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Abstract

Cancer remains one of the leading causes of death, and early detection of this disease is crucial 

for increasing survival rates. Although cancer can be diagnosed following tissue biopsy, the 

biopsy procedure is invasive; liquid biopsy provides an alternative that is more comfortable for 

the patient. While blood, urine, and cerebral spinal fluid can all be used as a source of liquid 

biopsy, saliva is an ideal source of body fluid that is readily available and easily collected in the 

most noninvasive manner. Characterization of salivary constituents in the disease setting provides 

critical data for understanding pathophysiology and the evaluation of diagnostic potential. The aim 

of saliva diagnostics is therefore to develop a rapid and noninvasive detection of oral and systemic 

diseases that could be used together with compact analysis systems in the clinic to facilitate 

point-of-care diagnostics.
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1. INTRODUCTION

Saliva is a critical bodily fluid required for the digestion of food and maintenance of good 

oral health. It contains secreted enzymes, hormones, cytokines, and antibodies that act as 

mediators of salivary functions. In addition, saliva contains microorganisms and cellular 

debris (1). There are three pairs of major salivary glands (parotid, submandibular, and 

sublingual) and many minor salivary glands dispersed throughout the oral mucosa (2). 

Owing to their proximity to blood vessels, the salivary glands are a rich source of metabolite 

exchange between the oral cavity and the circulatory system (3). Indeed, many proteins 

found in human serum can also be detected in saliva; this suggests that saliva could be 

used as a proxy for the measurement of disease-related circulating biomarkers (4). In the 
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following review we provide a comprehensive overview of salivary biomarkers and the 

salivary exosomes in which they are encapsulated. We also describe a novel electrochemical 

sensing technology (electric field–induced release and measurement, or EFIRM) that can 

be used for biomarker detection and disease monitoring; this technology is pioneered to 

implement future point-of-care saliva testing methodologies.

2. SALIVAOMICS

Rising to prominence over the last decade, salivaomics refers to the integrated analysis of 

multiple large-scale molecular readouts from this important biological fluid (5, 6). Such 

readouts include genomics, epigenomics, transcriptomics, proteomics, microbiomics, and 

metabolomics. There are several challenges associated with obtaining a clear and disease-

relevant signal from salivary samples. For example, components of food and the presence of 

bacteria in the oral cavity can contribute to noise in salivary data sets (7). The composition 

of saliva is also affected by natural circadian rhythms (8), the physical action of mastication 

(9), and the activity of amylase, which is abundant in saliva. RNAs (and many proteins, 

including histatins, statherin, and acidic prolinerich polypeptides) are also highly labile 

when taken out of the buffered environment of the saliva (10). Thus, methods to stabilize 

these molecular markers are paramount in order to preserve a representative snapshot of 

the true physiological state; thus, many protocols include protease and RNase inhibitors in 

extraction buffers. Finally, it is increasingly clear that analysis of bulk saliva samples may 

mask physiologically relevant signals from small subpopulations of cells or metabolites. 

Therefore, single-cell technologies or ultrasensitive methods of detection will ultimately be 

required to obtain more accurate information from saliva.

2.1. Salivary Genomics

Analysis of direct tumor biopsy is perhaps the most accurate approach for molecular 

diagnostics in cancer. However, taking tumor samples can be extremely uncomfortable 

for the patient, and repeat biopsy for disease monitoring may not always be possible. 

Furthermore, some deep-seated tumors may not be amenable to this approach. These 

disadvantages prompted the search for less-invasive methods for cancer diagnosis and 

surveillance. Circulating tumor DNA (ctDNA) is found in the serum and is composed of 

genomic DNA that is shed from the original tumor (11, 12). The cancer-specific mutational 

signatures of ctDNA can be differentiated from those of DNA from noncancerous tissues. 

Multiple studies have shown a high concordance between mutational profiles in ctDNA 

and those in the primary tumor (13-17). Furthermore, the relative abundance of ctDNA, 

or of specific mutations therein, can be used to monitor disease response to therapeutic 

intervention, and ctDNA samples can be taken repeatedly, which facilitates real-time 

surveillance of treatment (18-21). This ctDNA-based liquid biopsy approach is rapidly being 

adopted in many preclinical and clinical settings.

