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Abstract

The study aims to assess the detection performance of a rapid primary screen-

ing technique for COVID-19 that is purely based on the cough sound extracted

from 2200 clinically validated samples using laboratory molecular testing

(1100 COVID-19 negative and 1100 COVID-19 positive). Results and severity

of samples based on quantitative RT-PCR (qRT-PCR), cycle threshold, and

patient lymphocyte numbers were clinically labeled. Our suggested general

methods consist of a tensor based on audio characteristics and deep-artificial

neural network classification with deep cough convolutional layers, based on

the dilated temporal convolution neural network (DTCN). DTCN has approxi-

mately 76% accuracy, 73.12% in TCN, and 72.11% in CNN-LSTM which have

been trained at a learning rate of 0.2%, respectively. In our scenario, CNN-

LSTM can no longer be employed for COVID-19 predictions, as they would

generally offer questionable forecasts. In the previous stage, we discussed the

exactness of the total cases of TCN, dilated TCN, and CNN-LSTM models

which were truly predicted. Our proposed technique to identify COVID-19 can

be considered as a robust and in-demand technique to rapidly detect the infec-

tion. We believe it can considerably hinder the COVID-19 pandemic

worldwide.
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1 | INTRODUCTION

COVID-19 caused by severe acute respiratory syndrome
coronavirus 2 (SARS-COV-2) is an infectious disease
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recognized in China in December 2019. It was
announced by World Health Organization (WHO) as a
global pandemic in March 2020.1 It infects mucosa
(mucous membrane) in the throat and causes respiratory
tract infections along the path to the lungs. COVID-19
spreads through the saliva droplets or from the nasal dis-
charges of an infected person when they cough or sneeze.
This infectious disease starts with mild fever, difficulty
breathing, and tiredness. About 59% of the infected peo-
ple have a dry cough. In a short time, the effects of the
disease tend to affect millions of millions, causing fluctu-
ations in countries' economies worldwide. Thus, causing
a devastating impact on the welfare of people.2,3

According to the statistics of World meter, there have
been 394 426 790 COVID-19 positive cases and 5 753 942
death cases recorded as of February 6, 2022.

In Reference [4], it is of utmost necessity to put forth
a solution for the early diagnosis of the disease as we
encounter devastating impacts due to COVID-19 and wit-
ness a tragic loss of lives. The disease spreads and its
effect can be annihilated through increasing the profi-
ciency of pre-screening and subsequent testing methodol-
ogies. This method would aid in the development of
targeted solutions to solve this issue. From the beginning
of this pandemic, artificial intelligence (AI) researchers
worldwide have been trying to build an AI-based testing
and diagnosis tool for faster and quicker disease detec-
tion.5 So far, COVID-19 is being diagnosed either by RT-
PCR (reverse transcription polymerase chain) or using
radiograph (X-ray) and computerized tomography
(CT) scan. This type of radiographical image-based detec-
tion is considered a simple process suggested by medical
centers for testing. Because they are more accurate than a
swab test (RT-PCR), these chest imaging techniques have
been used to diagnose COVID-19 in several cases.

Although RT-PCR is the traditional method standard-
ized for COVID-19 diagnosis worldwide, its limitation
makes it quite hard for prediction which is shown in
Figure 2. The swab test is a time-consuming manual pro-
cess that does not provide an instant prediction and necessi-
tates the careful handling of lab tools and kits. The supply
of these kits would be difficult or insufficient in a country
where billions of people reside, especially during crisis and
pandemic situations.6 Unlike any other laboratory or diag-
nostic method in healthcare centers, this technique is not
free of errors. There is also a need for an expert technician
to collect samples of the nasal mucosa. Because this is a
manual process, the technician and patient must exercise
caution to prevent disease transmission.

