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Abstract

Historically, passive immunotherapy is an approved approach for protecting and

treating humans against various diseases when other alternative therapeutic options

are unavailable. Human polyclonal antibodies (hpAbs) can be made from convales-

cent human donor serum, although it is considered limited due to pandemics and the

urgent requirement. Additionally, polyclonal antibodies (pAbs) could be generated

from animals, but they may cause severe immunoreactivity and, once "humanized,"

may have lower neutralization efficiency. Transchromosomic bovines (TcBs) have

been developed to address these concerns by creating robust neutralizing hpAbs,

which are useful in preventing and/or curing human infections in response to

hyperimmunization with vaccines holding adjuvants and/or immune stimulators over

an extensive period. Unlike other animal‐derived pAbs, potent hpAbs could be

promptly produced fromTcB in large amounts to assist against an outbreak scenario.

Some of these highly efficacious TcB‐derived antibodies have already neutralized

and blocked diseases in clinical studies. Severe acute respiratory syndrome
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coronavirus 2 (SARS‐CoV‐2) has numerous variants classified into variants of

concern (VOCs), variants of interest (VOIs), and variants under monitoring. Although

these variants possess different mutations, such as N501Y, E484K, K417N, K417T,

L452R, T478K, and P681R, SAB‐185 has shown broad neutralizing activity against

VOCs, such as Alpha, Beta, Gamma, Delta, and Omicron variants, and VOIs, such as

Epsilon, Iota, Kappa, and Lambda variants. This article highlights recent develop-

ments in the field of bovine‐derived biotherapeutics, which are seen as a practical

platform for developing safe and effective antivirals with broad activity, particularly

considering emerging viral infections such as SARS‐CoV‐2, Ebola, Middle East

respiratory syndrome coronavirus, Zika, human immunodeficiency virus type 1, and

influenza A virus. Antibodies in the bovine serum or colostrum, which have been

proved to be more protective than their human counterparts, are also reviewed.
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1 | INTRODUCTION

Antibodies are important antiviral defenses as they have broad

therapeutic potential against many infectious agents, such as Zika,

Ebola, human immunodeficiency virus type 1 (HIV‐1), influenza A

virus, and Middle East respiratory syndrome coronavirus (MERS‐

CoV), and notably, severe acute respiratory syndrome coronavirus

2 (SARS‐CoV‐2) and its emerging variants.1,2 Antibody‐based therapy

is now considered a viable therapeutic modality for infectious disease

targets.3 Polyclonal antibodies (pAb) isolated from hyperimmunized

host serum are critical antibody pools from different B cells that

detect different epitopes on the target protein or antigen.

“Poly” clonality of pAbs permits many antigenic determinants of the

target to be bound. This allows pAbs to be more sensitive in certain

assays against a variety of target proteins, cells, or organisms and are

more likely to result in high‐avidity binding, with a low risk of antigen

“escape variants” emerging.4 Currently, there are seven human

polyclonal immunoglobulins (Igs) products.5 Human polyclonal anti-

bodies (hpAbs) or human immunoglobulins (hIgs) derived from the

plasma of healthy and convalescing human donors, or hyperimmu-

nized animals have been approved against various viral/bacterial

infections, such as a respiratory syncytial virus (RSV).5 hIgG is the

most effective and is a life‐saving tool in medical emergency crises,

such as severe acute respiratory syndrome (SARS) or the MERS‐

CoV outbreaks, for which no appropriate treatment is available6‐8

and, recently, also for COVID‐19 caused by SARS‐CoV‐2.9‐14 The

administration of human intravenous immunoglobulin (IVIg), mono-

clonal antibodies (mAbs), and animal‐derived pAbs are examples of

current immunotherapy technology.

Using current hpAbs products has several limitations, including

the need for large amounts of plasma from convalescent human

donors with high titers to make the commercial product15,16 and the

scarcity of serum from convalescent human donors containing hpAbs.