Although most liquid biopsies are taken by needle aspiration from the blood, it is possible 

that salivary fluid may offer an even less-invasive means of disease monitoring. The stability 

and relatively high quality of salivary DNA makes this an even more attractive possibility 

(22-24). Although diagnostics and monitoring using salivary ctDNA are in their infancy, a 
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recent study indicated their utility in head and neck squamous cell carcinoma (HNSCC) (25, 

26). Key cancer-associated somatic mutations and the presence of human papillomaviruses 

(HPV16 and 18) were evaluated among a cohort of 93 HNSCC patients (including 20 

patients with early disease; see Table 1 for details). While plasma ctDNA analysis was 

associated with higher sensitivity for oropharynx, hypopharynx, and larynx cancers (plasma 

ctDNA: 86–100% versus salivary ctDNA: 47–70%), salivary ctDNA analysis had greater 

sensitivity for the detection of oral cancer (100% versus 80%). The latter result is likely 

attributable to the close physical proximity of salivary fluid to the actual tumor. Combined 

analysis of plasma and salivary ctDNA yielded a 96% detection rate, irrespective of tumor 

location or stage. Together, these data indicate that the optimal combination of bodily fluids 

used for ctDNA analysis should be chosen on a tumor type–specific basis.

2.2. Salivary Transcriptomics

Saliva contains diverse types of RNA transcripts, including messenger RNA (mRNA), piwi-

interacting RNA (piRNA), and micro RNA (miRNA) (27, 28). Although the value of piRNA 

as a biomarker remains to be determined, both mRNA and miRNA within the saliva have 

been used to detect several cancers, including pancreatic (29), breast (30), ovarian (31), and 

lung malignancies (32). We highlight some examples below and in Table 2.

Profiling of saliva samples from patients with oral squamous cell carcinoma identified 

multiple mRNA biomarkers (33). A subset of four mRNAs (IL1B, OAZ1, SAT, and IL8) 

was sufficient for use in a logistic regression model to provide 91% sensitivity and 91% 

specificity for the detection of cancer.

Salivary miRNAs are packaged in salivary exosomes, where they are protected from RNase-

dependent degradation (34, 35). Consistent with the general dysregulation of miRNAs in 

tumor cells themselves, the levels of specific miRNAs in the saliva of cancer patients are 

altered in comparison to those of healthy individuals. For example, the levels of miR-125a 

and miR-200a were significantly lower in saliva from oral cancer patients than healthy 

patients (36). Conversely, the levels of miR-27b and miR-31 were significantly higher in 

the saliva of oral cancer patients (37, 38). miR-139 and miR-31 reverted to baseline levels 

following excision of the malignant lesions, suggesting that these miRNAs could serve as 

prognostic biomarkers (37, 39).

Despite these intriguing findings, further preclinical and clinical studies are required to 

validate the roles of salivary miRNAs as disease biomarkers. It will be especially important 

to standardize the way salivary exosome miRNAs are detected and analyzed. Furthermore, 

researchers must find ways to deconvolute salivary miRNA signals that originated in 

immune cells versus tumor or salivary cells. This is critical, because systemic or local 

inflammation may perturb miRNA expression and generate variability, even within the same 

individual (40). It will be useful to crossreference data from future studies with the miRNA 

database, miRandola, which is a large catalog of extracellular noncoding RNAs found in a 

variety of diseases (http://mirandola.iit.cnr.it/) (41).
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2.3. Salivary Proteomics

To the best of our knowledge, the first attempt at cancer diagnosis using salivary protein was 

made by Hoerman et al. (42) more than 60 years ago; the group showed that prostate cancer 

patients had elevated acid phosphatase enzymatic activity in parotid saliva. Since then, the 

advent of high-throughput mass spectrometry combined with bioinformatics has given rise 

to the field of proteomics, which holds great promise for disease detection and monitoring.

Although in its infancy, there are clear signs that salivary proteomics will prove extremely 

useful. For example, a US-based consortium has generated a comprehensive catalog of 

the salivary proteome of healthy individuals, identifying 1,166 proteins in parotid and 

submandibular/sublingual gland ductal saliva (43). The data are publicly available via the 

Human Salivary Proteome Wiki (https://salivaryproteome.nidcr.nih.gov). Between 20% and 

30% of the salivary proteome overlaps with the plasma proteome, indicating that many 

salivary constituents are derived from the blood (4, 44). This observation, together with the 

close physical proximity of saliva and blood, suggests that saliva could be used as a proxy 

to detect disease. Unlike serum proteins, salivary proteins appear to be more susceptible 

to degradation (10, 45). Indeed, they degrade rapidly even during saliva collection and 

handling, which may compromise downstream experiments and limit the application of 

saliva-based methods (46). Protease inhibitors can be used to stabilize salivary proteins, 

thereby enabling the storage of saliva samples for up to two weeks without significant 

degradation (47). Table 3 summarizes salivary proteins that may have potential utility as 

biomarkers for cancer detection or disease monitoring.