Notably, several works have ensured that the RT-PCR
test has low sensitivity, about 30%–60%, with reduced accu-
racy in the COVID-19 prediction. The detailed analysis of
various studies proved that RT-PCR produced contradicting

results.7,8 On the other hand, CT scan images have high
recall values, but these models' specificity is relatively
minor. These methods of testing, especially in early testing
using RT-PCR and CT scan, are thus expensive, time-con-
suming, and may violate social distancing. Also, we are
unaware when this pandemic will come to an end, so there
comes the requirement for building alternate tools for diag-
nosis that overcome all the above-discussed constraints and
disadvantages deployed widely.9,10

COVID-19 is known to cause dangerous pulmonary
disease symptoms, such as difficulty breathing and dry
cough.6 So, coughing is a common symptom of the dis-
ease, and thus the information extracted from cough
samples could be used to predict the infectious disease in
the body. These symptoms can build deep learning
models to diagnose patients according to the trained
recorded samples from healthy and sick individuals.11

With technological advancements and progress in devel-
oping deep learning AI models, we can use these models
as a screening tool to predict disease in individuals.12

Without any doubt, we can accept that emerging tactics
in AI would undoubtedly aid in developing a tool for the
early diagnosis of COVID-19 in both symptomatic and
asymptomatic individuals, according to recent research.
This is a beneficial solution because, even if the symp-
toms are not noticeable (in an asymptomatic person), the
pathogens would still infect the host's body, causing
changes identifiable by AI models. This is because AI
models have the capabilities to learn and acknowledge
acoustic features and distinguish cough samples of
COVID-positive from COVID-negative or healthy ones.12

MIT researchers have observed that asymptomatic peo-
ple of the disease would vary from healthy people to
coughing. Such variations are not figured out or clear to
humans, but these features could be easily picked and
identified by AI.13 One of the most crucial challenges in
this prediction is the right amount of dataset (both large
and clean) to build a deep learning model that can make
solid and accurate predictions on this pulmonary disease
from the available cough recordings. Based on the result
from these models, we could further approve the patient
for tests like RT-PCR or CT SCAN, and so on, already
mentioned above. Moreover, cough-based audio diagnosis
is also a pre-screening tool, cost-effective, scalable, and
potential one in our fight against COVID-19 diagnosis.
This article discusses the diagnostic methods of COVID-19
from the cough sound recordings of individuals.

2 | LITERATURE SURVEY

The utility of sound was recognized by researchers long
back as a potential feature in the predictions of actions
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and health. It starts with external microphone recorders
of digital stethoscopes for diagnosing the lungs and heart-
beat sounds. These also allowed researchers to listen to
and interpret various methodologies, such as magnetic
resonance imaging (MRI) and sonography. It is easier to
examine and interpret things. Current trends in identify-
ing audio sounds and their interpretations have an
impact on changing the scenario. Several studies have
been conducted to determine whether it is possible to
classify different coughs, such as wet/dry coughs and
audio analysis of the depth of the cough sound in
patients. Considering the pulmonary system, there are
more types of diseases, such as lung infection, pneumo-
thorax, bronchitis, asthma, and so on, which are identi-
fied by signal processing of the cough sounds.

In recent years, many works have been published on
the detection of COVID using cough sounds, CT scans,
and X-rays. Several authors have attempted to build deep
learning models which are a part of AI to diagnose the
virus.14 Yunlu et al. proposed a method to classify people
infected with COVID-19 on a large scale. This work can be
used to identify different breathing patterns in individuals.
In this article, the respiratory simulation (RS) model is
introduced. It is used to fill up space in the copious train-
ing dataset. The results show that six distinct respiratory
trends have precision, accuracy, recall, and F1 of about
94.5%, 94.4%, 95.1%, and 94.8%. The designed model has
an enormous capacity to apply in large-scale screening.

Korpas et al.15 compared cough sounds recorded in a
clinical setting with the results of spirometry tests. Spi-
rometry is one of the most usual tests used to measure
the patient's lung function and it measures the quantity
of air inhaled by a person and exhaled. Korpas also per-
formed signal processing on the cough sounds by visual-
izing the time domain waveforms and has concluded that
the cough sounds contain unique information from the
spirometry tests. The author has also shown that the spi-
rometry results can be changed when they give some
drugs administered to the patients, whereas analysis of
the cough sound remains unchanged.

Santosh16 proposed a model where signal and speech
processing and image analysis methodologies are inte-
grated. The author put forth speech processing tech-
niques to predict tuberculosis in a patient, aiding doctors
widely. This model recommends using the convolutional
neural network used in making unbiased decisions.
Abeyrate et al.17 examined variation in coughs of pneu-
monia, coughs of asthma, the below figure, and bronchi-
tis coughs. They reach 93% sensitivity and 54% specificity
using various features like (i) statistics on time sequence
and (ii) modeling formant-frequency. They achieved the
above features based on the parameters extraction from
cough samples recorded as shown in Figure 1.

