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C A N C E R

Cross-species identification of cancer  
resistance–associated genes that may mediate  
human cancer risk
Nishanth Ulhas Nair1*†, Kuoyuan Cheng1,2*†, Lamis Naddaf3†, Elad Sharon3†, Lipika R. Pal1, 
Padma S. Rajagopal1, Irene Unterman3, Kenneth Aldape4, Sridhar Hannenhalli1, Chi-Ping Day5, 
Yuval Tabach3*, Eytan Ruppin1*

Cancer is a predominant disease across animals. We applied a comparative genomics approach to systematically 
characterize genes whose conservation levels correlate positively (PC) or negatively (NC) with cancer resistance 
estimates across 193 vertebrates. Pathway analysis reveals that NC genes are enriched for metabolic functions 
and PC genes in cell cycle regulation, DNA repair, and immune response, pointing to their corresponding roles in 
mediating cancer risk. We find that PC genes are less tolerant to loss-of-function (LoF) mutations, are enriched in 
cancer driver genes, and are associated with germline mutations that increase human cancer risk. Their relevance 
to cancer risk is further supported via the analysis of mouse functional genomics and cancer mortality of zoo 
mammals’ data. In sum, our study describes a cross-species genomic analysis pointing to candidate genes that may 
mediate human cancer risk.

INTRODUCTION
Animal species are known to have marked differences in their cancer 
rates and life spans, and several animals are considered cancer resistant, 
while others are considered to be cancer prone (1, 2). Studying the 
genomic underpinnings of these differences across various branches 
of life may provide insights into cancer development and cancer 
prevention/treatment options in humans (3).

The multistage carcinogenesis model states that “individual cells 
become cancerous after accumulating a specific number of muta-
tional hits” (3, 4). On the basis of this model, larger (and longer-
living) animals are expected to have higher cancer incidence as they 
have more stem cell divisions overall, resulting in a higher likelihood 
of producing and propagating carcinogenic mutations. For humans, 
it has been shown that the risks of cancer development across differ-
ent tissue types are correlated with their corresponding estimated 
number of lifetime stem cell divisions (5, 6); consistent with that, hu-
man cancer risk is correlated with body height (7). However, cancer 
risk does not correlate with body size across species, a contradiction 
known as Peto’s paradox (3, 8, 9). For example, humans do not have 
a higher cancer risk than mice despite having thousands of times 
more cells (10–12). More drastically, the cancer-resistant bowhead 
whale (13) can weigh 100 metric tons, live for over 200 years (14), and 
have a million times more cells than mice. It follows that different 
species must have evolved different cancer resistance mechanisms to 
fit their lifestyles, modifying the “baseline” probability of malignant 
transformation determined by body size, life span, and tissue stem 
cell division (see note S1 for a short review of such mechanisms).

Numerous studies have adopted comparative genomics approaches 
to understand the evolution of cancer resistance mechanisms across 
mammals. Some have focused on known human cancer genes and 
their homologs. For example, Vicens and Posada (15) found that genes 
related to DNA repair and T cell proliferation have evolved under pos-
itive selection in mammals. Tollis et al. (16) found that the number of 
paralogs of human cancer genes across mammals is positively cor-
related with the species’ life span but not body size. Vazquez and 
Lynch (17) reported widespread tumor suppressor gene (TSG) dupli-
cations across both large and small Afrotherian species. Other studies 
focused on body size and longevity, yielding some insights into Peto’s 
paradox. Kowalczyk et al. (18) analyzed genes whose evolutionary 
rates across mammals correlate with body size and life span and dis-
covered cancer resistance–related genes that are under increased evo-
lutionary constraints in larger and longer-living mammals. Ferris et al. 
(19) identified regions with accelerated evolution in specific mam-
mals, including several cancer-resistant species, which provided some 
insights on the cancer resistance mechanisms they have developed.

We base our current study on a similar hypothesis, i.e., that 
resistance to cancer across species evolved by increased selection 
(either positive or negative) of certain genes with functional relevance 
to cancer. However, unlike previous studies that focused exclusively 
on mammals, here, we perform a comprehensive genome-wide 
comparative study aimed at identifying genes related to cancer re-
sistance across a wide range of vertebrate species. To this end, we 
estimated the protein conservation scores across species including 
mammals, birds, and fish, identifying genes whose conservation 
levels are associated with cancer resistance estimated based on the 
species’ life span and body size. We then use these cancer resistance–
associated genes to build the first genomics-based predictor of cancer 
resistance for any species. We show that the biological processes 
associated with cancer resistance vary across taxonomic groups 
(classes and orders of species), pointing to the diversity in the evo-
lutionary paths and mechanisms for resisting cancer. We see that 
the genes identified from this phylogenetic analysis are enriched 
for cancer driver genes and genes associated with cancer risk in hu-
mans. Some of these genes are also further shown to be associated 
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with recent cancer mortality risk (CMR) data obtained by study-
ing 110,148 adult zoo animals (20). These results show that a com-
parative genomics approach can help identify genes involved in 
human cancers.

RESULTS
Computing gene conservation and species cancer 
resistance estimates
We computed a matrix (21, 22) of gene conservation scores (phylo-
genetic profiles) for over 1600 species for which we got sequence 
information from UniProt (23), RefSeq (24), Keane et al. (13), and 
Ensembl (25) databases. These 240 species (237 of them belong to 
the Animalia kingdom) had some phenotypic information in the 
AnAge database (26). To do this, the protein sequence similarity 
between each gene in the genome of a reference species and its 
orthologs in each of the rest of the species (termed phylogenetic 
profiling) (27) was measured using the bit score computed with 
BLASTP (28). The BLASTP bit scores were normalized by their 
gene length (22, 29) and then rank-normalized across all genes within 
each species to control for the evolutionary distance between the 
reference and each species (Methods and note S9). These rank-
normalized values range from 0 to 1, with higher values corresponding 
to higher conservation levels. This method is termed rank-based 
phylogenetic profiling. We primarily focused on the human as the 
reference species (30) as we are interested in making our findings 
relevant to human cancers. However, we demonstrated that our 
conclusions are robust to the choice of reference (Methods and note 
S4), largely because the normalization effectively removes dependency 
on phylogenetic distance.

