Skip to main content
. 2021 Sep 14;12(3):437–448. doi: 10.34172/apb.2022.069

Table 1. Role of polymeric hydrogels in skin tissue regeneration.

Formulation Author Role Reference
PVA/Dextran-aldehyde composite hydrogel. Zheng et al (2019) • Fluid absorption (6 times of original weight), and tensile strength (5.6 MPa).
• Interconnected porous networks (5–10 μm).
13
Gentamycin loaded PVA/sericin hydrogel. Tao et al (2019) • Excellent hydrophilicity, and swelling behavior. 14
Novel liposomal polyvinyl pyrrolidone hydrogel Vogt et al (2001) • Excellent tolerability and delivery characteristics 15
Novel lignin- CS- PVA composite hydrogel. Zhang et al (2019) • Ideal mechanical strength (tensile stress up to 46.87 MPa), and the protein adsorption capacity.
• Reepithelization and Revascularization.
16
Icariin loaded PVA/agar hydrogel scaffold. Uppuluri et al (2019) • Biocompatibility and biomimetic characteristics. 17
Sodium fusidate loaded PVA/PVP film-forming hydrogel. Kim et al (2015) • Flexibility, elasticity, and also shown optimal drug release along with fast film forming ability. 18
PAA/CS and PVP. Rasool et al (2019) • Thermal stability, biodegrability and antibacterial activity (against E. coli). 19
Neomycin sulfate-loaded PVA/PVP/SA hydrogel. Choi et al (2016) • Bioadhesive strength, and tensile strength characteristics. 20
Poloxamer/CS/hyaluronic hydrogel loaded with antioxidant molecules (i.e. vitamins A, D, and E). Soriano-Ruiz et al (2020) • Ideal mechanical properties and antimicrobial potential. 21
Hyaluronic acid-poloxamer hydrogel. Li et al (2019) • Moisture retaining characteristics.
• Anti-microbial activity.
22
WJ-MSC loaded SAP/PF127 hydrogel. Deng et al (2020) • Enhanced the collagen content, hair follicles. 23
hmCS and oxidized dextran hydrogel. Du et al (2019) • Viscoelasticity, non-cytotoxic and bioadhesive characteristics.
• Antibacterial activity.
24
SA and GMs incorporated Dex-HA hydrogel. Zhu et al (2018) • Porosity (80%), swelling ratio (8 times in water and 7 times in PBS), antimicrobial potency.
• Increased proliferation of NIH-3T3 fibroblast cells.
25
Dextran hydrogel. Shen et al (2015) • Anti- inflammatory response.
• Angiogenesis and reepithelization.
26
Granule-lyophilised platelet-rich fibrin loaded PVA hydrogel scaffolds. Xu et al (2018) • Biodegradability (17–22%).
• Mechanical strength (6.451×10−2MPa).
• Re-epithelization and revascularization.
27
PEG-fibrin hydrogel Burmeister et al (2017) • Enhanced the granular tissue formation without delaying the reepithelization process. 28
Benlysta loaded sodium alginate hydrogel. Wang et al (2020) • Swelling rate (150%).
• Sustained rate of drug release (i.e. 50% of release in 72 hours).
• Biodegradability (i.e. retaining 95% weight within 72 hours).
29
PVA/modified sodium alginate hydrogel. Wu et al (2020) • Biomimetic property.
• Minimal self-healing time (15 seconds).
30
Naringenin loaded alginate hydrogel. Salehi et al (2020) • Porosity (86.7 ± 5.3%).
• Swelling (342 ± 18% at 240 min).
• Sustained release profile (74.09 ± 8.71% over 14 days).
• Biodegradability (89% at 14th day).
• Antibacterial property.
31

Abbreviations: PVA, polyvinyl alcohol; PVP, poly (N-vinyl-2-pyrrolidone); PAA, Poly acrylic acid; CS, chitosan; SA, sanguinarine; GMs, gelatin microsphere; hmCS, hydrophobically modified chitosan; HA, hyaluronic acid; WJ-MSC, Wharton's jelly mesenchymal stem cell; SAP, sodium ascorbyl phosphate.