Swarkar et al.18 had used various signal processing
techniques to investigate the coughs sound. It includes
analyzing properties like (i) energy spectrum and
(ii) statistical waveform independent of time. The dataset
of 536 samples could reach 54% recall and 92% specificity
by splitting the dataset into dry coughs and wet coughs.
Nallanthighal et al.19 used CNN and RNN models or
architectures to predict the results based on breath for
breath as much as possible to predict asthma and general
infections in the respiratory system.

Imran et al.20 used convolutional neural network
(CNN) architectures to perform the COVID-19 to predict
classifications based on the cough sounds recorded from
various sources. The author has worked based on the
pre-trained model built from sound samples finely tuned
on the dataset. In this article, the author considers trans-
fer learning methods to perform at greater accuracy with
an F1 score of 0.929. Abdelkader21 has developed a
complete-fledged COVID-19 analyzing method, and it
can collect pieces of information, including cough sam-
ples, current temperature, and breath. Taking several
parameters are input, it can classify them into various
classes. The adaptative nature of the model enables it to
be more suitable and can compute the early diagnosis of
these respiratory illnesses.22

Alphonse Pja improves the performance of diagnos-
ing cough sound datasets by pre-processing with a one-
dimensional (1D) convolution network. The author
implemented an augmentation-based mechanism in the
model. Further, to extract the acoustic signal feature and
in-depth sound features that are given as input for one-
dimensional convolutional neural network (1D CNN),

FIGURE 1 COVID-19 cough samples
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the data de-noising auto encoder (DDAE) process is used
rather than using the input as Mel-frequency cepstral
coefficient (MFCC) of cough samples. The accuracy and
performance are also better than the previous models
detecting the disease. Predictions are made from respira-
tory sounds using a 1D CNN classifier. Here, comprehen-
sive classification including COVID-19 cough sounds,
asthma sounds, and normal healthy sounds are done
with an accuracy of 90%. The author has discussed that
there is a gain in accuracy of 4% when compared
with MFCC.

In Reference [23], this study used a significant dataset
for COVID-19 based on infected people's breath and
cough sounds. They include (i) COVID-positive and
COVID- negative patients' breath and cough analysis.
(ii) COVID-19-positive and COVID-19-negative analysis
with only cough sound. The task (1) achieved 80% accu-
racy with 220 on dealing with the combination of cough
and breath, and task (2) achieved 82% accuracy with
29 users on dealing with a cough only. Recall function is
slightly low at about (72%) because of not having special-
ized data to detect COVID-19 cough properly. In this
model, he used a support vector method (SVM) classifier
to analyze the sound signals.

In Reference [24], Orlandic et al. created the dataset
“COUGHVID” for analyzing the cough sound. In this
dataset, details, such as gender, age, geographical loca-
tions, and COVID-19 patients' health status are described
with more than 20,000 cough sound recordings. We try to
look at the self-reported status variable which they have
taken. It displays nutritional values with 25% of the
recording sounds, COVID values with 25% of the record-
ing sounds, symptomatic values with 35% of the record-
ing sounds, and non-reported status with 15% of the
recording sounds. The percentage of COVID-19-positive
symptoms in males is 65.5% and 34.5% in females, up
from 7.5%, 15.5%, and 77% in males and females, respec-
tively. Generally, features including cough, breath, and
continuous speech are considered for identifying or ana-
lyzing COVID-19, but they used cough sounds to detect
the virus in this article.

To improve the quality of the image from high-speed
video endoscopy in shallow level light frames, the convo-
lution model is being used. To classify the respiratory
cysts through image datasets, detect tuberculosis
(TB) through respiratory X-ray images data and automat-
ically make automatic nodules during endoscopy images.
In developing the deep convolutional network, a chest X-
ray is becoming famous, and the result is shown in vari-
ous applications. The machine-learning model eased the
method by convolution network with less quantity of pic-
tures; otherwise, there is a need for a massive dataset to

build the model. New studies for classification to detect
the disease from limited X-ray and CT scan data,25,26

show improved results. However, with the increase in the
number of datasets, we can achieve better accuracy.

