads to the forma-

tion of a favorable H-bond between the Asn108 residue and

the U base flanking the target A. In fact, the TadA*1.1

(L84F) mutant has the strongest interaction with RNA,

as the D108N mutation, when combined with the

L84F mutation, causes additional structural rearrange-

ments surrounding the active site, resulting in a double

H-bond interaction with the RNA substrate through

residue 152.

The weak H-bond between D108 and the 2¢-OH group

of the flanking U base predicted by our simulations is also

found in the crystallographic structure of the wtTadA-

tRNA complex (PDB ID: 2B3J25). However, this weak

H-bond does not appear in the TadA*0.1(L84F) mutant

and is replaced by a much stronger H-bond in the

TadA*1.1 mutant upon mutation of glutamate to aspara-

gine at site 108. The formation of this stronger H-bond

also leads to an increase in interactions between some

of the peripheral residues (57, 59, 82, 85, 86, and 87)

and the RNA bases in the active site, indicating a more

stable conformation of the target adenine.

A similar increase in the interaction induced by the

H-bond formed by the D108N residue was also observed

in our MD simulations of the TadA*–ssDNA complex.22

In the context of ssDNA editing by ABEs, the D108N

mutation in ABE1.1 leads to the onset of activity on

DNA via the formation of this H-bond donation.2,22 How-

ever, in the context of RNA-editing efficiency, the

D108N mutation, and consequent formation of the

H-bond with RNA, only amounts to a slight increase in

the activity due to wtTadA (ABE0.1), being already

highly proficient in editing its native RNA substrate as

well as ssRNA in general (Fig. 4).

Although the L84F mutation, unlike the D108N muta-

tion, is accompanied by a more pronounced effect on the

RNA-editing activity of wtTadA (Fig. 4) and is in fact a

novel mutation in the first interaction shell of the RNA

bases (Fig. 3G), the comparison of the asteroid plots cor-

responding to TadA*0.1 and TadA*0.1(L84F) shows less

drastic changes than those observed in the TadA*1.1

asteroid plot. Specifically, the L84F mutation leads to

the elimination of the weak H-bonds established by the

107 and 108 residues in TadA*0.1.

To quantify these differences, we performed US simula-

tions to determine local changes in the free energies of the

various TadA*–RNA complexes about the active site.

Starting from the equilibrated structure of each TadA*–

RNA complex, we modeled the binding process using a

collective variable (n) defined as the distance between

the TadA* and RNA centers of mass, which was varied

from 17 to 37 Å. We successfully used the same collective

variable to characterize the binding process of the analo-

gous TadA*–DNA complexes in our previous study.22

The free-energy changes along this collective variable

were calculated for each of the four TadA* mutants using

the WHAM39,40 (see Supplementary Figs. S7 and S8 for

convergence analysis of these US simulations). Figure 5E

shows that the TadA*1.1–RNA and TadA*1.1(L84F)–

RNA complexes are more tightly bound than the

TadA*0.1–RNA complex. While these trends help explain

the experimental RNA-editing efficiencies of these D108N

mutants when compared to ABE0.1, they do not apply to

the TadA*0.1 and TadA*0.1(L84F) mutants, which exhibit

similar local free-energy changes as RNA is pulled out of

the active site.

This observation reciprocates the results of our previ-

ous study of the TadA*–ssDNA complex, showing that

mutations installed at later stages of the directed evolu-

tion process do not further enhance the binding strength

relative to TadA1.1 but instead most likely impact the

catalytic activity of TadA*.

As the subtle conformational changes that we ob-

serve between the asteroid plots of TadA*0.1 and

TadA*0.1(L84F) (Fig. 5A and C) do not result in signif-

icant changes in the binding strength between these two

mutants, we thus sought to quantify the effects of these

conformational changes on the catalysis.

Water in the active site and implications for catalysis
The hydrolytic deamination reaction catalyzed by TadA in-

volves a zinc-coordinated water molecule (hereafter

referred to as the activated water molecule) that is deproto-

nated by the active site Glu59 residue (a highly conserved

residue, see Fig. 2) during the first step of the reaction. In

addition to this activated water molecule, the active site

also includes another structurally important water molecule

(hereafter referred to as the bridging water), which acts as a

bridge between Glu59 and the carbonyl backbone of Leu84

(Fig. 6A and B). Both water molecules are resolved in sev-

eral high-resolution crystal structures of TadA homologs

(Supplementary Fig. S9), which further reinforces their im-

portance in the stabilization of the active site cavity.

To characterize the role played by these two water mole-

cules in the active site of the various TadA*–RNA mutant

systems, we analyzed the data from our MD simulations

in the form of modified chord diagrams in (Fig. 6C–F).