mAbs have the disadvantage of being directed against a single

epitope, making them vulnerable to the pathogen's mutational

escape.17‐19 The modification of epitopes such that they are not

recognized by most N‐terminal domain (NTD)‐ and receptor‐binding

domain (RBD)‐antibodies underpin viral immune evasion by altering

local conformation, charge, and hydrophobic microenvironments.20

Furthermore, the cost of producing mAb products is exceedingly

expensive.21 So, hpAbs derived from transgenic animals may be a

feasible alternative to human plasma‐derived IVIg therapy.22,23 The

large‐scale production of hpAbs in the most commonly transgenic

animal species, involving mice24 and rabbits, is inappropriate because

they have small body sizes. Since heterologous animal‐derived

antibody products are foreign proteins in humans their reactogenicity

is often high. That can cause severe allergic reactions (anaphy-

laxis),25,26 serum sickness disease,27 and may provide "xenosiali-

tis."28,29 Serum sickness,27,30,31 and type III hypersensitivity are

mediated by immunoglobulin M (IgM) and IgG in immune complexes

with the therapeutic Igs of animal origin.31 These immune complexes

can be deposited in small arteries, renal glomeruli, and synovium of

the joints, causing vasculitis, nephritis, and arthritis.28,30 To prevent

such side effects, animal‐derived mAbs may be humanized or

chimerized to human Fc fragments. However, they are directed

against a single epitope, susceptible to rapid mutational escape, and

also exhibit reduced neutralization efficiency. Oligoclonal cocktails

were developed, but their enough production to assist in an outbreak

scenario is challenging. Therefore, technical, logistical, and financial

constraints will make it challenging to generate enough mAbs,

convalescent plasma, and/or hyperimmune human‐derived Igs on

time. Additionally, combinatorial transchromosomic (Tc)‐pAb prepa-

rations can be used to combat coinfections with divergent pathogens,

demonstrating that the transchromosomic bovine (TcB) platform
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could be beneficial in geographical areas where multiple infectious

diseases coincide or in the case of circulating of multiple pathogens.

Most mammals rely on Ig transfer, and bovine IgG plays a role

in human therapy. IgG is one of the most important components

with immunological action in cow colostrum. Researchers have

investigated the immunological role of bovine immune milk (BIM)

consumed by humans for decades.32 The significance of cattle in

supplying humans with protective antibodies in serum and milk,

particularly specific antibodies against human or similar bovine

viruses, cannot be denied.33,34 Passive immunotherapy has been

recommended for multiple deadly and emerging infectious

diseases, such as severe seasonal influenza,35 SARS,8 MERS,36

Ebola,37,38 and SARS‐CoV‐2.14,39 However, collecting enough

human plasma for production is often limited.35,40 Here, we

review the potential promising role of therapeutic antibodies

derived in normal or Tc cattle to be effective against the most

common human viruses (Figure 1), focusing on a few examples of

the recent viruses.

F IGURE 1 Procedure for production of cloned transchromosomic bovine (TcB). Cloned TcB is accomplished by employing microcell‐
mediated chromosomal transfer to introduce a human artificial chromosome (HAC) vector containing the entire unrearranged sequences of the
human immunoglobulin heavy‐chain (H) and lambda (λ) light‐chain loci into bovine primary fetal fibroblasts through microcell‐mediated
chromosome transfer. Tc fibroblasts and enucleated oocyte couplets are fused, resulting in the transfer of the fibroblast nucleus and the
formation of an embryo. The reconstituted Tc embryos were cultured in vitro to the blastocyst stage and then implanted into recipient cows.

F IGURE 2 Schematic diagram shows the
contribution of bovine‐derived
biotherapeutics to human health. Humans can
be supplied with hyperimmunized milk from
transchromosomic (Tc) bovines, which can be
utilized to make dairy products with protective
antibodies. Also, Tc bovine vaccination
triggers the adaptive immune response in
cattle, allowing Tc bovine B cells to release
human polyclonal antibodies that target a
wide range of epitopes, reducing the risk of
viral infections gaining mutational resistance.
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2 | TRANSCHROMOSOMIC BOVINES

TcBs produce potent human antibody neutralizers. TcB vaccination

activates the bovine adaptive immune response, allowing TcB B cells

to secrete human polyclonal Ig. pAbs act against a wide variety of

epitopes, limiting the potential of viral pathogens to develop

mutational resistance. These antibodies play a role in public health

infection control and neutralizing viruses. They increase virus

clearance in natural killer (NK) cells and cytotoxic T lymphocytes by

triggering an antibody‐dependent cellular cytotoxicity (ADCC) mech-

anism. This immunological response eliminates viral reservoirs by

killing virus‐infected cells.41

SAB Biotherapeutics has developed theTcB (Figure 2) as a viable

source of human antibodies for passive immunotherapy42 to

circumvent the constraints found in using mAbs and convalescent

plasma (Table 1). Mature and functional hIgs were isolated from the

blood of a Tc calf in 2002.42 That is achieved by introducing a human

artificial chromosome (HAC) vector containing the complete unrear-

ranged sequences of the hIg heavy‐chain (H) and lambda (λ)