They designed a model to diagnose and analyze
COVID-19 using the RNN model. Hassan demonstrated
the impact of recurrent neural network (RNN) by using
speech signal processing (SSP) to detect COVID disease,
estimate the clear audible sounds of the patient's cough,
breathing, and voice using LSTM for earlier screening,
and diagnose the COVID-19 virus.27 The model finds
poor quality in the speech test while comparing both
cough and breath sound recordings. He performed an
LSTM model, and it was obtained with less accuracy.
They had proposed AI speech processing systems for
COVID-19 from cough recordings, and provide a person-
alized patient saliency map to longitudinally monitor
patients in real-time, noninvasively, and at essentially
zero-variable cost.28 The proposed model achieves better
accuracy with 100% accuracy.

They had explained a COVID-19 patient cough and
non-COVID-19 patient cough has been taken for the
accuracy analysis. The AI4COVID-19 app requires 2-s
cough video recording of the subject. The COVID-19
problem has been solved by using a new multipronged
intermediary centered risk-averse AI structural design
that lowers misdiagnosis. As a substitute, it gives a stabil-
ity teletesting instrument deployable anytime, anywhere,
by anyone, so clinical-testing and treatment can be
channeled to those who need it the most, thereby saving
major life.29

They had presented a machine-learning-based
COVID-19 cough classifier which can discriminate
COVID-19-positive coughs from both COVID-
19-negative and healthy coughs recorded on a
smartphone. The result showed that the best perfor-
mance was exhibited by the Resnet50 classifier, which
was best able to discriminate between the COVID-
19-positive and the healthy coughs with an area under
the ROC curve (AUC) of 0.98.30

For the automatic detection of COVID-19 in raw
audio files, the main objective of Alberto Tena et al.31 is
to design a freely available, quick, and efficient method-
ology. Toward diagnose of COVID-19 using a supervised
machine-learning algorithm, this method is based on
automated extraction of time–frequency cough features
and selection of the more significant ones to be used. An
accuracy of 90% was obtained.

In our work, we used a large dataset and trained it
properly using the deep learning (DL) technique to
achieve better results on the COVID-19 cough sound
dataset which is shown in Figures 2 and 3, respectively.
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3 | PROPOSED MODEL

3.1 | Temporal convolutional network

Temporal convolutional network (TCN) differs from
CNN in terms of sequential modeling of tasks. It is quite
a descriptive term for a family of architecture used. TCN
provides more extended memory than recurrent
architectures.

TCN employs a 1D fully connected convolutional net-
work (FCN) architecture, with each hidden layer and
input layer being the same size, and kernel size 1 being

the length of zero paddings. This is added to make sure
succeeding layers or stages have the same length as pre-
ceding layers. The TCN uses causal convolutions. It is
convolution used exclusively in TCN, where output at a
particular time (t) is convolved with elements from time
(t) available in the preceding layer. TCN is a 1D FCN
along with casual convolutions. Thus, its distinguishing
features include (1) just like recurrent neural network,
the TCN architecture takes up the length of any ordered
series or sequence and maps it to a similar length output
sequence, (2) the convolutions used in this architecture
are causal so that there will be no data or information
“leakage” from later to earlier, ensuring data protection.
The TCN architecture must backpropagate to look for lin-
ear size available to the deep network and kernel or filter
size as shown in Figure 4. So, keeping track of dependent
parameters is relatively very challenging. Dilated convo-
lutions could bring a solution to these problems.

One-dimensional convolutional network takes the
input of a three-dimensional tensor and outputs three-
dimensional tensor. Batch size, input length, input size
are the input tensor of our TCN implementation model,
and the batch size, input length, output size are the out-
put tensor. Since every layer in a TCN has the same input
and output length, only the third dimension of the input
and output tensors differs among other parameters.

A single 1D convolutional layer with a batch size,
input length, and input channels are the input tensor
shape. As well as the batch size, input length, output
channels are the outputs of a tensor. To analyze how a
single layer converts its input into the output, we will
have to look at one element of the batch (the same pro-
cess occurs for every element in the batch when we con-
sider the simplest case where input and output channels
are both equal to 1. This is the case of 1-D input and out-
put tensors.