3. SALIVA EXOSOMICS: NEXT-GENERATION SALIVAOMICS

Exosomes are nanosized extracellular vesicles with a diameter between 30 and 100 nm that 

have been isolated from virtually all types of body fluid, including saliva (48, 49). They 

are derived from endosomal membranes and are shuttled to the extracellular space during 

exocytosis. They are critical transporters of cell type–specific cargos that are delivered 

locally to the microenvironment and systemically via the vasculature. By relaying molecular 

information from their parental cell of origin to recipient cells, they play important roles 

in intercellular signaling and cellular homeostasis. Given their biological role in cancer 

pathogenesis, exosomes may harbor biomarkers that can be harnessed for detecting and 

monitoring cancer (50).

While exosomes are present in the saliva of healthy individuals, they may contain disease-

related biomarkers from tumor cells that have been packaged and transported to the salivary 

glands (51). The use of these small but information-rich nanovesicles reduces the overall 

complexity of saliva (52). The term saliva exosomics defines the study of the genomic, 

transcriptomic, and proteomic features of exosomes and how they impact biological 

functions in oral and systemic diseases (7). Saliva exosomics is therefore considered next-

generation salivaomics. Although the field is still in its infancy, it will undoubtedly reveal 

many novel facets of saliva biology as research gathers pace.
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3.1. Salivary Exosomes

Salivary exosomes are nanoscale extracellular vesicles secreted by the salivary glands and 

oral epithelial cells (35, 53). Surrounded by a phospholipid bilayer, they carry many cell 

type–specific cargos (Figure 1). Prominent examples include tetraspanins, calcium-binding 

proteins, heat shock proteins, water channels, major histocompatibility complexes, and 

proteins associated with membrane fusion/trafficking (e.g., annexin, Rab GTPases) (54, 55). 

Almost half of salivary proteins are extracellular (e.g., immunoglobulin chains) or secretory 

(e.g., serum albumin), suggesting that they are derived from vesicles that originate from 

circulating lymphocytes and intravascular fluid (4, 44, 55).

Intriguingly, salivary exosomes play a role in the initiation of blood clotting (56). This is 

because they contain tissue factor, which works in concert with factor VII in the plasma to 

elicit coagulation. Salivary exosomes accelerate clotting in exosome-depleted plasma, and 

this can be attenuated by addition of anti-factor VII. These data highlight the importance of 

these exosomes in a critical physiological process.

Multiple types of RNA are found in salivary exosomes, where they are protected from 

RNase-dependent degradation (57). The exosomes therefore serve as an enriched source of 

RNA signaling mediators, primarily composed of piRNA (7.48%), miRNA (6.02%), and 

small nucleolar RNA (snoRNA; 0.02%) in descending order of abundance (27, 58). mRNA 

from salivary exosomes can be taken up and translated by recipient cells; this underscores 

the functional relevance of salivary exosome-mediated RNA transfer (57, 59). The 

Vesiclepedia (http://www.microvesicles.org) (60) and ExoCarta (http://www.exocarta.org) 

(61) databases are comprehensive resources for the types of molecular cargos found in 

extracellular vesicles.

3.2. Structure of Salivary Exosomes

Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) 

have revealed that salivary exosomes have reversible elastic mechanical properties (57, 

62). Specifically, exertion of an outside force causes these exosomes to transition from a 

spherical morphology to a trilobular structure (Figure 2a,b). Heterogeneity at the surface of 

salivary exosomes may be due to the presence of CD63 protein in the dense lipid membrane 

(Figure 2c).

Variations in the nanostructure of salivary exosomes of oral cancer patients compared to 

healthy individuals may have disease relevance (63). Indeed, cancer-associated salivary 

exosomes are larger than their normal counterparts (98.3 ± 4.6 nm versus 67.4 ± 2.9 nm; P < 

0.05) and appear to be derived from multivesicular bodies (MVBs) (Figure 3a,b). Membrane 

ruptures and elongated nanofilaments surrounding the lumen of MVBs likely contribute to 

the release of exosomes (Figure 3c-e). There is also a higher density of CD63 on the surface 

of cancer salivary exosomes.