Given that the strength of intrinsic cancer resistance mechanisms 
of a species is a “latent” property that is not directly observable, we 
used two proxy cancer resistance estimates that have been proposed 
in the literature—MLTAW and MLCAW. MLTAW is based on Peto’s 
paradox, i.e., cancer incidence within the normal life span of a spe-
cies appears to have comparable orders of magnitudes across large 
or small, and long-lived or short-lived species. It follows that the 
intrinsic level of cancer resistance in a given species needs to roughly 
counteract its risk of cancer development due to cell division, which, 
according to a simple cancer development model, is proportional to 
ML6 × AW, where ML denotes the species maximum longevity and 
AW denotes its adult weight (Method and note S10) (8, 17, 31). 
MLCAW considers the well-established correlation between life 
span and body weight (AW) across many species (32) and thus re-
gresses out the species AW from its ML (Methods). We computed 
MLTAW and MLCAW for 193 of the 240 species for which both 
ML and AW data were publicly available (table S1 and Methods). 
These 193 species are from multiple Vertebrata classes, including 
Mammalia (mammals, n = 108), Aves (birds, n = 55), Teleostei 
(teleost fishes, n = 18), and Reptilia (reptiles, n = 7).

Genes associated with cancer resistance are enriched in cell 
cycle, DNA repair, immune response, and different 
metabolic pathways
For each gene, we computed the Pearson correlation coefficient be-
tween its conservation scores and the cancer resistance estimates 
(MLTAW and MLCAW) across all species (table S2, A and B, and 
Methods). We then computed the pathway enrichment of the posi-
tively and the negatively correlated genes (termed PC or NC genes, 

respectively) with gene set enrichment analysis (GSEA; table S3, A 
and B; note S2; and Methods). Positively enriched pathways based 
on either the MLCAW (Fig. 1) or MLTAW measures (fig. S1) in-
clude cell cycle, immune response, DNA repair, and transcription 
regulation pathways [false discovery rate (FDR) < 0.1], indicating 
that many genes in these pathways are more conserved in the rela-
tively long-lived cancer-resistant species. Negatively enriched path-
ways include a diverse range of metabolic pathways (FDR < 0.1; 
Fig. 1 and fig. S1). The positive enrichment in cell cycle and DNA 
repair–related pathways persists even after excluding genes that are 
associated with regulating life span or body size (Methods and 
tables S13 and S14), further indicating that these pathways are asso-
ciated with cancer resistance. In addition, we obtained the top PC 
and NC genes with significant correlations with MLTAW or MLCAW 
(FDR < 0.1; note that GSEA does not require any fixed cutoff as 
such). Using a permutation test (Methods), we observe that the PC 
and NC genes exist in mutually exclusive pathways, compared to a 
random shuffled background model (P < 0.02).

PC and NC gene conservation scores are predictive 
of species cancer resistance
We next asked whether it is possible to accurately predict the cancer 
resistance estimates of individual species from their gene conservation 
scores. For a species, given the median conservation score (MCS) of 
all its genes, we defined a cancer resistance (CR) score that quanti-
fies how many of the PC genes have conservation scores > MCS and 
how many NC genes have conservation scores < MCS (normalized 
by the total number of genes; Methods). Using a standard leave-
one-out cross-validation (LOOCV) procedure, both across all 
species and then focusing on mammals or birds (as these groups 
contain a sufficient number of species), we find that the CR score is 
strongly predictive of the cancer resistance estimates of a left-out 
species using the PC/NC genes identified from the other species [all 
species: MLTAW Spearman’s  = 0.44, P = 1.32 × 10−10 (fig. S2) and 
MLCAW  = 0.51, P = 2.31 × 10−14 (Fig. 2A); mammals: MLCAW 
 = 0.67, P = 1.58 × 10−15 (Fig. 2B) and MLTAW  = 0.76, P = 8.99 × 
10−22 (Fig. 2C); the results for birds are provided in note S3 and 
fig. S3]. Note S4 and figs. S4 to S9 present both technical controls 
(choosing random sets of PC and NC genes to predict cancer resist
ance estimates) and robustness analysis showing that these results 
hold when (i) using twofold cross-validation instead of LOOCV, (ii) 
under changes in the choice of reference species (using 12 different 
nonhuman species including mammals, birds, fish, and plants), 
(iii) under changes in threshold parameters, (iv) using alternate 
predictors showing the contributions of PC or NC genes separately, 
and finally (v) using Spearman’s instead of Pearson correlation to 
identify PC/NC genes (tables S1 and S2 and Methods). The predicted 
CR scores learnt from all mammals (LOOCV) also show significant 
correlation within different subgroups [as an example, MLCAW 
Spearman’s  = 0.85, P = 0.0061 for the order Chiroptera, i.e., bats 
(Fig. 2D); for others, see note S5 and fig. S10]. Similarly, the predicted 
CR scores learnt from all birds’ species (LOOCV) show significant 
correlation within the order Passeriformes for which we have the 
largest number of samples (Spearman’s  = 0.79, P = 0.0012; fig. S3B 
and note S3).

Our results show that high CR scores are predicted for many 
long-living species that are considered to be cancer resistant, in-
cluding the bowhead whale, the African elephant, the chimpanzee, 
the Brandt’s bat, the naked mole rat, etc. (Fig. 2, A to D; figs. S6 and 
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S10; and note S5) (2, 3, 33, 34). Predictions of cancer resistance in 
additional species without documented body weight or life span are 
provided in table S1. The PC/NC genes derived from one clade do 
not, however, yield accurate predictions in another taxonomic group 
(across classes: fig. S11; across mammalian orders: fig. S12 and 
tables S2 and S4). This indicates that different taxonomic groups 
may have evolved to have some differences in their cancer resistance 
mechanisms, which we study next.

Cancer resistance–associated genes in mammals, birds, 
and teleost fishes
We next repeated the correlation analysis between gene conserva-
tion score and MLTAW/MLCAW scores separately for mammals, 
birds, and the teleost fish and computed the PC/NC gene–enriched 
pathways for each of the three groups (Methods). There are overall 
significant overlaps among the NC gene–enriched pathways of the 
three classes, especially based on MLCAW [odds ratio (OR), i.e., OR 
as large as 18.9, Fisher’s exact test adjusted P as small as 1.8 × 10−11; 
fig. S13, A and B, and table S3I], while the overlaps among the PC 
gene–enriched pathways are mostly insignificant (other than between 
mammals and birds using MLCAW: OR = 5.06, adjusted P = 0.037; 
fig. S13, A and B, and table S3I). Both common pathways [e.g., G 
protein–coupled receptor (GPCR) signaling] and pathways unique 
to specific classes [e.g., fatty acid and amino acid metabolism and 
phosphatidylinositol 3-kinase (PI3K)–AKT signaling pathway in 
birds] were observed (details in Fig. 3A, fig. S13C, and table S3).