light‐chain loci into bovine primary fetal fibroblasts using microcell‐

mediated chromosome transfer.42 TcB develops entirely potent

neutralizing hpAbs endogenously and mounts a strong antibody

immune response after hyperimmunization. Tc calves that produce

human Igs can effectively protect their human IgGs, which have

implications for the successful large‐scale production of therapeutic

antibodies.43 Bovine neonatal Fc‐receptor is involved in IgG

homeostasis. Human IgG binds to the bFcRn more strongly than

bovine IgG and has a serum half‐life of 33 days in Tc calves, which is

more than twice as long as its bovine counterpart. TcBs have a triple

deletion in the heavy chain genes, and lambda cluster light chain

genes (IGHM/IGHML1/IGL), and HAC containing the information for

the human antibody heavy chain and kappa chain has been inserted,

enablingTcBs to develop fully human antibodies.21,22,44,45 Depending

on TcB, hIgG, chimeric IgG (human gamma heavy chain and bovine

kappa chain), and trans‐class‐switched bovine IgG are the three types

of IgG antibodies generated by TcBs. Significantly, 70%–80% of the

generated antibodies are completely hIgG.44 Since the bovine Ig light

chain gene has not been deleted from Tcb, chimeric IgG is also

produced.44 TcBs can be hyperimmunized for a long time with

vaccines containing potent adjuvants and/or immune stimulators.

After hyperimmunization, each cow can produce 150–600 g of

purified TcB fully human IgG (Tc‐hIgG) every month, depending on

its age and size. Tc‐hIgG is purified from pooled convalescent plasma

collected from vaccinated TcBs46–49 and is separated from chimeric

and bovine IgGs. The purified hpAbs are quickly produced with a

highly concentrated form and do not require further treatments.

Compared to human‐derived IVIg, TcB antibodies have identical

amounts of galactose‐α‐1,3‐galactose carbohydrates (α‐gal). After

equine antivenom or cetuximab administration or red meat intake,

TABLE 1 Advantages of Tc bovine‐based system for producing
therapeutic hPABs41

1. Production of large amounts of humanized antibodies.

2. Possibility of hyperimmunization against almost any human
pathogen or other peptide antigens.

3. Easily testing a large number of antigens.

4. No need for isolation of a target virus for vaccine development.

5. At any stage of antibody development, no patient intervention
is required.

6. A short time from immunization to antibodies purification

(3–5 months).

7. Low cost (compared to mAb development).

8. Binding to multiple targets.

9. Theoretical resistance to escape mutation/reduction of the
potential for escape mutants.

10. Potential intervention to solve infections epidemic/pandemic
outbreaks.

Abbreviations: hpAbs, human polyclonal antibodies; mAbs, monoclonal
antibody; Tc, transchromosomic.

TABLE 2 Examples of human monoclonal/polyclonal
neutralizing antibody products (hpAbs) produced in TcB against
human viruses

hpAbs Virus Animal model

SAB‐159 HTNV Syrian hamsters–
marmoset

(SAb Biotherapeutics)

SAB‐159P PUUV Syrian hamsters–
marmoset

(SAb Biotherapeutics)

SAB‐155 Zika virus STAT2 knockout

golden Syrian
hamsters

(SAb Biotherapeutics)

SAB‐139 EBOV Mice–Rhesus
macaques

(SAb Biotherapeutics)

Tc bovine‐derived VEEV‐
specific TcPAbs

VEEV Mice

(SAb Biotherapeutics)

SAB‐300 MERS‐CoV In vitro–mice

SAB‐301 Phase I clinical trial

(SAb Biotherapeutics)

SAB‐100 Influenza A
virus

In vitro

53C10

SAB‐176 Phase I clinical trial

(SAb Biotherapeutics)

SAB‐185 SARS‐CoV‐2 In vitro

(SAb Biotherapeutics) Phase II clinical trial

Abbreviations: EBOV, Ebola virus; HTNV, hantavirus; MERS‐CoV, Middle
East respiratory syndrome coronavirus; PUUV, Puumala virus; SARS‐CoV‐2,
severe acute respiratory syndrome coronavirus 2; VEEV, Venezuelan equine

encephalitis virus.
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the α‐gal induces a human‐immunologic barrier to xeno-

transplantation or anaphylaxis/hypersensitivity reactions in certain

humans.50–52 pAbs are effective against a broad spectrum of

epitopes, reducing the viral infectious agent's chances of mutational

escape. For treating a wide variety of acute and chronic conditions,

transgenic cows may be immunized with antigens from several

cancers, infectious agents (including antibiotic‐resistant), or cytokines

involved in inflammatory processes to develop high titers of pAbs.

Furthermore, through hyperimmunization, the titer of pAbs raised

against specific antigens may be closely monitored and im-

proved.42,53 Antigen‐specific human antibodies to diverse viral

pathogens have been developed using the TcB platform (Table 2).