3.3. Mechanistic Link Between Salivary Exosomes and Systemic Cancer

The discovery of the cancer-specific mutant EGFRvIII mRNA in circulating extracellular 

vesicles of glioblastoma patients suggested that tumor-derived microvesicles may harbor 
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disease biomarkers (64). Indeed, cancer-derived exosomes are now known to be a rich 

source of omic information that reflects the genetic composition and status of their parent 

tumors. For example, miRNAs 21 and 141 are upregulated in serum exosomes of esophageal 

squamous cell carcinoma and prostate cancer, respectively (65, 66). Several biomarkers 

have also been detected in serum exosomes associated with pancreatic cancer, including 

mutant KRAS and TP53 (67) and the membrane-anchored exosomal protein glypican-1 (68). 

These findings demonstrate that the utility of tumor-derived exosomes in disease monitoring 

extends well beyond oral cancer and is likely to be broadly applicable.

Murine models have recapitulated some of the features of human pancreatic cancer and 

salivary exosome production. For example, mRNAs that originated in orthotopic pancreatic 

tumor xenografts were found in salivary exosomes (69). Furthermore, the biogenesis of 

tumor exosomes was suppressed by the introduction of a dominant-negative RAB11 GTPase 

(DN-RAB11), and this correlated with a reduction in biomarkers that were present in 

salivary exosomes. This study demonstrated that tumor-derived mRNAs are the cargo of 

exosomes and reach the salivary gland via the circulation, providing a mechanistic link 

between salivary exosomes and distal tumors. In subsequent studies using this model, the 

saliva from tumor-bearing mice was able to suppress the expression of genes associated with 

the activation of natural killer cells (70). Consistent with its effect on salivary biomarkers, 

the expression of DN-RAB11 reversed this effect. Thus, salivary exosomes also appear to 

dampen the immune response to their parental tumors through gastrointestinal tract.

The migration of exosomes from the primary tumor to the salivary glands is not confined 

to pancreatic cancer models. Orthotopically injected human lung cancer cells expressing 

a green fluorescent protein (GFP)-tagged cell surface marker (CD63) also gave rise to 

GFP-positive vesicles in mouse saliva (71). The cargo delivery role of these exosomes was 

confirmed by the presence of human GAPDH mRNA.

4. ELECTROCHEMICAL BIOSENSORS

The current gold standard methods for isolating exosomes involve ultracentrifugation 

through a density gradient or sucrose cushion (72). However, these approaches are 

expensive and laborious. Furthermore, detection of exosome-associated ctDNA in saliva 

using conventional polymerase chain reaction (PCR)-based methods has largely failed due to 

its short fragment length and low quantity (73). Therefore, there is a need to develop more 

practical and efficient methods for the isolation of exosomes, and the quantification of their 

molecular cargos.

EFIRM is a technology that may meet this need. EFIRM allows quantification of ctDNA via 

an electrochemical sensor that is activated by capture and detector probes complementary 

to the ctDNA target (74, 75) (Figure 4). In the first step, pyrrole coating of gold electrodes 

facilitates the attachment of a single-stranded oligonucleotide capture probe at a surface 

density of 3.41 molecules/cm2 (74, 76). The saliva sample is then placed on the electrode 

in the presence of a cyclic square wave, which opens the hairpin structure (−300 mV, 

9 s) of the capture probe and aids hybridization of the negatively charged DNA (+200 

mV, 1 s). A complementary biotinylated single-stranded detector probe is then added, 
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and binding to targets is measured by addition of horseradish peroxidase (HRP) and the 

3,3′,5,5′-tetramethylbenzidine (TMB) substrate. Redox of the HRP generates a current, 

which is amplified by TMB-dependent regeneration of HRP. The amount of current is 

proportional to the concentration of target immobilized on the electrode (77).

EFIRM has been used successfully to detect oncogenic mutations of the epidermal growth 

factor receptor (EGFR) gene in the saliva and plasma of patients with non-small cell lung 

cancer (73, 78, 79) (Figure 5). Receiver operating characteristic curve analysis demonstrated 

area under the curve values of 0.94 and 0.96 for EGFR exon 19 deletion and EGFP L858R, 

respectively. Capturing and analyzing EGFR exon 19 deletion and L858R mutation in saliva 

are emerging as a complementary technique in liquid biopsy and relevant in early cancer 

detection, as well as in guiding and managing patients on chemotherapy (80). These findings 

confirm that EFIRM has sufficient sensitivity to meet the demands of point-of-care testing.