The class Mammalia contains the largest number of species 
(n = 108) with available data, allowing us to further investigate the 
specificities in several orders, including Rodentia (rodents, n = 20), 
Primates (n = 18), Carnivora (carnivores, n = 18), Artiodactyla 

(even-toed hoofed mammals, n = 11), Cetacea (aquatic mammals 
like whales, n = 10), and Chiroptera (bats, n = 9). Figure 3B and fig. 
S13D visualize the similarities (using a Jaccard index–like measure) 
between the significant PC/NC gene–enriched pathways from pairs 
of orders (Methods). The different orders exhibit an overall similarity 
pattern that does not fully coincide with their phylogenetic relations 
(dendrograms in Fig. 3B and fig. S13D). Primates share the highest 
pathway-level similarity with Cetacea (Fisher’s exact test adjusted 
P < 2.2 × 10−16; table S5). Rodentia appears the most similar to 
Carnivora (Fisher’s exact test adjusted P < 2.2 × 10−16; table S5) and 
Artiodactyla. However, specific enriched pathways are shared across 
orders (table S5, Fig. 3C, and fig. S13E). This includes various cytokine 
signaling pathways and extrinsic apoptotic pathways that are mostly 
enriched by PC genes (Fig. 3C and fig. S13E), recapitulating the role 
of the innate immune system in the evolution of more cancer-resistant 
mammalian species. WNT and vascular endothelial growth factor 
(VEGF) signaling and lipid metabolism are among the pathways 
showing consistent NC gene enrichment across orders (especially 
based on MLTAW; Fig. 3C and fig. S13E). DNA repair–related 
pathways, showing PC enrichment in Rodentia and other orders, 
exhibit very strong NC enrichment in Cetacea (based on MLCAW; 
Fig. 3C). Complement cascade/activation also exhibits an order 
specificity (Fig. 3C and fig. S13E). These observations point to the 
diversity in pathways associated with cancer resistance in different 
mammalian orders.

Cancer resistance–associated genes are enriched for human 
cancer driver genes
We turned to ask whether PC and NC genes are enriched for well-
established human cancer driver genes [from the COSMIC database 
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Fig. 1. Summary of the top significantly enriched pathways (adjusted P < 0.1) by the genes whose conservation scores are correlated with cancer resistance 
estimates (MLCAW), using GSEA with gene set annotations from the Reactome database. The cancer resistance estimate used is “maximum longevity controlled for 
adult weight” (MLCAW). Normalized enrichment score is plotted on the y axis, where positive values correspond to enrichment by the PC genes and negative values 
correspond to enrichment by the NC genes. The dot color represents the significance of the enrichment (negative log10 GSEA P value), and the dot size represents the 
number of genes in the “leading edge,” i.e., the set of genes that are enriched in a pathway. For the sake of clarity, only a subset of the enriched pathways (FDR < 0.1) are 
shown, and long pathway names have been shortened (using “…”). The complete pathway enrichment results are given in table S3B.
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(35)]. PC genes (but not NC genes) inferred either across all species 
or mammals are highly enriched for human TSGs (GSEA adjusted 
P = 0.0011 and 0.013, respectively; Fig. 4A and table S6B) and onco-
genes in the all-species analysis (GSEA adjusted P = 0.0011; Fig. 4A). 
These strong enrichments still hold with PC genes identified while 
excluding all primates (table S6B). These enriched cancer driver genes 
are mainly from DNA repair, RNA transcription, and PI3K-AKT 
signaling pathways, but not other signal transduction pathways such 
as tyrosine kinase receptors and estrogen receptors (table S7B and 
Methods). We note that excluding the human TSGs and oncogenes 
from the PC/NC genes when computing the CR score does not 
reduce the accuracy in predicting cancer resistance across species 
(Fig. 4B and fig. S14). Last, we find that the PC genes inferred across 
all species are enriched for the genes reported in various human 
cancer genome-wide association studies (GWAS) studies curated from 
the EBI GWAS Catalog [GSEA adjusted P = 0.02; enrichments still 
hold with PC genes identified after excluding all primates (table S6C); 
results were obtained using the MLCAW measure (Methods)].

To study the nature of selection operating on the PC and NC 
genes in human evolution, we compared the LOEUF [loss-of-function 
(LoF) observed/expected upper bound fractions] scores of PC, NC, 
and the rest of the genes (background) in the human genome (with 
PC and NC genes defined with an adaptive cutoff based on the 
number of false discoveries, given in table S6A, Methods, and note S2); 

the higher the LOEUF score, the greater the tolerance to LoF muta-
tions (36). We find that the NC genes have significantly higher 
LOEUF scores compared to PC genes and the rest of the genes in 
the genome (Fig. 4C and table S6D), indicating that they were subject 
to weaker purifying selection pressure than the PC and other genes, 
which is expected given that humans are considered a relatively 
cancer-resistant species (37).

The expression of PC genes in normal human tissues is 
associated with their lifetime cancer risk
As PC genes are enriched for human TSGs and oncogenes, they may 
also have roles in modulating human cancer risk. We hence exam-
ined whether their expression levels across different noncancerous 
human tissues are associated with lifetime cancer risks across these 
tissues, which are highly variable (6). Analyzing lifetime risk data [the 
SEER program (6, 38)] and the GTEx RNA sequencing (RNA-seq) 
data (39), we find that the MLTAW PC genes (but not MLCAW ones) 
are enriched for genes whose expression levels negatively correlate 
with cancer risk across tissues [adjusted P = 0.0088 in the all-species 
analysis and 0.003 in the mammal-specific analysis (Fig. 5A); results 
still hold after excluding primates when identifying the PC genes 
(table S6E)]. We do not see a similar pattern using NC genes (Fig. 5A).

PC genes are associated with cancer incidence in mice 
and canine transmissible venereal tumors
We investigated the relevance of PC and NC genes to cancer risk in 
other mammalian species. We first focused on the mouse, which 
has been extensively studied genetically. Mining the MGI database 
(40), we assembled lists of genes whose knockout in the mouse 
results in cancer-related phenotypes including the increase/decrease 
of cancer incidence and cancer onset time (Methods). We find strong 
enrichment of the MLCAW PC genes (in all mammals and specifi-
cally rodents) in cancer incidence–increasing genes (P = 0.003; 
Fig. 5B and table S6F). In the all-mammal analysis, however, a 
weaker PC enrichment was observed for incidence-decreasing genes 
and “earlier onset” genes (adjusted P < 0.05; Fig. 5B).

To investigate the role of PC genes in tumorigenesis, we analyzed 
the expressed mutated genes in a single-cell phylogeny of a mouse 
melanoma model (41), in which five subclones (B1 to B5) were identi-
fied (42). The mutated genes are significantly enriched with the PC 
genes from the all-species MLTAW and MLCAW analysis (table S8), 
consistent with the putative function of PC genes as safeguards of 
cellular transformation. The mutated PC genes in each subclone are 
enriched in distinct pathways (table S8), implying that, following the 
initial common mutations, each subclone evolved independently by 
overcoming different cancer-resistant mechanisms. These results 
illustrated how PC genes are involved in the carcinogenic process.