The persistence of the activated water molecule is depicted

in red in the left partitions, while that of the bridging water is

depicted in blue in the right partitions of the four panels. The

thickness of each chord is proportional to the time spent by

the corresponding water molecules in the active site (Sup-

plementary Fig. S10 and Supplementary Table S6).
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FIG. 6. (A) Side view of the of the TadA*–RNA system highlighting the location of the catalytically relevant
residues. The Zn+2 ion is coordinated by His57, Cys87, and Cys90 (not shown here for clarity) and a water molecule.
This water molecule is activated by Glu59, which is also connected to another water molecule. This second water
acts as a bridge between the Glu59 and the carbonyl backbone of residue 84. The target adenine is deep within
the active site, and residue 108 is farther away from the active site waters. (B) Simplified flat lay representation to
highlight the interactions of active site waters. Modified chord diagrams to demonstrate the persistence of the
active site waters for (C) TadA*0.1– RNA, (D) TadA*1.1–RNII TadA*0.1(L84F)–RNA, and (F) TadA*1.1(L84F)–RNA. The
red chords connecting Glu59 with Zn+2 depict the stability of the activated water molecule. Similarly, the blue
chords connecting Glu59 with residue 84 depict the stability of the bridging water molecule. Different colors signify
unique water molecules, with the thickness of individual chords being directly proportional to the total time these
water molecules interact with the active site of TadA*–RNA during the simulation. (G) Reaction profile for the
deprotonation of the activated water molecule the various TadA*–RNA systems. (H) Conformation of the TadA*0.1–
RNA when the proton resides on Glu59. (I) Conformation of the TadA*0.1(L84F)–RNA when the proton resides on
stability on the Glu59. The target A has moved back into the active site toward the Phe84 and is separated from the
active site residues by an additional water molecule—the mediating water. Color images are available online.
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For the TadA*0.1–RNA and TadA*1.1–RNA systems,

we found that these two water molecules are highly stable

in their respective positions and do not undergo any dif-

fusion throughout the entirety of our MD simulations

(1 ls). In contrast, for the TadA*0.1(L84F)–RNA system,

both water molecules exhibit higher mobility and are ex-

changed several times with water molecules initially lo-

cated in the bulk solution at the beginning of the

simulation. We speculate that the hydrophobic-aromatic

nature of the phenylalanine residue may be responsible

for the decreased stability of both water molecules in

the active site (Supplementary Figs. S10 and S11).

The stability of the two water molecules is restored in

the TadA*1.1(L84F)–RNA complex. This implies that

the D108N mutation can cancel out the destabilizing ef-

fects of the L84F mutation and effectively modulate the

hydration of the active site, despite not engaging in any

direct contact with either water molecules.

We observe similar trends when comparing these

mutations in the apo-TadA* simulations. Specifically,

the apo-TadA*0.1(L84F) system shows an analogous

increased flux of the two water molecules in the active

site, which is again suppressed after the installation of

the D108N mutation (Supplementary Fig. S12). Impor-

tantly, the changes in the persistence of these catalyti-

cally relevant water molecules in the active site of the

TadA*–RNA/TadA* systems (Fig. 6C–F and Supple-

mentary Figs. S10–S12, and Supplementary Table S6)

mirrors the changes in RNA-editing activity measured

for the ABEs (Fig. 4).

Since the first step of the adenine deamination reac-

tion involves the deprotonation of the activated water

molecule by the Glu59 residue, we speculate that the

changes we observe in the stability of the active site

water molecules may lead to changes in the reaction

rates in the four TadA* mutants. Hence, for a more ex-

plicit comparison with the experimental catalytic data

of these four TadA* mutants, we performed QM/MM

simulations to investigate the first step of the reaction

mechanism.

Owing to the high computational cost of simulating the

entire system at the QM level, QM/MM simulations offer

an optimal trade-off between accuracy and computational

efficiency by simulating the reaction centers with QM ac-

curacy, while the remaining system is treated at the MM

level of theory.

In our QM/MM simulations, the QM region encom-

passes the side chains of the active site residues (His57,

Glu59, Cys87, Cys90), Zn+2, and the activated water mol-

ecule, which treated at the DFTB3 level with 3OB param-

eterization,58–60 while all other atoms of the system are

included in the MM region. Similar DFTB approaches

have been successfully employed in the past to study sev-

eral zinc-containing enzymes,42,61–63 including deami-

nases, which are homologous to TadA.64–66

All QM/MM simulations were initiated from config-

urations taken from the US windows corresponding to

the PMF minima shown in Figure 5. In modeling the

first step of the deamination reaction, configurations

with undissociated activated water molecules define

the reactant state, while configurations with the proton-

ated Glu59 residue define the product state. In the tran-

sition state, the proton is equally shared by the activated

water molecule and Glu59.