3.2 | Dilated temporal convolution
neural network

3.2.1 | Dilated convolutions

When a 1D input sequence Y � Rn and filter in
f : 0,1,…l�1½ �!R, the convolution operation of dilation
of function U on element p is shown in Equation (1).

U pð Þ¼
X l�1

j¼0
f j½ �ð Þ � Yp�df � jð Þ ð1Þ

where ‘�’represents element-wise multiplication; l is the
filter size or kernel size, df is the dilation parameter, or
factor, Yp�df � j specifies the direction of the previous by

FIGURE 3 Visualizing cough sound through waveform of a

healthy individual and COVID-19 affected person respectively

(coughed three times)

FIGURE 2 Proposed system for identifying COVID-19 using

cough sound
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the dot product. Dilation is like becoming into a fixed or
standard step in between two filter or kernel taps. The
operation varies and becomes complex as the value of d
changes. Especially, when dilation factor df is 1, a regular
convolution is computed. When values of d increase, the
output is at the peak level with more significant range
inputs. This aspect of TCN increases the width of the
receptive region or field in any CNN. In our case, we can
do this in two ways: (i) When higher values for l—filter
size and df—dilation factor are provided, it appears to
raise the width and expand the field of layers given by
l�1ð Þ df for one layer. (ii) When dilated convolutions are
generally used, the value of df (dilation factor) is raised

concerning the depth of any network given by df is in
order of 2j where j is the levels which is shown in
Figure 5.

It is always necessary for dilated convolutional layers
to get hold of large or wide receptive fields even if the
parameters and number of layers are less. TCN block
architecture, RES block architecture, and schematic rep-
resentation of DTCN are clarified in Figure 6A–C,
respectively.

Dilated temporal convolution network structure
depends on time sequences and their time-based parame-
ters is shown in Figure 6. It is an architecture with an
N number of sequential blocks with different layers of
layers in each block, forming a network. The input and
output of dilated temporal convolution network architec-
ture are sequentially associated with the time-step. One-
dimensional convolution is performed in each layer in
the blocks and the kernel (f ) or filter of dilation 2n. Here
n classifies the number of layers in each block. The oper-
ations of the dilation factor provided with high values
ensure that the width of the receptive region or field is
broad and comprehensive enough at the highest block.
These fully connected convolution operations obtained
the stabilization of the trained model as the complex
computations are made concurrently or computed
parallel.

Moreover, in a general temporal convolution net-
work, residual blocks (ResBlock) are associated with
layers of 1D convolutions with required filters and activa-
tion functions. There is a residual connection established
between filters, with input and output layers. It can be

FIGURE 4 TCN architecture has

1 � 1 convolution along with a tubelet

proposal

FIGURE 5 Dilated temporal convolution neural network
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noticed that the number of filters at the last block of this
architecture is the same as the total number of feature
matching at the output layer. Block two and block three
are connected through a skip connection, as mentioned
in the schematic diagram. This technique of dilation
parameters and general TCN overcomes the limitations
of vanishing gradient in the bottom layers of the model.

The recurrent networks are exclusively for sequential
architectures dealing with time dependencies with a
series of hidden layers. In the TCN paper,32 the authors
discussed a detailed comparison between the TCN and
recurrent neural networks. The model's performance is
computed for the various processes of a broad range, spe-
cifically for sequential networks like RNN.

i. Causal convolutional layers (dilated): Significant fea-
tures of a TCN are dilated causal convolutional

operations. “Causal” is termed as a filter or kernel at
a particular time-step (T1). These casual filters could
visualize inputs that are less than time-step (T1).

ii. Residual blocks (ResBlock): In a particular Residual
block, the above-dilated casual convolutional layers
are stacked, and the result or conclusion obtained
from the top convolution block is summed up with
the input layer to get the result of that block.

iii. Aligning: Temporal convolution networks usually
stack all the ResBlock to obtain more expansive
receptive fields or regions which is shown in
Figure 7. As a result, the TCN architecture and per-
formance are comparable to that of a traditional
recurrent network.

iv. Calculation or computation of receptive field is
needed to determine how many layers of residual
blocks are required in the architecture.