In addition, we investigated canine transmissible venereal tumors 
(CTVTs), a naturally occurring transmissible cancer in dogs that 
first arose about 11,000 years ago (43). In CTVTs, more than 10,000 
genes carry nonsynonymous mutations, and 646 genes have LoF via 
different mechanisms (43). Notably, there is a significant enrichment 
of the PC genes from the mammals MLTAW analysis for CTVT LoF 
genes (adjusted P = 0.017; fig. S15 and table S6G).

Genes associated with CMR in mammals
A recent publication by Vincze et al. (20) provided cancer-related 
mortality data for 191 mammalian species using data on 110,148 indi-
vidual adult zoo mammals. Among the 191 mammalian species, the 
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Fig. 2. Correlation between predicted cancer resistance (CR) scores and cancer 
resistance estimates. Scatterplots showing the correlation between the predicted 
CR scores computed based on gene conservation (y axes) and either of the two 
cancer resistance estimates (x axes): MLCAW, i.e., maximum longevity controlled for 
adult weight, or MLTAW, i.e., (maximum longevity)6 × (adult weight), with LOOCV.  
Results for (A) MLCAW across all species; (B and C) MLCAW and MLTAW within 
mammalian species, respectively; (D) using the MLCAW mammalian-specific pre-
dictions only within a subgroup: order Chiroptera. Species with the top and bottom 
5% MLCAW values in (A), the top and bottom 10% MLTAW or MLCAW values in (B) 
and (C), and all data points in (D) are labeled by their common names. In each 
panel, the Spearman’s  and P values (P) are shown.
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genomes of 39 mammals are available in publicly available datasets. 
We computed gene conservation scores for each of these 39 mammals 
and normalized them using the same procedure as before (Methods). 
We then identified genes whose conservation scores are significantly 
correlated with the CMR measure reported by Vincze et al. (20). We 
identified 93 and 95 genes whose conservation scores are significantly 

positively (termed PCMR genes) and negatively (NCMR genes) 
correlated with CMR (Pearson correlation, FDR < 0.2; table S15). 
As expected, the genes that are positively correlated (PC genes) with 
the cancer resistance estimate MLTAW are enriched with the genes 
that are negatively correlated with CMR (NCMR genes) [Fisher’s 
exact test; all-species analysis (for PC genes): OR = 1.79, P = 0.01, 

Maximum longevity controlled for adult weight 
A

B

C

Fig. 3. GSEA of gene conservation correlations with the cancer resistance estimate “maximum longevity controlled for adult weight” (MLCAW) specifically in 
different taxonomic groups. (A) Summary visualization of the top enriched pathways (with GSEA) based on gene conservation correlations with MLCAW in Mammalia 
(mammals), Aves (birds), and Teleostei (teleost fishes). A selected subset of top gene sets are shown to save space, all with adjusted P < 0.1 in at least one of the classes 
(Methods). GSEA significance (negative log10 adjusted P values) is encoded by dot color, with two sets of colors (red-orange and blue-purple) representing positive or 
negative enrichment, respectively; gray color means adjusted P ≥ 0.1. Dot size represents the absolute value of normalized enrichment scores (NES) measuring the effect 
size of enrichment. The complete GSEA results are given in table S3. (B) Heatmap showing the similarity (Jaccard index) between the significantly enriched gene sets 
(FDR < 0.1) from each pair of mammalian orders, based on the MLCAW correlation. The dendrogram on the left is the phylogenetic tree of the mammalian orders, and the 
rows of the heatmap are arranged accordingly. The dendrogram on the top represents the hierarchical clustering of the orders based on their similarities in the GSEA 
results. (C) Summary visualization of the top enriched pathways (with GSEA) based on gene conservation correlations with MLCAW in different mammalian orders. This 
figure panel should be read as in (A).
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overlap = 26 genes; mammals-only analysis (for PC genes): 
OR = 1.64, P = 0.055, overlap = 16 genes]. Similarly, genes that 
are negatively correlated (NC genes) with cancer resistance are 
enriched with the genes that are positively correlated with CMR 
(PCMR genes) [Fisher’s exact test; all-species analysis (for NC 

genes): OR = 1.95, P = 0.0025, overlap = 31 genes; mammals-only 
analysis (for NC genes): OR = 3.03, P = 1.84 × 10−5, overlap = 
24 genes]. There was, however, no significant overlap enrichment 
of PCMR/NCMR genes with NC/PC genes using the MLCAW  
measure.
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Fig. 4. Enrichment analysis of PC/NC genes with human TSGs and oncogenes and comparing the LOEUF scores of PC and NC genes with other genes. (A) Summary 
of enrichment via GSEA results for human TSGs or oncogenes whose conservation scores correlate with MLCAW measure in all species or mammals. Dot size corresponds 
to gene set size. Dot color denotes negative log10 adjusted P value from GSEA; gray corresponds to adjusted P ≥ 0.1. Positive normalized enrichment score (x axis) corre-
sponds to enrichment by PC genes, and vice versa for NC genes. (B) Spearman’s correlation () in predicting cancer resistance (MLCAW) in mammals using only TSGs, only 
oncogenes, both TSGs and oncogenes, PC and NC genes in cross-validation, and PC and NC genes after removing TSGs and oncogenes in cross-validation is shown 
(Methods). (C) Box plots comparing the LOEUF scores of the genes whose conservation score positively (PC) or negatively correlates (NC) with a cancer resistance esti-
mate, and the other genes in the genome, based on the two cancer resistance estimates (maximum longevity)6 × (adult weight) (MLTAW) and the residue of maximum 
longevity after regressing out the adult weight (MLCAW), either in all species or in mammalian species.