5. FUTURE PERSPECTIVE

The use of salivaomics for cancer detection, diagnosis, and disease monitoring is an exciting 

prospect. Indeed, the ease with which a biopsy from saliva can be obtained would have a 

positive impact on patients’ quality of life. However, before salivaomics can be successfully 

adopted in the clinical setting, more work is required to understand how exosomes mediate 

communication between distal tumors and organs such as the salivary glands. Furthermore, 

there must be a robust evaluation of the validity of salivary exosome-associated biomarkers. 

It is also currently unclear whether using salivary exosomes would be more effective than 

current methods of analysis in oncology such as those involving ctDNA, circulating tumor 

cells, or exosomal miRNA. On the one hand, mutational analysis of ctDNA does not reveal 

detailed information about signaling pathways that are active in a particular tumor. In this 

case, additional salivaomic analysis may provide a more information-rich basis upon which 

decisions regarding treatment could be made. Analysis of salivary exosomes may also be 

more representative of the whole tumor when compared to circulating tumor cells, which 

make up a very small fraction of the malignancy. On the other hand, analysis of exosomal 

miRNA may be desirable. This is because each exosome will contain a subset of the total 

cellular miRNA complement due to the randomized encapsulation of miRNAs at the point of 

vesicle formation.

Techniques for the isolation of salivary exosomes and the quantification of their cargo 

require further optimization. We suggest that EFIRM technology represents a significant 

step forward in this regard, because it offers a rapid, robust, and cost-effective way to 

perform salivary biomarker detection. Continued improvement of EFIRM, together with the 

development of other rapid biomarker isolation techniques, will lead to earlier detection of 

disease, more rapid treatment, and reduced morbidity and mortality.
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Figure 1. 
Structure and contents of typical salivary exosomes. The exosome is surrounded by a 

phospholipid bilayer, carrying many cell type–specific cargos. Abbreviations: ctDNA, 

circulating tumor DNA; mRNA, messenger RNA; miRNA, micro RNA; piRNA, piwi-

interacting RNA; snoRNA, small nucleolar RNA.
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Figure 2. 
Nanostructure of salivary exosomes observed under atomic force microscopy (AFM) and 

field emission scanning electron microscopy (FESEM). (a) AFM phase image of salivary 

exosomes exhibits a trilobular substructure. Surface contrast is presumably attributed to 

variable constitutive elements on exosomal membrane (e.g., protein and lipid). (b) FESEM 

reveals round-shaped salivary exosomes with intervesicular connections. (c) Electron 

microscopy with anti-CD63 antibody-conjugated gold beads identifies dense tetraspanin 

molecules on the exosome surface. Figure adapted with permission from Reference 62; 

copyright 2010 American Chemical Society.
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Figure 3. 
Exosomes and multivesicular bodies (MVBs) seen in saliva of oral cancer patients. (a) 

Salivary exosomes from healthy donors appear as homogeneous circular structures. (b) 

Salivary exosomes from oral cancer patients show irregular morphology with varying sizes 

and vesicle aggregation (arrow). (c) Elongated intervesicular filaments and exosome-like 

vesicles in MVBs are observed in cancer saliva. (d) At higher resolution, membrane 

ruptures are observed in cancer salivary MVBs (arrows). (e) Schematic of MVB endosomal 

membrane rupture and exosome release from oral cancer cell. Figure adapted with 

permission from Reference 63; copyright 2011 American Chemical Society.
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Figure 4. 
Schematic of the EFIRM assay. (a) Surface preparation: The gold electrodes are precoated 

with pyrrole and DNA capture probe is immobilized onto the pyrrole-coated electrodes. 