FIGURE 6 (A) TCN block

architecture (B). RES block architecture

(C). Schematic representation of DTCN
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3.3 | Architectural elements

(a) Dilated: A temporal convolution network consisting
of dilation parameters or factors df = 1, 2, and 4 with ker-
nel or filter size l is 3 according to the figure below. The
receptive blocks can include all the values in the input
sequences mentioned.33–36

(b) TCN Residual Blocks: In general, 1 � 1 convolu-
tion is added to inputs, and the output of residual layers
has varied dimensions and features (dimension
matching).

Residual functions and connections are represented
in the figure. Black lines represent the 1 � 1 convolu-
tions, and the blue lines represent the convolutional
filters.

The number of previous time-steps (history) is den-
oted as “j,” a dilated causal convolution layer.

For layer 0,U 0ð Þ¼ 1, the 1st layer is given by, U 1ð Þ¼
>U 0ð Þþksize mð Þ�1 multiplied with dilation (m)
where size is the size of the kernel or filter. It represents
the preceding layer along with the location of the previ-
ous kernel subtracted with 1. The second layer, U 2ð Þ¼
>U 1ð Þþk � size mð Þ�1 multiplied with dilation (m).
Generally, U mð Þ¼ >U m�1ð Þþ size mð Þ�1 multiplied
with dilation (m). m is the total number of dilated convo-
lutions from the initial or input layer.37,38 In every resid-
ual block, the kernel or filter size and dilation factors
are the same. So, the above equation can be reduced

as U 0 mð Þ¼ >U 0 m�1ð Þþ2 size mð Þ�1ð Þ�dilation mð Þ,
where m represents the mth residual block used. When the
filter or size of kernel is constant, and if the dilation factor
(df ) of residual blocks is rising exponentially by k, dilation
mð Þ¼ k m�1ð Þ, thus U 0 mð Þ¼ >1þk� ksize�1ð Þ �
1þkþk2þ…þk m�1ð Þð Þ¼ 1þk � ksize�1ð Þ �k mð �1Þ.

3.3.1 | Convolutional neural network long
short-term memory

Convolutional neural network long short-term memory
(CNN-LSTM) is an architecture, especially for sequence/
series prediction problems. These sequential predictions
result in spatial input, and LSTM is a suitable algorithm
that is very similar to recurrent networks. In this, the
model delivers the information of preceding layers to the
next layer to keep track of past layers or stages as it is
essential to make decisions suitable. Generally, for
extracting features, the architecture makes use of CNN
applied to input layers. The concept of CNN is combined
with LSTM, that is, long short-term memory, for manipu-
lating sequential tasks. CNN-LSTM architectures can be
designed and implemented along with libraries like
Keras. A CNN-LSTM is constructed by connecting con-
volutional network layers and adding subsequent LSTM
layers, as seen in the below diagram in Figure 8. This
architecture is described in two models: (i) feature

FIGURE 7 Residual blocks

1440 SUNITHA ET AL.



extraction using a convolution neural network architec-
ture and (ii) LSTM layers for obtaining characteristics of
time-steps. The architecture diagram of the model
includes the input layers, CNN layers (1 � 1 convolution)
fully connected convolution layer, max-pooling layers,
LSTM models, and so on.

CNNs can synthesize relevant features and character-
istics in a variety of ways; while the process of time
sequencing (time series) can be done by LSTM architec-
ture. The above two features are combined to design a
CNN-LSTM model like Recurrent Networks. LSTM is a
time-dependent architecture.39,40 It also has time-steps.
Additionally, a component called “MEMORY” is avail-
able. Different functions used in LSTM are illustrated
below.

(1) Forget gate “f g”—sigmoid activation layer in neu-
ral network. (2) Candidate layer “C0”—tanh activation
layer. (3) Input Gate “I”—sigmoid activation layer.
(4) Output Gate “O”—sigmoid activation layer. (5) Hid-
den stage “h”—vector to represent the state of hidden
parameters. (6) Memory state “M”—vector to represent
the state to store values in each LSTM cell. Thus, the
above all parameters except Candidate layer C0ð Þ are all
single-layer or 1D neural networks with the sigmoid acti-
vation function, and only the Candidate layer belongs to
the tanh activation function.41,42 Each LSTM cell includes
inputs and outputs with parameters mentioned below:
Inputs include it “is the present input,” ht0�1 is the previ-
ously hidden stage, and M t0�1ð Þ is the previous memory
state. Calculations are made concerning the time-step
(to). Once the inputs are given, the output of that cell
includes ht0 (current hidden state) and Mt0 (current state
for memory). The weight vectors of gates are w and v
formed by performing dot operation for input vectors and
past hidden stages and combining them. When activation
functions including sigmoid and tanh are applied, they