Fig. 5. Enrichment analysis of PC/NC genes with genes whose expression levels correlate with the tissue-specific cancer incidence across human tissues and 
whose knockout causes cancer-related phenotypes in mice. (A) Summary of the GSEA results of the top PC/NC genes from the MLTAW correlation in all species or 
mammals for genes whose expression levels correlate with the tissue-specific cancer incidence across human tissues (38). Dot size corresponds to gene set size. Dot color 
denotes negative log10 adjusted P value from GSEA; gray corresponds to adjusted P ≥ 0.1. Positive normalized enrichment score (x axis) corresponds to enrichment by 
genes whose higher expression is associated with higher cancer incidence across human tissues and vice versa. (B) Summary of enrichment (via GSEA) for mouse genes 
whose knockout causes cancer-related phenotypes in the genes whose conservation scores correlate with MLCAW in all mammals or specifically rodents. “incidence.increase” 
denotes the mouse genes whose knockout results in an increase in observed cancer incidence obtained from the MGI database, similarly for other gene sets listed on the 
x axis. Dot size and color are interpreted as in (A). Positive normalized enrichment score (y axis) corresponds to enrichment by PC genes, and vice versa for NC genes.
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We next computed the pathway enrichment of the genes whose 
conservation scores are strongly correlated with cancer risk (CMR) 
across the 39 species. We find 39 positively enriched pathways in-
cluding complement cascade, GPCR downstream signaling, signaling 
by the B cell receptor, and mitotic cell cycle and 19 negatively 
enriched pathways including interleukin signaling, cholesterol bio-
synthesis, and signaling by NOTCH2 (FDR < 0.1; Fig. 6 and table 
S15). As expected, the positively enriched pathways with CMR sig-
nificantly overlap with the negatively enriched pathways based on 
MLTAW/MLCAW cancer resistance estimates (Fisher’s exact test; 
all-species MLTAW analysis: OR = 26.93, P = 6.12 × 10−20, overlap = 
26 pathways; all-species MLCAW analysis: OR = 1.64, P = 0.17, 
overlap = 7 pathways; mammals-only MLTAW analysis: OR = 51.2, 
P = 5.48 × 10−26, overlap = 26 pathways; mammals-only MLCAW 
analysis: OR = 29.78, P = 6.85, overlap = 26 pathways). Similarly, the 
negatively enriched pathways with CMR significantly overlap with 
the positively enriched pathways based on cancer resistance estimates 
(Fisher’s exact test; all-species MLTAW analysis: OR = 3.58, P = 0.068, 
overlap = 3 pathways; all-species MLCAW analysis: OR = 4.35, 
P = 0.043, overlap = 3 pathways; mammals-only MLTAW analysis: 
OR = 1.82, P = 0.43, overlap = 1 pathway; mammals-only MLCAW 
analysis: OR = 4.56, P = 0.084, overlap = 2 pathways). In sum, these 
results provide additional support to the association of many of the 
pathways pointed out earlier with cancer resistance.

Specific PC genes with strong evidence of cancer relevance 
across many different analyses
We manually curated the lists of PC genes, identifying a subset show-
ing relevance to cancers based on multiple criteria according to the 
various analyses performed above (e.g., being human cancer drivers, 
genes whose knockout results in cancer-related phenotypes in mice, 
specific to cancer resistance estimates, and is an NCMR gene; Methods 
and table S9), and investigated their functions closely. Several of these 
curated genes have known or investigated associations with germ-
line cancer risk syndromes. For instance, mutations in BRCA1 and 
BRCA2 are extremely well established in defining hereditary breast 
and ovarian cancer syndrome (44, 45). Risk syndromes have been 
defined more recently for moderate penetrance genes such as CHEK2 
(breast and colon cancer) and BRIP1 (ovarian cancer) (46, 47). NBN 
is currently under investigation for contribution to germline breast 
and ovarian risk (48, 49). Some of the manually prioritized genes we 
identified are currently being studied for their association with cancer 
risk, and our results may support greater consideration of their con-
tribution to human cancer development. For example, BUB1B, 
prioritized strongly in our list, is under investigation for association 
with early-onset colorectal cancer (50) but does not have clinically 
relevant screening or management recommendations at this time.

Other curated genes have known clinical associations with cancer. 
NPM1 and TET2 are currently used for prognostication with acute 

Butyrophilin (BTN) family interactions
CYP2E1 reactions

Signaling by NOTCH2
Regulated proteolysis of p75NTR
Defective LFNG causes SCDO3

Organic cation/anion/zwitterion transport
PKMTs methylate histone lysines

Xenobiotics
TP53 regulates transcription of death receptors and ligands

SUMOylation of immune response proteins
Interaction between L1 and ankyrins

Diseases associated with the TLR signaling cascade
Diseases of immune system

Cholesterol biosynthesis
Notch-HLH transcription pathway

RUNX2 regulates chondrocyte maturation
IRE1α activates chaperones

Class B/2 (secretin family receptors)
Interleukin-4 and interleukin-13 signaling

Adaptive immune system
Cell cycle, mitotic

Translation
Mitotic G2-G2/M phases

Signal transduction
Mitotic prometaphase

Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.
Cell surface interactions at the vascular wall

Signaling by the B cell receptor (BCR) 
Activation of AMPA receptors

Fc epsilon receptor (FCERI) signaling
FCERI-mediated NF-κB activation

Synthesis of PIPs at the late endosome membrane
Hormone ligand-binding receptors

Endosomal/vacuolar pathway
Fc gamma receptor (FCGR)-dependent phagocytosis

Immunoregulatory interactions between a lymphoid and a nonlymphoid cell
Synthesis of glycosylphosphatidylinositol (GPI)

Binding and uptake of ligands by scavenger receptors
Regulation of actin dynamics for phagocytic cup formation

Signaling by GPCR
Complement cascade

Antigen activates B cell receptor (BCR) leading to generation of second messengers
GPCR downstream signaling

Role of phospholipids in phagocytosis
Initial triggering of complement

Regulation of complement cascade
FCERI-mediated Ca2+ mobilization

Creation of C4 and C2 activators
FCERI-mediated MAPK activation

FCGR activation
CD22-mediated BCR regulation

Classical antibody-mediated complement activation
Role of LAT2/NTAL/LAB on calcium mobilization

Scavenging of heme from plasma
G alpha (s) signaling events 
Olfactory signaling pathway

−2 0 2 4
Normalized enrichment score

Leading edge
200
400
600

10
20
30
40
50

−Log10(P value)

GSEA analysis using  cancer risk data  from 39 mammals

v

Fig. 6. Summary of the top significantly pathways enriched in genes whose conservation scores are correlated with cancer risk (CMR value), using GSEA with 
gene set annotations from the Reactome database (adjusted P < 0.1). Normalized enrichment scores are plotted on the y axis, where positive values correspond to 
enrichment by the positively correlated (PCMR) genes and negative values correspond to enrichment by the negatively correlated (NCMR) genes. The dot color rep-
resents the significance of the enrichment (negative log10 GSEA P value), and the dot size represents the number of genes in the leading edge.



Nair et al., Sci. Adv. 8, eabj7176 (2022)     3 August 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 13

myeloid leukemias (51, 52). Bacillus Calmette-Guerin (BCG), a ther-
apy used in early-stage bladder cancer, is a ligand for TLR2 (53, 54). 
Interferon- (IFNG) is currently being evaluated therapeutically with 
other immunotherapies across multiple trials (55), and mutations in 
DEK are currently being used as biomarkers in multiple hematologic 
trials (56). Numerous genes in our curated list (table S9), while linked 
to cancer as per our enrichment analysis, have not yet had their func-
tional relevance clarified, such as RBM27, STAM2, SCAF4, SP140, 
RSBN1, SECISBP2L, THUMPD2, PIFO, and POLK. These genes 
may warrant higher prioritization to study their role across human 
cancers and potential therapeutic relevance based on our findings.