To determine the energetics associated with this proton-

transfer reaction, QM/MM US simulations were carried

out along the proton-transfer coordinate, which is defined

as the difference between the distances of the shared pro-

ton from the activated water and Glu59, as used in the

study by Zhang et al.67 The PMFs calculated using the

WHAM for all four TadA* mutants are shown in

Figure 6G and are consistent with the energetics reported

for other zinc-containing deaminases (E. coli CDA,68

yeast CDA,67,69 and guanine deaminase70).

The PMF profiles indicate that only the TadA*0.1

(L84F)–RNA complex is associated with a weakly stable

product state (i.e., a protonated Glu59). At first glance,

these results seem to be counterintuitive and contrary to

the experimental observation of a lower RNA-editing ac-

tivity for the ABE0.1(L84F) mutant. However, upon fur-

ther examination of the product state in the TadA*0.1

(L84F)–RNA complex, we observed that proton trans-

fer from the activated water to Glu59 is accompanied

by the concomitant movement of the target adenine

base away from the active site residue and toward the

aromatic phenylalanine ring deeper into the active

site, forming a staggered pi-stack with L84F residue

(Supplementary Table S7).

The cavity formed as a result of this conformational

change of the target adenine is filled by another water mol-

ecule (hereafter referred to as the mediating water) that

may contribute to the following reaction steps, thereby al-

tering the reaction mechanism for TadA*0.1(L84F). In

this context, it should be noted that a deamination mecha-

nism involving extra water molecules was characterized

for cytosine deaminase in the study by Matsubara

et al.71 In the case of the TadA*0.1 (or TadA*1.1 and

TadA*1.1[L84F]) system, our simulations predict that

the active site retains its configuration, with the adenine

base primed for the next steps of the reaction (Fig. 6H).

We thus hypothesize that the proximity of the adenine

base prevents the transfer of the proton from the activated

water molecule to Glu59. QM/MM US simulations car-

ried out for the apo-TadA* mutants provide support for
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this hypothesis, showing the formation of a stable product

state for all the TadA* mutants due to the lack of the ad-

enine base (Supplementary Figs. S12G, S13 and S14).

We thus conclude that the L84F mutation, a novel

mutation at a low entropy residue site, affects the

decrease in the activity of TadA* on the native RNA sub-

strate through two key changes in its deamination chem-

istry. First, this mutation destabilizes the two water

molecules in the active site, which are both structurally

and functionally crucial for the initiation of the deamina-

tion reaction. Second, it pulls the target adenine base

away from the protonated Glu59, thereby making the

subsequent reaction steps less feasible or leading to an

alternate reaction pathway involving additional steps

(e.g., through the mediating water).

Our simulations indicate that the combination of the

D108N mutation, which increases the RNA binding affin-

ity, with the L84F mutation conserves the integrity of the

active site by both stabilizing the two water molecules

and positioning the target adenine appropriately for sub-

sequent reaction steps, thereby rescuing the catalytic ac-

tivity of the ABE1.1(L84F) mutant (Fig. 4).

Discussion
Through a systematic investigation of the various muta-

tions that have been thus far identified in TadA*, our

study retraces the evolutionary trajectory followed by this

enzyme using a data-driven approach that combined statis-

tical models, MD simulations, and experimental assays.

The information contained in the naturally evolved

TadA homologs aids in rationalizing the effects of the mu-

tations that have accumulated in the laboratory engineered

TadA* (Fig. 2). We have demonstrated that mutations with

a favorable impact on the RNA-editing activity of TadA*

occur at residue sites having higher entropy, whereas muta-

tions with an unfavorable impact on the RNA-editing activ-

ity occur at residue sites with lower entropy (Fig. 3).

Moreover, these low entropy sites when mutated to previ-

ously unvisited amino acids in the sequence space, such as

the L84F mutation, can also have an adverse impact on the

native function of the enzyme.

Our experimental analyses also reveal that ABE0.1 has

remarkably high gRNA-independent off-target RNA

editing and is even higher than the evolved ABE7.10

variant (Fig. 4).13,14,17,18 These results indicate that

such entropy-based scores, albeit being extracted from

a highly RNA-biased data set, can serve as a preliminary

screen for site-directed mutagenesis and guide the library

preparation for evolving future base editors with reduced

transcriptome-wide off-target editing activity.

The most reliable inferences that can be derived from

such biased data sets are related to the native RNA-

editing functionality of the query sequence. Hence, we

propose that this entropy-based tool be preferentially

applied for the search of mutations that can suppress

the inherent RNA-editing activity of potential base edi-

tors, a problem that cannot be solved at present using

the traditional directed evolution methods.

Despite having reasonable success at predicting sites

with low and high functionality for TadA*, the entropy-

based tool has some inherent drawbacks.