3 | SEVERE ACUTE RESPIRATORY
SYNDROME CORONAVIRUS 2

The current new coronavirus, officially named SARS‐CoV‐2, was first

detected in Wuhan, China, in late December 2019.54 It was thought

to have originated from wild animals at the Huanan market and then

rapidly spread by person‐to‐person transmission, causing the

pandemic disease named COVID‐19, with various degrees of

severity, from mild flu‐like symptoms to pneumonia and death.54

SARS‐CoV‐2 is a member of the Coronaviridae family, which

comprises many virulent strains that infect animals and humans,

including SARS‐CoV and MERS‐CoV.55 As of April 25, 2022, 510

million laboratory‐confirmed human COVID‐19/SARS‐CoV‐2 infec-

tion cases, including 6.2 million (1.22%) deaths, had been reported

(https://coronavirus.jhu.edu/map.html accessed on April 25, 2022).

SARS‐CoV‐2 is a highly transmissible virus with low mortality, and

COVID‐19 is considered the third most severe epidemic caused by

coronaviruses in the past two decades. Despite more than two years

of intensive study since the virus was first isolated, developing an

effective and specific SARS‐CoV‐2 treatment remains a daunting

challenge though few vaccine candidates have been developed

successfully, and vaccination is in progress globally.56

Recent papers reviewed the therapeutic potential of bovine Ig‐

rich colostrum against SARS‐CoV‐2.32,57,58 The impact of BIM on

human health has been studied for decades (Table 3). Furthermore,

colostrum or antibodies‐rich milk from bovines can be used against

human diseases caused by viruses and bacteria,33,59 where cow's milk

is available to the general public. Currently, different colostrum‐

based products are commercially used.57 Humans can get short‐term

protection against COVID‐19 by drinking microfiltered immune milk

from SARS‐CoV‐2‐immunized cows.32 Recent reports showed using

heterologous passive immunity of coronavirus BIM as an immunos-

timulant therapy to control SARS‐CoV‐2 infection, activate the

intestinal immune system, and combat the viral infection.60

Moreover, bovine colostrum‐derived proteins such as lactoferrin

may be used to treat COVID‐19 due to their potent antiviral and

TABLE 3 Bovine based‐products
Bovine based‐product Activity References

BMAP‐27 (27‐residue bovine cathelicidin peptide) Anti‐HIV activity [65]

Lactoperoxidases (bLPO) Anti‐HSV‐1 activity [66]

Anti‐influenza activity [67]

Lactoferrin (bLf) Anti‐HCV activity [68]

Anti‐SARS‐ COV‐2 [69]

Block HCMV infection [70]

Anti‐HIV‐l activity [71]

Anti‐influenza activity [72]

Anti‐HBV activity [73]

Bovine lactoferrin has been granted generally recognized safe status by FDA

Lactoferricin (β‐turn structure peptide) Anti‐HCMV activity [74]

Anti‐HSV activity [75]

Indolicidin (extended‐structure peptide) Anti‐HIV‐1 activity [76]

Anti‐HSV activity [77]

Indolicidin are cationic antimicrobial peptide isolated from bovine neutrophils

Bovine milk/colostrum Anti‐influenza activity [78, 79]

β‐lactoglobulin "modified by 3‐hydroxyphthalic
anhydride”

Anti‐HIV activity [80, 81]

Abbreviations: bLf, bovine lactoferrin; FDA, Food and Drug Administration; HBV, hepatitis B
virus; HCMV, human cytomegalovirus; HCV, hepatitis C virus; HIV, human immunodeficiency virus;

HSV, human simplex virus; SARS‐ COV‐2, severe acute respiratory syndrome coronavirus 2.
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anti‐inflammatory properties (reviewed by da Silva Galdino et al.57).

Lactoferrin may help to reduce the cytokine storm associated with

severe COVID‐19 infection,61 inhibiting the SARS‐CoV‐2 binding

to the host cells.61 Additionally, bovine IgG enriched fraction

can neutralize SARS‐CoV‐2 through specific binding to the RBD of

SARS‐CoV‐2 S protein, but it has less potency activity against NTD of

the spike protein of SARS‐CoV‐2.62 FM‐CBAL74 (cow's milk

fermented with the probiotic Lactobacillus paracasei CBAL74) also

showed antiviral activity against SARS‐CoV‐2.63 SARS‐CoV‐2 infec-

tion is significantly inhibited in vitro by bovine lactoferrin (bLF) due to

direct entry inhibition and immunomodulatory mechanisms. That

backs up the great specificity of bLF's anti‐SARS‐CoV‐2 activity,

which is not seen in other bioactive milk proteins.64 The in vitro

antiviral efficacy of bLF has been shown against SARS‐CoV‐2

variants of concerns (VOCs), such as Alpha, Beta, Gamma, Delta,

and Omicron variants.64

Anti‐SARS‐CoV‐2 (Tc‐hIgG‐SARS‐CoV‐2) Ig was produced

using TcB.82 TcBs were hyperimmunized twice with plasmid

DNA encoding the SARS‐CoV‐2 Wuhan‐Hu‐1 strain Spike (S)