Furthermore, we ranked all the PC genes from the all-species 
analysis (identified using MLTAW and MLCAW estimates), based 
on the percentage of cancer patients from the pan-cancer TCGA 
cohort with nonsilent mutations (downloaded from Xena browser; 
table S10) (57). We find that 22 PC genes have nonsilent mutations 
in at least 5% of TCGA cancer patients (table S10). Some of the top-
ranked genes like FAT3, KMT2C, and DNAH7 have been known to 
be associated with cancer (58–60).

DISCUSSION
We systematically analyzed the genomes of almost 200 species to 
identify genes whose conservation levels are correlated with cancer 
resistance estimates across different taxonomic groups and character-
ized their functional enrichment. We built the first genomics-based 
predictor of cancer resistance across species. We further studied 
the relevance of these phylogenetically derived cancer resistance–
associated PC/NC genes to cancer development in humans.

Overall, we found that PC genes are highly relevant to carcino-
genesis and enriched with cell cycle, DNA repair, immune response, 
and transcription regulation genes in the all-species analysis (Fig. 1 
and fig. S1). These results echo those of a recent study showing that 
cell cycle, DNA repair, nuclear factor B–related, and immunity 
pathways have higher evolutionary constraints in larger and longer-
living mammals (18). Notably, this is also consistent with a long 
history of research establishing the association between DNA repair or 
genomic maintenance and longevity across species (61–63). MLTAW 
and MLCAW were used as two cancer resistance estimates of species, 
and per definition, they are correlated with each other (Spearman’s 
 = 0.45, P = 4.12 × 10−11). However, despite the overall similarity at 
a high level, the MLTAW and MLCAW analyses uncover different 
aspects of the cancer resistance mechanisms. The top PC-enriched 
pathways using the MLTAW measure, where both body size and 
life span are multiplication factors, are dominated by cell cycle 
regulation and transcription/RNA regulation (fig. S1), suggesting a 
stronger role of tissue stem cell division. The MLCAW measure, 
however, controls for body size, and its PC-enriched pathways 
include innate immunity or cell death for eradicating defective cells 
(64), highlighting the involvement of these factors after reaching adult 
size. NC genes computed with both MLTAW and MLCAW are 
notably enriched for processes related to cell metabolism, indicat-
ing either evolutionary metabolic constraints in the smaller/shorter-
lived species or accelerated evolution of metabolism in the larger/
longer-lived species (32).

Another notable pattern is the variability in the PC/NC gene 
functions across different taxonomic groups—it is frequently ob-
served that genes of one pathway can be PC in one group but NC in 
another. Such variation may reflect a trade-off between individual 

life span and survival/reproductive function dependent on the dif-
ferent lifestyles in different groups of species. Some of the observed 
order-specific enrichments are consistent with known mechanisms 
of cancer resistance for the corresponding species. For example, the 
naked mole rat is known to have more efficient excision repair sys-
tems and be more resistant to bleomycin-induced somatic mutations 
than the mouse (63, 65), and an active complement system has been 
observed in bats (66, 67). In comparison, the enrichment results differ 
considerably across the taxonomic classes (mammals, birds, and 
teleost fishes), and it is perhaps not surprising that the PC/NC genes 
identified in birds or teleost fishes were not found to be strongly 
enriched for mammalian cancer-related genes with GSEA. Therefore, 
in the latter part of our study, we mainly relied on the PC/NC genes 
from the analyses involving mammals to identify and further test 
potential novel genes related to cancer resistance in humans. The 
PC genes are enriched for known cancer driver genes in several 
mammalian species (human, mouse, and dog), demonstrating the 
validity of our comparative genomics approach in identifying genes 
relevant to cancer development or resistance.

We outline several limitations of our study. First, the gene con-
servation computation is based on comparison to a reference spe-
cies and rank normalization, which does not consider gene copies, 
paralogous genes, or the phylogenetic tree structure. Yet, notably, 
the rank normalization gene conservation scores used in our anal-
ysis effectively remove potentially confounding effects of phylogenet-
ic distance. While alternative methods may be used to adjust for the 
inter-phylogeny distances, we showed that our results are robust to 
the choice of the reference species (e.g., with house mouse, which 
is a known cancer-prone species unlike humans, large species like 
sperm whales, cancer-resistant species like the naked mole rat, and 
evolutionarily distant species like birds, fish, and plants; details in 
note S4) and various other conservation scoring parameters. Yet, 
we should note that we have chosen to use a simple approach that 
does not use phylogeny-aware parametric models, and the possible 
use of the latter in follow-up studies may possibly alter some of the 
results. We also note that we do not account for the number of par-
alogs, which is another potential confounding factor. However, as 
many downstream analyses have been performed on the pathway 
level, this may mitigate the potential confounding effect of paralogs. 
The full-scale identification of gene copy numbers across all species 
is quite challenging and out of the scope of the current investiga-
tion. Performing this analysis just for top-ranked NC and PC genes, 
we find that most mammalian species harbor only a single copy of 
the top PC/NC genes, suggesting that copy number variation is un-
likely to greatly modify our results. However, a few PC/NC genes do 
have an increased copy number in well-known cancer-resistant spe-
cies (see note S6 and table S11). Future studies are warranted to com-
prehensively investigate the association between gene copy number 
and cancer resistance across species. Second, while the MLTAW and 
MLCAW analysis is based on established proxy cancer resistance es-
timates, some of the PC/NC genes we identified may be mainly or 
even solely involved in body size or life-span evolution. This may be 
due to the well-recognized close relation between body size, life 
span, and cancer development. Although we have tried to identify a 
subset of PC/NC genes that are also associated with CMR in 39 
mammals (table S15), some of the PC/NC genes may be simply con-
strained or important for development and this may drive the signal 
independently of cancer. However, while further studies are deemed 
to test the causal roles of PC and NC genes (and see the curated gene 
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list presented in table S9) in human carcinogenesis, the significant 
enrichment in known cancer genes and the knockout mouse data 
supports the causal role of many of the PC genes in cancer resistance 
(Fig. 5B). We also note though that the MLTAW and MLCAW es-
timates cannot capture variations in cancer resistance that are not 
reflected through body size and life span, e.g., those related to adap-
tation to different oxygen and oxidative stress levels (note S7) (68). 
Yet, given these cautionary notes, we think that this customized use 
of previously established cancer resistance measures does serve for 
identifying cancer resistance–related genes beyond associations with 
either body size or life span solely.