generate values in ranges of �1 to +1 in tanh and 0 and
1 for sigmoid. We will get the values of the four vectors
as mentioned above in each cell of LSTM. The input is
stored as a copy in the memory stage (M). To compute
the current memory state, the memory state is multiplied
by the forgetting gate (FG): Mt0 ¼Mt0 �1� f 0gt The FG
values are between 0 and 1. When f g ¼ 0 or null, no pre-
vious stage is tracked, but when fg = 1, the content of the
previous stage is passed. Mt0 ¼Mt0 þ It0passed �Mtð Þ will
be passed to the next step. Finally, calculations are made
to reach the output. The output will be a filtered version
of cell state Mt0 . We apply tanh to Mt , then we do multi-
plication with the output gate O, which is the currently
hidden state ht0ht ≥ tanh Mtð Þ �Mt,ht are parameters given

FIGURE 8 LSTM network

FIGURE 9 Data description of training and testing samples
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as inputs to the successive cell/next time-step, and the
same procedure repeats further.

3.4 | Data collection

Collecting data is considered one of the essential pro-
cesses in building a robust model that is trusted world-
wide. The information is generally collected using
sensors. Generally, different types of sensors are used to
collect a variety of information. Gathering and organizing

sound samples would need a microphone to record the
cough samples from mobile phones or a web.43 However,
it becomes hard to gather and record a massive amount
of information about this disease to build a robust model
for better accuracy. We can recommend that people vol-
unteer to record cough samples on available platforms
through web browsers or developed apps. We can also
collect the medical history of patients from hospitals,
along with audio samples. It must be ensured that the
cough sound recordings are done in a quiet environment
to reduce unnecessary noise from the background. If the

FIGURE 10 Training accuracy and loss for CNN-LSTM, TCN, and DTCN

1442 SUNITHA ET AL.



gathered data are accessible free (Open Source),
researchers can use it to develop their models, trying to
address or put forth solutions for the disease. For any
data collection, proper approval is required from the per-
son whose information is being recorded. To build a
promising AI model for these pulmonary ailments, vari-
ous features like body heat, mucus, etc., are collected and
might be available in the corresponding metadata pro-
vided. The COVID-19 pandemic and this devastating situ-
ation have proven the need for individuals to record and
contribute to data collection to show various cough varia-
tions in the dataset. These measures will speed up the
process by motivating patients and healthcare institu-
tions, giving away their records to help researchers build
the model which is shown in Figure 9. The work rec-
ommended in this article is to diagnose COVID-19 using
the COUGHVID dataset. The COUGHVID dataset is
among the most extensive datasets consisting of cough
samples available in open source. COUGHVID contains
20 000 recordings of cough sounds labeled as positive or
unhealthy, symptomatic, or negative or healthy, and it
contains the patient's clinical information in the meta-
data.43 The dataset consists of an audio sample and nec-
essary information about the patient like age, date and
time of recording, gender, and existing symptoms—these
features are used while building our model. We neglect
the audio samples with a cough detection rate of less
than 0.96, especially for negative coughs, giving us 4700
audio samples remaining. We considered 2200 voice
recordings inclusive of both COVID-19-negative or
healthy and COVID-19-positive or unhealthy cases. The
database has two folders where these recordings are seg-
regated into Positive and Negative cases, comprising 1100
recordings each. The dataset is now divided into two
parts: training and testing, with 1000 samples for both
positive and negative outcomes, a testing phase con-
sisting of 100 samples for both positive and negative
cases.

4 | RESULT AND DISCUSSION

This article deals with the adequate predictability of
COVID-19 from the recorded cough samples. The pro-
posed normal TCN, Dilated TCN, and CNN-LSTM archi-
tecture was trained with 2000 audio samples with

positive and negative cases available in the COUGHVID
database. The performance and result of the proposed
model are tested for 200 test audio samples. The TCN
takes 40 epochs to train the network. From the model
accuracy and loss functions, it is evident that TCN, a sim-
plified convolutional network architecture, performs bet-
ter than recurrent networks like LSTM when predicted
for a diverse dataset when working with a long memory
as shown in Figure 10.