gene41,83,84 then repeatedly immunized with S protein purified

from insect cells. The Tc‐hIgG‐SARS‐CoV‐2, termed SAB‐185,

efficiently neutralizes SARS‐CoV‐2 and vesicular stomatitis virus

SARS‐CoV‐2 chimeras in vitro.82 SAB‐185 was investigated in

vitro for its neutralizing capacity against five SARS‐CoV‐2 variant

strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1), and

South Africa (SA) (B.1.3.5) variants, as well as a variant, derived

from a chronically infected immunocompromised patient (Spike

Δ144–146). SAB‐185 neutralized all the SARS‐CoV‐2 variants

similarly in Vero E6 cells; however, a control convalescent human

blood sample was less efficient in neutralizing the SA variant.41,85

A novel human angiotensin‐converting enzyme 2 (hACE2) trans-

genic Syrian hamster was employed as the animal model, which

protected from a fatal disease and had fewer clinical signs of

infection after receiving prophylactic SAB‐185, implying that SAB‐

185 may be a successful treatment for patients infected with

SARS‐CoV‐2 variants.85 In the most recent study for assessing the

efficacy of SAB‐185 against the most current emerging variants,

Luke et al., used recombinant lentivirus pseudoviruses as

an alternative pseudovirus platform to express the multiple

mutations in VOC/variants of interest (VOI) S proteins using a

stably transduced 293T‐ACE2 cell line expressing both

ACE2 and TMPRSS2 (293TACE2.TMPRSS2S).84 For screening

tests, this pseudovirus system may offer the properties of safety,

genetic stability, and scalability.41 SAB‐185 (V4) and SAB‐185

(V3–V5) isolated from hyperimmunized TcB plasma showed

strong antibody binding avidity to the SARS‐CoV‐2 spike of

the vaccine‐homologous WA‐1 strain, as well as the stabilized

prefusion spike of the Alpha and Beta VOCs. In investiga-

tions from different laboratories, SARS‐CoV‐2 neutralizing activ-

ity evaluated by pseudovirus neutralization assay corresponds

well with plaque reduction neutralization tests with actual

SARS‐CoV‐2 virus.86‐88

TcB sera and purified SAB‐185 displayed high antibody

avidity and neutralizing capacity against VOCs/VOIs; Alpha,

Epsilon, Iota, Gamma, Beta, Kappa, and Delta strains. As a result,

anti‐SARS‐CoV‐2 purified SAB‐185 may likely result in effective

virus neutralization and protection against new SARS‐CoV‐2

strains and might potentially serve as an effective therapy for

COVID‐19 patients, including those infected with circulating

SARS‐CoV‐2 VOCs/VOIs.1 Recently, SAB‐185 showed efficacy

against Delta (VOC) and Lambda (variants being monitored)

variants.84 In an in vitro pseudovirus model, SAB‐185 showed

extensive neutralization of Omicron and other VOCs, and it is

currently being studied in the NIH1‐sponsored phase 3 COVID

trial, which has begun enrolling patients in October 2021.

Scientists at the US Food and Drug Administration's (FDA) Center

for Biologics Evaluation and Research compiled these findings

using a lentiviral‐based pseudovirus assay conducted in a BSL2

environment that included a stable 293T cell line expressing

hACE2 and transmembrane serine protease 2 (TMPRSS2). SAB‐

185 can still neutralize a recombinant S protein lentiviral

pseudovirus that mimics the SARS‐CoV‐2 Omicron variant. SAB‐

185 was still able to neutralize the Omicron variant as compared

to the wild‐type SARS‐CoV‐2; however, it exhibited a mild‐

moderate drop in potency. SAB Biotherapeutics is attempting to

improve SAB‐185 by including Omicron‐specific activity. Sud-

denly, in March 2022, SAB Biotherapeutics reported NIH

discontinuing the Phase 3 ACTIV‐2 trial evaluating SAB‐185 for

COVID‐19 treatment due to a decrease in COVID hospitalizations.

Importantly, by binding to several epitopes on the RBD, pAbs can

effectively block viral entry receptors while also activating

immune effector cells, increasing the individual's immune

response. According to a preclinical study, SAB‐185 is also

significantly more potent than human‐derived convalescent IgG.41

4 | MIDDLE EAST RESPIRATORY
SYNDROME CORONAVIRUS

The MERS‐CoV, which belongs to betacoronavirus lineage C, causes

severe acute respiratory disease in humans.6 MERS‐CoV was first

identified in 2012 in Saudi Arabia.89 Two groups of TcBs were

vaccinated with two experimental MERS‐CoV vaccines. SAB‐300 and

SAB‐301 are two purified TcB human IgG produced after vaccination

with the Jordan strain and Al‐Hasa strain, respectively. They had high

enzyme‐linked immunosorbent assay (ELISA) and neutralized antibody

titers in vitro without antibody‐dependent enhancement (ADE) and

reducing lung virus titers in infected mice.47 Consequently, SAB‐301

was selected for in vivo and preclinical studies. The US FDA recently

approved SAB‐301 applications for MERS CoV (ClinicalTrials.gov

numbers NCT02788188).36 In a phase I clinical trial, SAB‐301 was

found to be safe and well‐tolerated (up to 50mg/kg in healthy

participants,90,91 with an average terminal IgG removal half‐life t1/2)

of 28 days, which is similar to human‐derived IVIg.91
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5 | HUMAN IMMUNODEFICIENCY VIRUS
TYPE 1