In summary, this study presents a systematic species comparison 
identifying key genes and pathways associated with cancer resistance 
across species. Many of the genes identified are implicated in human 
cancers, and their further study may increase our understanding of 
human cancer development, prevention, and treatment.

METHODS
Computation of gene conservation scores
We created a matrix of gene conservation scores for across over 
1600 species with human genome as a reference [240 species out of 
them were a part of the AnAge phenotypic database (26)]. The amino 
acid sequence of the proteins in all of these species is available in 
UniProt (23), RefSeq (24), Keane et al. (13), and Ensembl (25) data-
bases. The conservation scores (or ranked phylogenetic profiling) 
were calculated using the protein sequence similarity between each 
gene in the human genome, and its homologs in each of the species 
were measured by the bit score computed with BLASTP (28). For 
each human gene and each species, we only considered the matched 
gene with the highest bit score. While other good approaches are 
available like reciprocal blast, our method has been widely used and 
worked well using human and other reference genomes (69–71). To 
reduce the influence of random matches, the bit scores were set to 0 
for matches with E value > 1 × 10−5. Bit score is known to be affected 
by the length of the reference protein. To eliminate the protein 
length effect, we normalize to protein length by dividing each bit 
score by the score of the reference protein against itself, resulting in 
values between 0 and 1 (21, 22). Last, the conservation scores were 
obtained by rank-normalizing the protein length normalized bit 
scores across genes within each species to control for the evolutionary 
distance between human and each species. These rank-normalized 
values range from 0 to 1, with higher values corresponding to higher 
levels of conservation (note S9). To examine whether the use of 
human (considered a relatively cancer-resistant species) as the ref-
erence affects the results, in a similar manner, we also repeated the 
above computation using a cancer-prone species like house mouse 
as reference.

Recently, Vincze et al. (20) provided cancer-related mortality of 
191 mammalian species using data on 110,148 individual adult zoo 
mammals. We downloaded and analyzed the 39 genomes of these 
mammalian species that were available in public datasets (Ensembl, 
UniProt, and RefSeq). We computed gene conservation scores for 
these 39 mammals and normalized them using the same procedures 
as those described above.

Cancer resistance estimates
Since the cancer incidence in nonhuman species is unknown, we 
used two indirect methods to estimate the level of cancer resistance 

in a species. Let AW stand for adult weight and ML for maximum 
longevity of a species; we define the two cancer resistance estimates/
measures as follows: MLTAW measure: log(ML6 × AW); MLCAW 
or “maximum longevity controlled for adult weight” measure: residue 
obtained by regressing out log(AW) from log(ML), using linear 
regression.

MLTAW and MLCAW were computed for 193 of the 240 species 
for which both ML and AW data are available in the AnAge data-
base (26). These 193 species are from various classes or taxonomy 
groups: 108 Mammalia (mammals), 55 Aves (birds), 18 Teleostei 
(ray-finned fishes), 7 Reptilia (reptiles), 1 Amphibia (amphibians), 1 
Cephalaspidomorphi (jawless fishes), 1 Chondrichthyes (cartilaginous 
fishes), 1 Coelacanthi (lobe-finned fishes), and 1 Holostei (bony fishes).

Identification of cancer resistance–associated genes
To identify cancer resistance–associated genes (PC or NC genes), 
we computed the Pearson correlation coefficient between the con-
servation scores of each gene and each of the two cancer resistance 
estimates (MLTAW and MLCAW) after proper transformation 
(described above). Pearson correlation was chosen (instead of 
Spearman’s correlation) to reduce the number of ties in further 
GSEA analysis for pathway enrichment. The robust identification 
of PC/NC genes is independent of the correlation measure used 
(see note S4 for details). Among the genes with Benjamini-Hochberg 
adjusted P values (FDR) less than 0.1 or 0.01, those with correlation 
estimates > 0 are defined as PC genes, while those with correlation 
estimates < 0 are NC genes. This analysis was done for all species or 
within certain groups of species. PC and NC genes were identified 
separately based on each of the two cancer resistance estimates 
(MLTAW/MLCAW).

Identification of PC/NC genes associated with cancer 
resistance, but not with longevity or biomass
We identify genes whose conservation scores are correlated with 
either maximum longevity or adult weight across species (Pearson’s 
correlation, FDR < 0.1; from the AnAge data resource, we had max-
imum longevity and adult weight data for 226 and 205 species, re-
spectively). We remove these genes from our original lists of PC and 
NC genes (from all-species analysis), resulting in lists of genes that 
significantly correlate exclusively with the cancer resistance measures 
but not with either maximum longevity or adult weight alone. Pathway 
enrichment analysis was done on these genes in the same manner as 
reported above (we also repeated this analysis using only mammals 
instead of all-species).

Cancer resistance predictor
Since higher conservation scores of the PC genes correspond to a 
higher level of cancer resistance, and vice versa for the NC genes, we 
define a cancer resistance (CR) score for each species as follows: CR 
score = [(Number of PC genes with conservation scores > MCS) + 
(Number of NC genes with conservation scores < MCS)]/(Total 
number of genes), where MCS is the median conservation score of 
all genes in a species. PC and NC genes are chosen for FDR < 0.1. 
We also repeat this analysis for different thresholds (some other 
quantile other than median) or FDR thresholds for robustness studies. 
The total number of genes is 20,076 in our analysis when we used 
human as reference.

Cross-validation analysis was mainly done in a leave-one-out 
manner. For each test sample, we identify PC and NC genes on the 
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training set and predict CR scores on the test set. For robustness 
tests, we also did a twofold cross-validation, i.e., identify PC and NC 
genes in the training group and test the accuracy of the CR predic-
tions in the left-out group. We also do cross-validation by leaving 
out an entire group of species and identifying PC and NC genes from 
the remaining species, and testing on the left-out group. For the all-
species analysis, we left one class out (for different classes), and for 
the mammalian analysis, we left one order out (for different orders).

Modifications of cancer resistance predictions
We explored the prediction of cancer resistance using only PC genes 
or NC genes as follows: CR score = (Number of PC genes with con-
servation scores > MCS)/(Total number of genes) or CR score = 
(Number of NC genes with conservation scores < MCS)/(Total 
number of genes). We also predicted cancer resistance using either 
human TSGs or oncogenes obtained from the Cancer Gene Census 
dataset from the COSMIC database (35). Specifically, we used either 
TSGs alone, oncogenes alone, or TSGs combined with oncogenes 
to compute the CR score: (Number of TSGs, or oncogenes, or 
combined > MCS)/(Total number of genes), where MCS is the 
median conservation score of all genes in a species.