First, the assumption of using 0.5 as the dividing value

for this classifier may be too simplistic. For future studies,

instead of defining a single dividing value, we speculate

that using a range of values (e.g., 0:5� 0:1) may lead to

improvements in the predictive power of this classifier.

Second, the number of sites predicted to have the de-

sirable mutational outcome using the entropy-based

model can exceed the available design budget for a

novel target protein. However, information from the en-

tropy model can be combined with structural insights to

conduct focused mutagenesis of residues that are in

close proximity to the substrate and have entropy greater

than 0.4. This would ensure that the resultant library

spans the beneficial mutants needed to improve the func-

tionality of the enzyme while reducing the size of the

designed library (Supplementary Fig. S15).

Third, the entropy-based model proves that laboratory

evolution plays by the rules set by natural evolution and

that learning these rules from extant enzyme homologs

can help guide future protein engineering endeavors.

However, it is by construction, not a generative model.

That is, this model cannot be extended beyond the se-

quences in the data set. It is limited by the diversity in

the training data set, which in our case is highly biased

toward RNA editing. Hence, we observed that directed

evolution does explore regions of the sequence space

that have not been explored by natural protein evolution

(Supplementary Table S4).

Lastly, statistical models for protein sequence analysis,

such as the entropy-based model used here, are known to

perform poorly on predicting the relationship between

co-evolving residues.72 This is apparent in our mutual en-

tropy analysis of 84 and 108 residue sites, where the

entropy-based model is unable to decipher the correlations

between these two sites (Supplementary Note S2 and Sup-

plementary Fig. S16), which can instead be understood

through MD simulations of the TadA*–RNA complexes.

Using MD simulations, we observed that the L84F

mutation decreases the experimental RNA-editing effi-

ciency of TadA* by both destabilizing the active site

water molecules and disrupting the conformation of the

target A base. These effects are fundamentally differ-

ent from those induced by the D108N mutation, which
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increases the experimental RNA editing of TadA*. The

D108N mutation increases the strength of the interactions

between the substrate RNA and TadA* by establishing

favorable H-bonds—a phenomenon that we have pre-

viously observed in our TadA*–ssDNA simulations.22

These additional interactions due to the D108N mutation

alleviate the destabilizing effects of the L84F muta-

tion, thereby restoring the experimental efficiency of

TadA*1.1(L84F) mutant.

Hence, the D108N and L84F mutations constitute an

epistatic pair in the functional landscape of TadA*.73

The prevalence of such nonadditive and complex rela-

tionships between the mutating residues make the task

of rational protein design notoriously challenging, espe-

cially in cases such as that of TadA*, where the native

RNA-editing fitness landscape is strongly coupled with

the ssDNA-editing fitness landscape.

Conclusions
We described here the use of a combination of theoreti-

cal, bioinfomatic, and experimental approaches to ana-

lyze retrospectively the mutations that have previously

been reported to modulate the activity of the ABEs, and

we uncovered a critical epistatic pair in its functional

landscape. We anticipate that such synergistic combina-

tions can stimulate the development and application of

similar multilevel strategies (informed by a combination

of sequence, structure, and function of enzymes) to tackle

the complex problem of the prospective design of future

base editors.
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10. Grünewald J, Zhou R, Garcia SP, et al. Transcriptome-wide off-target RNA
editing induced by CRISPR-guided DNA base editors. Nature 2019;
569:433–437. DOI: 10.1038/s41586-019-1161-z.

11. Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce
genome-wide off-target mutations in rice. Science 2019;364:292–295.
DOI: 10.1126/science.aaw7166.

308 RALLAPALLI ET AL.



12. Zuo E, Sun Y, Wei W, et al. Cytosine base editor generates substantial off-
target single-nucleotide variants in mouse embryos. Science
2019;364:289–292. DOI: 10.1126/science.aav9973.

13. Gaudelli NM, Lam DK, Rees HA, et al. Directed evolution of adenine base
editors with increased activity and therapeutic application. Nat
Biotechnol 2020;38:892–900. DOI: 10.1038/s41587-020-0491-6.

14. Richter MF, Zhao KT, Eton E, et al. Phage-assisted evolution of an adenine
base editor with improved Cas domain compatibility and activity. Nat
Biotechnol 2020;38:883–891.

15. Zhou C, Sun Y, Yan R, et al. Off-target RNA mutation induced by DNA base
editing and its elimination by mutagenesis. Nature 2019;571:275–278.
DOI: 10.1038/s41586-019-1314-0.

16. Rees HA, Wilson C, Doman JL, et al. Analysis and minimization of cellular
RNA editing by DNA adenine base editors. Sci Adv 2019;5:eaax5717.
DOI: 10.1126/sciadv.aax5717.
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