HIV‐1 was first characterized in 1981 as the causative agent of

acquired immunodeficiency syndrome.92 HIV‐1 belongs to the

primate lentiviruses (RNA viruses), genus retroviruses, the Orthore-

troviridae subfamily of Retroviridae family.93 In HIV‐1, the envelope

(Env) glycoprotein (GP) spike is the primary target for neutralizing

antibodies (nAbs). High concentrations of nAbs act as promising

microbicide formulations but producing them in large quantities is

currently prohibitively costly. Moreover, in human or animal models,

no immunogen has reliably elicited broadly nAbs to HIV.94 Despite

extensive efforts, no HIV‐1 vaccine has been able to elicit bNAbs

reliably. Bovine colostrum can be used to obtain low‐cost HIV‐1‐

specific NAbs in large amounts quickly and cheaply. Bovine colostrum

contains approximately 50mg/ml of IgG (primarily IgG1) and 4mg/ml

of IgA and IgM.95 Colostrum‐purified polyclonal IgG showed

specificity for the CD4 binding site. Bovine IgG can bind to human

B cells and monocytes,96 mediate effective HIV‐1 neutralization, and

stimulate a functional response in human cells. Bovine anti‐HIV

colostrum IgG has strong HIV‐1‐specific ADCC activity in vitro,97

indicating that it may be a good source of antibodies for a fast and

effective response to HIV‐1 infection and developing novel Aby‐

mediated approaches as HIV‐1 transmission prevention strategy.97

This approach provides a low‐cost mucosal HIV preventive agent

potentially suitable for a topical microbicide.96

Innate immune cells, including NK cells, are Fc receptors‐bearing

effector cells via which ADCC is initiated as soon as the immune cells

recognize and bind IgG‐bound infected cells.98 FcγRIIa (CD32a) was

the major receptor responsible for monocyte mediated (CD14+

monocytes) ADCC in response to bovine IgG. Given the high

concentration of serum IgG, FcRI (CD64), expressed on monocytes,

has a high affinity for monomeric IgG and is thus believed to be

saturated under physiological conditions.97 Contrarily, under physio-

logical conditions, the efficient binding of low‐affinity receptors

FcRIIa/b (CD32a/b) and FcRIIIa/b (CD16a/b) to monomeric IgG

involves the formation of immune complexes.99 In the absence of a

neutralization function, only a few anti‐HIV‐1 mAbs have been

identified to have ADCC activity.100

Previously, pregnant cows were immunized with HIV‐1 Env

gp140 oligomers and elicited high titers of anti‐gp140‐binding IgG in

serum and colostrum.95 In rabbits100 and macaques,101 BG505

SOSIP1 (immunogens that antigenically resemble the HIV Env GP)