Electrophoresis and target hybridization: The surface is incubated with the target ctDNA-

containing saliva sample and a cyclic square wave electric field is applied at 30 cycles of 

+200 mV for 1 s and −300 mV for 9 s during hybridization. Detector probe hybridization: A 

complementary biotinylated single-stranded oligonucleotide detector probe hybridizes with 

the ctDNA target. Electrochemical detection: HRP-conjugated streptavidin and 3,3′,5,5′-
tetramethylbenzidine substrate generate electrical current, which is detected by an electric 

sensor. (b) Steric effect: The negative potential makes a closed hairpin structure of DNA 

capture probe stretch and form an open structure required for highly efficient intermolecular 

hybridization. Abbreviations: ctDNA, circulating tumor DNA; EFIRM, electric field–

induced release and measurement; HRP, horseradish peroxidase.
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Figure 5. 
Saliva-based liquid biopsy for non-small cell lung cancer. ctDNA and tumor-derived 

exosomes enter the circulation and reach the salivary glands. ctDNA and exosomes are 

uptaken by salivary gland acinar cells via endocytosis or membrane fusion. Central to saliva 

liquid biopsy techniques is the capture and analysis of ctDNA, which includes EGFR exon 

19 deletion and L858R mutation. Combining salivary ctDNA and exosome analyses can 

provide more comprehensive panels of molecular markers for precision medicine application 

in a minimally invasive manner. Abbreviations: ctDNA, circulating tumor DNA; EGFR, 

epidermal growth factor receptor.
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Table 1

Summary of saliva and plasma ctDNA biomarkers identified in HNSCC. Clinical and laboratory data were 

retrieved from a database published by Wang et al. (25)

Site ctDNA

% of positivity (number detected/examined)

Saliva Plasma Saliva and plasma

Oral cavity TP53 100 (36/36) 85 (11/13) 100 (13/13)

PIK3CA 100 (2/2) 50 (1/2) 100 (2/2)

NOTCH1 100 (3/3) NA NA

CDKN2A 100 (2/2) NA NA

Translocation 100 (2/2) NA NA

HPV16 DNA 100 (1/1) NA NA

Total 100 (46/46) 80 (12/15) 100 (15/15)

Oropharynx TP53 80 (4/5) 100 (1/1) 100 (1/1)

PIK3CA 25 (2/8) 100 (5/5) 100 (5/5)

FBXW7 67 (2/3) 100 (3/3) 100 (3/3)

HPV16 DNA 41 (7/17) 92 (11/12) 92 (11/12)

NRAS 0 (0/1) 0 (0/1) 0 (0/1)

Total 44 (15/34) 91 (20/22) 91 (20/22)

Larynx TP53 70 (7/10) 86 (6/7) 100 (7/7)

Hypopharynx TP53 67 (2/3) 100 (3/3) 100 (3/3)

Overall 75 (70/93) 87 (41/47) 96 (45/47)

Abbreviations: ctDNA, circulating tumor DNA; HNSCC, head and neck squamous cell carcinoma; HPV, human papillomavirus; NA, not 
applicable.
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Table 2

Salivary RNA biomarkers in cancers

Cancer RNA type Salivary RNA biomarker Reference

Breast mRNA CSTA, TPT1, IGF2BP1, GRM1, GRIK1, H6PD, MDM4, S100A8 30

Esophageal miRNA miR-10b, miR-98, miR-144, miR-363, miR-451 81

Head and neck mRNA DUSP1, H3F3A, IL1B, IL8, OAZ1, S100P, SAT 33

miRNA miR-125a, miR-200a 36

Lung mRNA CCNI, FGF19, GREB1, FRS2, EGFR 32

Ovarian mRNA AGPAT1, B2M, IER3, IL1B, BASP1 31

Abbreviations: mRNA, messenger RNA; miRNA/miR-, micro RNA.
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Table 3

Salivary protein biomarkers for cancers

Cancer Sample Salivary protein biomarker Reference

Breast Whole saliva EGF 82

ERBB2 83

CA15–3, ERBB2 84

VEGF, EGF, CEA 85

CA6 30

LRP 86

Gastric Whole saliva CSTB, TPI1, DMBT1, CALML3, IGH, IL1RA 87

Head and neck Whole saliva A1BG, CFB 88

M2BP, MRP14, CD59, CAT, PFN 89

FGB, S100, TF, IGHG, CFL1 90

ADA 91

IL-8, M2BP, IL-1B 92

Salivary EVs A2M, HPa, MUC5B, LGALS3BP, IGHA1, PIP, PKM1/M2, GAPDH 93

Lung Whole saliva HP, AZGP1, CALPR 94

Salivary EVs Annexin A1, A2, A3, A5, A6, A11, NPRL2, CEACAM1, HIST1H4A, MUC1, PROM1, 
TNFAIP3

95

Ovarian Whole saliva CA125 96

Abbreviation: EV, extracellular vesicle.
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