Table 3:
Utility function, class membership, and diagnostics from latent class, latent variable multinomial logistic model (LCLVMNL) model of NIQ smokers’ experimental choices. Robust standard error (robust to heteroscedasticity).
Class 1: Non-switchers | Class 2: Switchers | |||||
Utility Function | Estimate | Rob.std.err | Rob.t-ratio(0) | Estimate | Rob.std.err | Rob.t-ratio(0) |
|
|
|||||
---|---|---|---|---|---|---|
Pod E-cigarette | −5.078 | 0.275 | −18.446 | −0.129 | 0.092 | −1.405 |
Disposable E-cigarette | −3.525 | 0.173 | −20.322 | −0.363 | 0.087 | −4.193 |
Cigarette Menthol Smoker | 0.374 | 0.291 | 1.285 | 0.168 | 0.128 | 1.315 |
Cheaper | 0.062 | 0.010 | 6.545 | 0.062 | 0.010 | 6.545 |
Expensive | −0.024 | 0.011 | −2.154 | −0.024 | 0.011 | −2.154 |
Helps You Quit | −0.469 | 0.126 | −3.714 | −0.032 | 0.032 | −1.007 |
Healthier Than Cigs | −0.289 | 0.118 | −2.452 | 0.015 | 0.029 | 0.516 |
No Nicotine | 0.654 | 0.112 | 5.831 | 0.170 | 0.028 | 6.158 |
Less Nicotine | 0.499 | 0.162 | 3.088 | 0.054 | 0.055 | 0.973 |
More Nicotine | 0.132 | 0.198 | 0.666 | 0.070 | 0.047 | 1.492 |
Menthol | −1.047 | 0.227 | −4.620 | −0.431 | 0.065 | −6.619 |
Fruit | −1.723 | 0.198 | −8.711 | −0.342 | 0.050 | −6.796 |
Sweet | −0.579 | 0.150 | −3.854 | −0.357 | 0.050 | −7.173 |
Class membership probability | Estimate | Rob.std.err. | Rob.t-ratio(0) | |||
|
||||||
Constant class 1 | 1.287 | 0.113 | 11.395 | |||
Older | 0.240 | 0.126 | 1.906 | |||
Female | 0.081 | 0.117 | 0.693 | |||
Education | −0.647 | 0.118 | −5.484 | |||
Income | −0.412 | 0.172 | −2.390 | |||
Black | −0.428 | 0.178 | −2.409 | |||
Asian | −1.413 | 0.527 | −2.681 | |||
Hispanic | −0.027 | 0.244 | −0.109 | |||
E-cigarette user | −1.508 | 0.135 | −11.145 | |||
tau(Latent variable health behaviours) | 0.272 | 0.082 | 3.329 | |||
Class shares | 0.68 | 0.32 | ||||
Diagnostics | ||||||
Individuals | 2,000 | |||||
Observations | 24,000 | |||||
Estimated parameters | 61 | |||||
LL(0) | −26,366.69 | |||||
LL(fitted) | −19,953.66 |
Robust-t-ratio(0) – Robust t-ratio (versus 0). LL(0) – log-likelihood when all parameters are set to zero. LL(fitted) – log-likelihood of fitted model. Tau is a latent variable to control for the effect on health behaviours from COVID – see Appendix for methods and results.