enhanced the elicitation of potent isolate‐specific antibody

responses. Still, it has not yet induced widely nAbs. This failure

may be because the relevant antibody repertoires are poorly suited

to attack the conserved epitope regions on Env, which are occluded

relative to the exposed variable epitopes.93 BG505 SOSIP102 was

given to four cows. Surprisingly, BG505 SOSIP immunization elicited

broad and potent serum antibody responses in all four cows quite

quickly. Cows have long third heavy chain complementary determin-

ing regions in their antibody repertoire, with an ultralong subset that

can be over 70 amino acids long.103 Compared to previous studies in

other species, immunizing cows with a well‐ordered Env trimer

reliably and quickly elicits broad and potent neutralizing serum

responses. Vaccination of cows with uncleaved HIV AD8 strain

gp140 Env (HIVAD8 gp140, AD8 clone of ADA) resulted in a high

titer of broadly neutralizing antibodies (BrNAbs) in serum, which was

obtained in large amounts in the immunized cows' colostrum

samples.95,104 Colostrum IgG had a broad neutralizing activity and

was able to inhibit anti‐CD4bs mAbs such as b12 and VRC0195 and

have antibody‐dependent cell‐mediated cytotoxicity activity.96 Gen-

erally, the peculiar characteristics of the bovine Ig diversity system

indicate that bovine mAbs may be formed in response to antigenic

epitopes that are difficult for other species to engage. The

humanization of bovine BrNAbs as long‐acting antiviral therapy in

HIV‐infected individuals may be an adjunct to established oral

antiviral regimens.105

6 | INFLUENZA A VIRUS

Influenza is one of the most common human respiratory illnesses,

causing 250 000–500 000 deaths/year worldwide despite vaccines

and antiviral drug development efforts. Influenza virus type A, the

most virulent of the three influenza viruses, is linked to seasonal

(winter) outbreaks in temperate countries.107 Because nAbs play a

crucial role in diminishing the severity of influenza virus infection,108

passive immunotherapy could be a potential strategy to treat influenza

virus infection, modify severe disease consequences, and provide

additional benefits to the standard of care. Antibodies that fight the

influenza A virus's surface GPs such as haemagglutinin and neuramini-

dase are essential components of antiviral drugs and may provide an

alternative to current countermeasures. TheTcB platform was used to

characterize pAbs and mAbs against the influenza A virus.109 After

being immunized with H1N1, H3N2, and influenza B virus, TcB

developed SAB‐100, a pAb.110 SAB‐100 antibody recognized three

distinct epitopes, one of which is found in HA2 and highly conserved

among different subtypes of HAs according to the peptide‐based

ELISA. The 53C10 human nonimmunogenic mAb, which was also

generated on the Tc cattle platform, was then characterized; this mAb

could neutralize various H1 subtype clades. 53C10 recognizes a novel

noncontinuous epitope that overlaps with the receptor‐binding site.

Further analysis revealed that two substitutions in the escape mutant

do not affect antibody binding but may serve as a competitive

advantage. Despite the broad binding of 38C2, mAb generated by

reactive immunization with a 1,3‐diketone hapten to H1 HAs, 38C2

mAb showed no detectable neutralizing activity against the H1N1

virus. In vitro study showed that this mAb is a potent ADCC. Despite

the presence of a neutralizing escape mutant, 53C10 is effective in

treating H1 influenza virus infection in humans.109

More interestingly, SAB‐176 will be moving into phase 2 trials

later this year. SAB‐176 is a polyclonal human antibody produced in

transgenic cows after TcB were hyperimmunized with quadrivalent

influenza strains to help combat seasonal flu. SAb biotherapeutics

announced that SAB‐176 appeared to be safe and well‐tolerated in
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the randomized, double‐blind, placebo‐controlled challenge study of

SAB‐176 (25mg/kg dose) was conducted in 60 healthy adult

participants inoculated with a pandemic influenza virus strain

(pH1N1) (Identifier NCT04850898). As said, the results showed that

SAB‐176 is effective against both known and unknown viral variants,

making it a very valuable feature when addressing rapidly mutating

pathogens.110

7 | EBOLA (ZAIRE AND SUDAN) VIRUSES

Ebola viruses (EBOVs) are the etiologic agents of Ebola hemorrhagic

fever (EHF), a severe form of viral hemorrhagic fever in humans

prevalent in central Africa,111 and have international public health

concerns. EBOV belongs to the family Filoviridae in the order of

Mononegavirales.112 The Filoviridae family comprises six species:

EBOV, Sudan virus (SUDV), Reston virus (RESTV), Bundibugyo virus

(BDBV), Taï forest virus (TAFV), and Bombali virus.113 Zaire virus

(EBOV), BDBV, SUDV, TAFV, and RESTV are the five species that

have been identified so far.114 Protective and potent fully hpAbs with

robust neutralizing activity against Zaire EBOV, more commonly

known as EBOV, and SUDV were developed after hyper-

immunization of TcB with DNA vaccines expressing the codon‐

optimized GP genes of both viruses,49 using the eukaryotic

expression plasmid. These pAbs were first tested in the BALB/c

and IFNAR−/− mouse models of EHF, where they showed a significant

increase in survival in both models with treatments.49 Dye et al.46

used a recombinant GP vaccination containing the Makona EBOV iso-

late from 2014 to hyperimmunize two TcBs resulting in high levels of

fully human IgG. Purified fully hpAbs against EBOV were attested in a

mouse challenge model using mouse‐adapted Ebola virus (maEBOV).