Pathway, cancer driver gene, and other cancer-related GSEA
The biological pathway annotation data were downloaded from the 
Reactome database (72). The sets of curated human oncogenes and 
TSGs were obtained from the Cancer Gene Census dataset from the 
COSMIC database (35). Significant markers reported in various 
GWAS studies linked to human cancers were collected from the 
EBI GWAS Catalog database (73) using the keyword “cancer” as the 
phenotypes/traits. Variants in stronger linkage disequilibrium (LD) 
(with D′ ≥ 0.8 and r2 ≥ 0.3) with the GWAS-associated markers 
(within 500,000 base pairs in each side) in loci, replicated in more 
than one study, were selected using the R package, LDlinkR (74), 
and genes containing such variants were selected. The sets of genes 
whose knockout can result in various cancer-related phenotypes in 
mice were obtained from the MGI database (40). Specifically, we 
selected the genes for which the allele attributes are “Null/knockout,” 
and the corresponding phenotype terms are “increased cancer 
incidence,” “decreased cancer incidence,” “increased cancer latency,” 
and “decreased cancer latency.” The set of LoF genes identified in 
CTVTs was obtained from Murchison et al. (43). The enrichment 
for each of the biological pathways and cancer-related gene sets 
based on the MLTAW or MLCAW correlation results was tested 
with GSEA on a ranked list of all 20,076 genes [GSEA (75); ranking 
based on the correlation coefficients between conservation scores 
and MLTAW/MLCAW values].

Testing for the mutual exclusivity of the pathway 
membership for PC and NC genes
Permutation tests were used to determine whether PC and NC genes 
tend to coexist in the same biological pathways or exist in distinct 
nonoverlapping pathways. More specifically, given a preidentified 
set of m PC genes and n NC genes, in each permutation (shuffling), 
we randomly assigned m out of the same set of (m + n) genes to be 
PC genes, and the rest to be NC genes. For each set of PC and NC 
genes identified from the analysis across all species (with either 
MLCAW or MLTAW, using the fixed cutoff of FDR < 0.1), the unique 
pathways that they are part of were identified on the basis of the 
Reactome database (72). The total number of pathways shared 

between the PC genes and the NC genes was computed and compared 
to the null distribution formed by permuting the PC and NC category 
labels of the genes to obtain a permutation test P value. We provide 
the number of PC and NC genes in each pathway in table S12.

Detailed analysis of PC/NC gene enrichment in the known 
human cancer genes
To investigate whether our method may be specifically effective in 
recovering a subset of cancer genes acting via certain mechanisms, 
we identified the subset of known human cancer genes from the 
COSMIC database (35) that overlap with either significant PC or 
NC genes (FDR < 0.1), as well as the complementary subset that do 
not overlap with any significant PC/NC genes. Pathway enrichment 
of each of these cancer gene subsets was performed with Fisher’s exact 
test using the pathway annotation from the Reactome database (72).

Comparing the pathway enrichment results from different 
taxonomic groups
The pathway enrichment results from mammals, birds, and teleost 
fishes, as well as from different mammalian orders were compared. 
The mammalian orders we analyzed include Rodentia (rodents, 
n = 20), Primates (n = 18), Carnivora (carnivores, n = 18), Artiodactyla 
(even-toed hoofed mammals, n = 11), Cetacea (aquatic mammals 
like whales, n = 10), and Chiroptera (bats, n = 9). We used a Jaccard 
index–like metric to measure the similarity of the sets of enriched 
pathways between each pair of taxonomic groups. Specifically, let 
PA and NA be the sets of significant (FDR < 0.1) positively and nega-
tively enriched pathways from a taxonomic group A, and similarly, let 
PB and NB be the sets of positively and negatively enriched pathways 
from a taxonomic group B, then the Jaccard-like similarity measure 
between group A and group B was computed as follows: (|PA∩PB| + 
|NA∩NB|)/(|PA∪PB| + |NA∪NB|). For visualization (Fig. 3, A and C), 
because of space limitation, only a subset of the top enriched pathways 
was displayed. Specifically, the pathways included in the visualiza-
tions were those among the top 10 most significantly positively en-
riched or the top 10 most significantly negatively enriched pathways 
in at least one of the taxonomic groups being compared.

LOEUF score analysis for PC and NC genes
The LOEUF scores of all human genes were obtained from 
Karczewski et al. (36). Lower LOEUF scores correspond to less tol-
erance to LoF genomic variations in humans. The LOEUF scores of 
the PC (or NC) genes we identified were compared with each other 
or to the rest of the genes in the human genome with Wilcoxon rank 
sum tests. Given that a homogeneous adjusted P value cutoff pro-
duced drastically different numbers of significant genes from different 
analyses (e.g., with adjusted P < 0.05, there are more than 2800 sig-
nificant genes from the primate MLTAW correlation analysis, but 
only 78 from the rodent MLTAW correlation), here, the PC and NC 
genes were selected instead based on the criterion of “expected 
number of false discoveries (76) smaller than 1.” However, if this 
criterion results in fewer than 100 genes, then a less stringent criterion 
of “expected number of false discoveries smaller than 5” was used. 
These sets of PC and NC genes are given in table S6A.

Analysis of the genes associated with lifetime cancer risk 
across human tissues
The data on the lifetime cancer risk in each of the human tissue/
organ sites were obtained from the SEER database (38), and RNA-seq 
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data of normal human tissue samples across multiple tissue types 
were downloaded from the GTEx database (39). For each gene, we 
computed its median expression level in each tissue type and then 
computed the Spearman’s correlation coefficient between the median 
expression value and the lifetime cancer risk across tissue types. All 
the genes were ranked by the Spearman’s correlation coefficient, 
and the enrichment of the PC or NC genes for genes associated with 
lifetime cancer risk across human tissues was tested with GSEA. The 
criterion for identifying PC and NC genes is the same as that de-
scribed in the previous section.

Selection of subsets of PC/NC genes with high relevance 
to human cancers based on multiple criteria
For each of the PC/NC genes from the various analyses (at FDR < 0.1), 
we look for supporting evidence from many of the different analyses 
described in the article. Evidence considered for cancer relevance 
includes those instances where a gene (i) is a PC or NC gene (at 
FDR < 0.1) for the all-species, mammals-only, birds-only analy-
sis using both the estimates; (ii) is a human oncogene or tumor sup-
pressor; (iii) whose knockout causes early cancer incidence or early 
cancer onset in mice; (iv) is a LoF gene in CTVT; (v) is a GWAS gene 
associated with human cancers; (vi) expressed mutated genes in single-
cell phylogeny of a mouse melanoma model; (vii) is specifically as-
sociated with cancer resistance estimates but not associated with 
maximum longevity and adult weight in all-species and mammals-
only analysis; and (viii) is an NCMR gene (negatively correlated with 
true CMR in 39 mammals). We then rank each gene by the number 
of times of support in table S9.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj7176

View/request a protocol for this paper from Bio-protocol.
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