In DTCN, the accuracy manages to increase, and
loss function decreases concerning epochs. Whereas, in
CNN-LSTM,44,45 we could see that the accuracy varies
in a zig–zag manner, and the loss rate is more signifi-
cant than model accuracy, resulting in poor prediction.
Even in the case of dilated TCN, the accuracy is com-
paratively lower than normal TCN. However, when we
try to predict the accuracy of the models, various statis-
tical metrics are accounted for to distinguish their fea-
tures. One of the criteria for evaluating the success of
any model is to analyze its accuracy. Thus, DTCN has
an accuracy of about 76.7% and loss of about 48.6%,
TCN has an accuracy of 73.12% and loss of 46.2%, and
CNN-LSTM with 72.11% accuracy and 50.3% loss.
CNN-LSTM has the low level of accuracy among other
two models. In the previous step, we discussed the
accuracy, which is genuinely predicted cases to the
total cases for TCN, dilated TCN, and CNN-LSTM
models.

However, when the confusion matrix is plotted,46 we
can visualize the number of true-positive, false-positive,
true-negative, and false-negative cases which is shown in
Table 1. Moreover, other metrics can be calculated from
confusion matrix parameters. Findings from the test set
predicted by the proposed deep learning model allow us
to find parameters, such as recall or sensitivity, F1-score,
precision. Precision is the ratio of predicted positive
(true-positive) cases to the total number of predicted posi-
tive cases.

Precision¼True positives cases= True positives casesð
þFalse positives casesÞ:

Recall, also called sensitivity, is the ratio of exactly
predicted positive (true-positive) cases to the entire obser-
vations/cases in the actual class.

TABLE 1 Confusion matrix for test

audio samples
Actual class

Predicted class

Classification COVID-19 (Positive) COVID-19 (Negative)

COVID-19 (Positive) 76 24

COVID-19 (Negative) 23 77
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Recall or sensitivity¼True positive cases=

True positive casesþFalse negative casesð Þ:

The F1-score is known as the mean or average of
recall/sensitivity and precision. We preferred to compute
the confusion matrix and other parameters for the DTCN
model as they show higher accuracy than TCN and
CNN-LSTM, they are calculated using the above formu-
las. From the calculations, the value of precision is 0.76,
recall or sensitivity is 0.7676, and that of F1-score is 0.76
which is shown in Figure 11.

5 | CONCLUSION

This article shows tremendous capabilities toward esti-
mation and detection of COVID-19 based on the recorded
cough samples of individuals, with an overall accuracy of
76% for the TCN model. The cough sounds of both
COVID-19 patients and healthy individuals taken from
the COUGHVID dataset were used for training and eval-
uating the performance of the architectures mentioned—
features and characteristics being generated by the con-
volutional layer were used in the last layers of the net-
work. In the model, maximum pooling of a 1D layer is
being used. Accuracy of 76% in DTCN, 73.12% in TCN,
and 72.11% in CNN-LSTM, respectively were trained with
a learning rate of 0.2. We successfully compared three dif-
ferent algorithms and concluded DTCN to be the best
among the other two algorithms.

6 | FUTURE WORKS

This work can be further extended to classify COVID-19
cases by including various features and characteristics

like patient breath, vocal sounds of an individual, sponta-
neous speech signals, and more accurate predictions. Sev-
eral enhancements can be made to the architecture
proposed to improve further. Increasing the dataset and
providing clean audio samples, avoiding noise from the
background, will provide higher performance. Extra
efforts can be put forth to increase the accuracy further
and understand various dependency parameters. This
type of predictions would certainly help common people
to access themselves using their cough samples when
developed as an application. This is definitely a pre-
screening before approaching to hospitals and would
escalate the efficiency of work and would aid healthcare
department if deployed. It offers an diagnosis technique
for useful to billions of people when reached out espe-
cially in populated countries to provide solution for the
shortcomings in the limited number of tests and be avail-
able to everyone through mobile phones. This can be a
reasonable contribution with artificial intelligence
toward COVID-19 helping individuals to take steps to
protect themselves and for the safety of entire commu-
nity.7,32,47–51
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