One day after the lethal challenge with maEBOV, BALB/c mice were

given an intraperitoneal dose of pure anti‐EBOV IgG (100mg/kg),

which resulted in 90% protection. These antibodies were rapidly

elicited in commercially viable quantities.46 After sequential hyper-

immunization with an EBOV, Makona isolate GP nanoparticle

vaccine, anti‐EBOV IgG Igs (collectively referred to as SAB‐139)

were purified from TcB plasma.115 It was noticed that NK cells,

monocytes, and peripheral blood mononuclear cells are all potently

activated by SAB‐139. The obtained results from in vitro and in vivo

studies about SAB‐139 motivated the scientists to go to clinical trials

in humans.115 Another study utilized the TcB to produce hpAbs

directed against EBOV GP after TcB vaccination with a DNA plasmid

encoding EBOV GP.116 Following a fatal challenge with the EBOV

Makona in Rhesus macaques, these TcB pAbs conferred partial

protection and resulted in a 50% survival rate.116

8 | ZIKA VIRUS

Zika virus is a flavivirus belonging to the Flaviviridae family. In 1947, in

Brazil, the Zika virus was isolated from Aedesafricanus mosquitos on

many occasions.117 Because of the severe outcomes of ZIKV

infection during pregnancy, passive immunotherapy to prevent

transmission to the fetus could provide the most clinical benefit.118

Transferring IgG through the placenta during pregnancy provides

passive immunity to the fetus and is critical to protecting newborns

against infections and immunological diseases. The brain, testis,

spleen, and liver of mice exposed to the lethal challenge of the Zika

virus were protected from significant tissue damage after treatment

with TcB antibodies. These fully hPAbs generated in TcB were

produced against the Zika virus GP after TcB vaccination with a DNA

vaccine expressing the preM/E protein of Zika virus.119 ZIKV infects

humans by inactivating human type I interferon responses by

targeting human STAT2 protein.120 So, STAT2 knockout (KO)

hamsters were used because their innate immune responses would

be similar to those seen in humans after ZIKV infection. STAT2

KO golden Syrian hamsters were prophylactically and therapeutically

protected from infection by ZIKV after treatment with ZIKV‐specific

hpAbs (SAB‐155), developed in TcB.121 Testicular lesions are also

prevented in this hamster model by these antibodies.121 SAB‐155

antibodies protected wild‐type mice from ZIKV infection and

ZIKV‐induced tissue damage in the brain and testis.119

9 | CONCLUSION

Passive immunization remains an important therapeutic modality

to prevent and treat human infectious and noninfectious diseases.

One of the most well‐established and proven platforms for passive

immunization is hpAbs. More than 20 FDA‐approved products

address a broad range of targets or pathogens.5 The source of

pAb therapies can be human or animal plasma. Obtaining

commercially microfiltered raw milk from supermarkets as a

prophylactic and therapeutic regimen is highly recommended.

BrNAbs with long CDR H3 are promising candidates for prophy-

laxis and antibody‐based immunotherapy.122,123 Other viruses,

such as influenza or SARS‐CoV‐2,124 may benefit from a similar

approach, eliminating the need for expensive annual vaccinations

or offering a therapeutic response to prevent pandemic out-

breaks.125 The TcB platform for producing hIgs is still relatively

new, and products are only now making their way into clinical

trials. The ability of TcBs to produce multivalent pAbs in their

plasma and rapidly generate antibodies to combat disease agents

that have evolved to resist human antibody responses, such as

HIV, is an interesting area of research. Besides their inherent

prophylactic and therapeutic value, antibodies generated against

pathogens that have evolved to avoid human immunological

responses may aid in defining targets for vaccine and drug design.

Antibodies produced in TcB could solve the respiratory viruses‐

associated ADE phenomena. The type III hypersensitivity (based

on immune‐complex) could also be avoided because the bovine‐

derived antibodies are human‐like and not heterologous. Recent

studies showed that the anti‐SARS‐CoV‐2 antibodies (antibody‐

based vaccines) could increase the severity of COVID‐19 and

multiple viral infections such as RSV126,127 and measles128,129
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through ADE, which results in failed vaccine trials. Additionally,

variants of the SARS‐CoV‐2 with amino acid substitutions and

deletions in the spike protein (S) can minimize the efficacy of

mAbs and jeopardize vaccine‐induced immunity.82 DNA vaccines,

such as SARS and SARS‐CoV‐2 vaccines,130‐132 combined with a

TcB‐based manufacturing platform, can be used to rapidly

manufacture potent antiviral NAbs that are protective in animal

models.133 It is possible to target antibody responses against

the most antigenic portions of an infectious agent by combining

the TcB mechanism with gene‐based vaccine technology. Some

TcB antibodies have shown safety and efficacy in human clinical

trials, such as anti‐MERS‐CoV (SAB‐301) and anti‐mycoplasma

(SAB‐136) antibodies.91,134 Recently, the human zoonotic diseases

caused by emerging viruses have rapidly increased and constitute a

major public health problem around the world. Some viruses are

intrinsically resistant to existing medicines, while others gain

resistance‐caused mutations.135 Strikingly, antibodies derived

from Tc cattle could play a crucial role in other human health

issues than viral infections, such as chronic multidrug‐resistant

infections. In addition, SAB‐176, SAB‐185, and SAB‐142 are under

study for their therapeutic activity against seasonal flu, COVID‐19,

type 1 diabetes, and organ transplantation, respectively.
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