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Alveolar Macrophage Heterogeneity Goes up in Smoke?

The lungs are constantly exposed to potentially harmful
environmental gases, particles, toxins, allergens, and pathogens.
Our immune system has been ascribed the crucial role of protection
against these insults. Alveolar macrophages (AMs) perform the duties
of frontline soldiers tasked with airway surveillance, immune
regulation, and surfactant homeostasis. Recent interest has focused on
the heterogeneity of AMs, in which healthy individuals possess
distinct subsets of residentmacrophages but alsomonocyte-like cells (1).
Of intense interest is whether distinct subsets of resident
macrophages and monocyte-like cells within the airspaces are also
found or altered in conditions such as smoking and chronic
obstructive pulmonary disease (COPD), a disease characterized by
irreversible airway obstruction and ongoing inflammatory response.
In this issue of the Journal, Li�egeois and colleagues (pp. 241–252)
report on their examinations of the identity and heterogeneity of
AMs comparing healthy nonsmokers, non-COPD smokers, and
COPD smokers using a combination of approaches that include flow
cytometry and bulk and single-cell RNA sequencing (scRNA-seq)
of BAL cells (2) (Figure 1).

AMs were identified by expression of CD206, a C-type lectin
mannose receptor, and autofluorescence that allowed separation into
two discrete populations: autofluorescenthigh (AFhi) and
autofluorescentlow (AFlo) AM subsets. By bulk RNA-seq, they
compared CD141 bloodmonocytes and fluorescence-activated
cell-sorted AFhi and AFlo AMs.While both AFhi and AFlo AMs share
core macrophage-associated genes, including FABP4,MARCO,MRC1,
and PPARG, AFlo AMs also exhibit a gene signature similar to CD141

bloodmonocytes including CCR2, CX3CR1, andADAM19. When
AFlo AMs were cultured in vitro, these macrophages were capable of
secreting IL-10more readily when compared with AFhi macrophages.
These findings collectively suggest that AFlo AMs are distinct from
AFhi AMs, possessing a transcriptional profile that is in-between
resident AMs and bloodmonocytes and a plasticity that enables
immunoregulatory function. Notably, these cell types were present
across healthy nonsmokers, non-COPD smokers, and COPD smokers.

To examine AM heterogeneity, the authors used scRNA-seq and
found four clusters of AMs.While all four clusters expressed
“classical” or core macrophage-associated genes, includingMRC1,
CD68,MARCO, LYZ, FCGR3A, and PPARG, these clusters also
exhibited gene signatures distinct from one another. Most notably,
“Cluster 2” was found to be more prominent in smokers (both
non-COPD and COPD current smokers) when compared with
healthy nonsmokers. This Cluster 2 was highly enriched for genes
involved in oxidative stress, detoxification pathways, and
proinflammatory response. The authors suggest that Cluster 2
represents a “classical” AM subset responding to the toxic effects of

cigarette smoke. Whether this is an adaptive or maladaptive response
remains to be determined.

On the basis of prior work inmice, the prevailing concept has
been that AMs self-maintain with minimal contribution from blood
monocytes during homeostasis (3–5). However, recent studies,
including this one, suggest that monocytes contribute to the diversity of
the AMpool (1, 2, 6, 7). For example, Cluster 3 expressed both classical
macrophage-associated genes in addition to monocyte-associated
gene signatures. Given the heterogeneity of the Cluster 3 subset,
the authors go on to recluster this subset, which yielded four new
subclusters. Interestingly, Subcluster 1 was more prominent in smokers
and exhibited genes associated with monocytes, including CCR2 and
FCN1, as well asCLEC5A andVCAN. CLEC5A, a C-type lectin
receptor, and versican, an extracellular matrix protein, have previously
been implicated in inflammation and COPD pathogenesis (8, 9).
The authors suggest that Subcluster 1 represents recently recruited
monocytes with an activated profile. Subclusters 2 and 3 were enriched
in healthy nonsmokers, with Subcluster 2 displaying a chemokine gene
signature and Subcluster 3 exhibiting a matrix-associated gene profile.

Amajor strength and novelty of the study are the scRNA-seq
findings of distinct macrophage subsets that are enriched in non-
COPD and COPD smokers when compared with healthy subjects. The
transcriptional fingerprint of smoking appears to be one of oxidative
stress and inflammation, inviting speculation that the altered landscape
might be involved in the initiation or progression of disease. Another
strength of the study is the comprehensive approach by which the
authors profile the diversity of human AMpopulations using both
transcriptional and phenotypic assessments. Comparing the techniques
used, the Cluster 3 subset of monocyte-like macrophages identified by
scRNA-seq bear some similarities to the bulk RNA-seq signature of
AFlo AMs. Interestingly, AFlo AMs are capable of secreting IL-10 ex
vivo and are reminiscent of regulatory interstitial macrophages and
recruitedmonocytes found inmurine lungs (10–12). The
immunoregulatory potential and functional plasticity of these AFlo

AMsmay serve as useful markers of health and disease in the lung.
One limitation of the study reflects the shortcomings of

scRNA-seq technology in its current state. The numbers of human
individuals in the studies are small (three in each group) given the
costs associated with scRNA-seq. The numbers of cells analyzed with
reclustering are also small, making definitive conclusions about
discrete subsets challenging. Reclustering of Cluster 2, the prominent
cluster in smokers, was not performed because sufficient numbers of
cells are required in each group to permit further analysis.
Nevertheless, scRNA-seq is a powerful tool that enables the discovery
of the diversity of the AM pool. Findings here await validation by
future studies.
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Conclusions
Li�egeois and colleagues advance our knowledge of the heterogeneity
of AMs and how the transcriptional landscape is altered by
conditions such as cigarette smoking and COPD. Like all good
studies, the findings raise additional questions. For example, what is
the contribution of cells representing Cluster 2 and Subcluster 1 to
the pathogenesis of COPD and accompanying lung destruction? Is
there any association between the overall increase in the number of
these cells and the decline in lung function over time in smokers?
What is the exact mechanism by which smoking might induce these
cells and change their transcriptional profile? Are Subclusters 2 and 3
that are enriched in healthy nonsmokers protective against noxious
environmental stimuli, or, when arising in excess, do these subsets
contribute to profibrotic events? Further research is needed to
answer the many questions that emerge from this important work.�
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Figure 1. Overview of the experimental approach and findings in the alveolar macrophage (AM) pool (2). The identity and heterogeneity of
alveolar macrophages were assessed among healthy nonsmokers, non-COPD smokers, and COPD smokers using a combination of
approaches, including flow cytometry and bulk and single-cell RNA-seq of BAL cells. Illustration created with BioRender.com.
AFHi = autofluorescenthi; AFLo = autofluorescentlow; COPD=chronic obstructive pulmonary disease; FACS= fluorescence-activated cell sorting;
sc-RNA Seq=small conditional RNA sequencing.
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