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Systematic and large-scale microscopy-based cell assays are 
becoming an increasingly important tool for biological discov-
ery1,2, playing a key role in drug screening3,4, drug profiling5,6 

and for mapping the subcellular localization of the proteome7,8. In 
particular, large-scale datasets based on immuno-fluorescence or 
endogenous fluorescent tagging comprehensively capture localiza-
tion patterns across the human9,10 and yeast proteome11. Together 
with recent advances in computer vision and deep learning12, such 
datasets are poised to help systematically map the cell’s spatial archi-
tecture. This situation is reminiscent of the early days of genom-
ics, when the advent of high-throughput and -fidelity sequencing 
technologies was accompanied by the development of new algo-
rithms to analyze, compare and categorize these sequences, and the 
genes therein. However, images pose unique obstacles to analysis. 
While sequences can be compared against a frame of reference 
(that is, genomes), there are no such references for microscopy 
images. Indeed, cells exhibit a wide variety of shapes and appear-
ances that reflect a plurality of states. This rich diversity is much 
harder to model and analyze than, for example, sequence vari-
ability. Moreover, much of this diversity is stochastic, posing the 
additional challenge of separating information of biological rel-
evance from irrelevant variance. The fundamental computational 
challenge posed by image-based screens is therefore to extract 
well-referenced vectorial representations that faithfully capture 
only the relevant biological information and allow for quantitative 
comparison, categorization and biological interpretation of protein  
localization patterns.

Previous approaches to classify and compare images have relied 
on engineered features that quantify different aspects of image con-
tent, such as cell size, shape and texture13–16. While these features 
are, by design, relevant and interpretable, the underlying assump-
tion is that all the relevant features needed to analyze an image can 
be identified and appropriately quantified. This assumption has 
been challenged by deep learning’s recent successes17. On a wide 
range of computer vision tasks such as image classification, hand- 
designed features cannot compete against learned features that are 

automatically discovered from the data themselves18,19. Assuming 
features are available, the typical approach consists of boot-strapping 
the annotation process by either (1) unsupervised clustering tech-
niques20,21, or (2) manual curation and supervised learning22,23. In the 
case of supervised approaches, human annotators examine images 
and assign annotations, and once sufficient data are garnered, a 
machine learning model is trained in a supervised manner and later 
applied to unannotated data17,18,23,24. Another approach consists of 
reusing models trained on natural images to learn generic features 
on which supervised training can be bootstrapped5,25,26. While suc-
cessful, these approaches suffer from potential biases, as manual 
annotation imposes our own preconceptions. Overall, the ideal 
algorithm should not rely on human knowledge or judgments, but 
instead automatically synthesize features and analyze images with-
out a priori assumptions, that is, solely on the basis of the images 
themselves.

Recent advances in computer vision and machine learning 
have shown that forgoing manual labeling is possible and nears 
the performance of supervised approaches27,28. Instead of annotat-
ing datasets, which is inherently nonscalable and labor-intensive, 
self-supervised models can be trained from large uncurated data-
sets11,29–32. Self-supervised models are trained by formulating an 
auxiliary pretext task, typically one that withholds parts of the data 
and instructs the model to predict them33. This works because the 
task-relevant information within a piece of data is often distributed 
over multiple observed dimensions30. For example, given the picture 
of a car, we can recognize the presence of a vehicle even if many 
pixels are hidden, perhaps even when half of the image is occluded. 
Now, consider a large dataset of pictures of real-world objects (for 
example, ImageNet34). Training a model to predict hidden parts 
from these images forces it to identify their important features32. 
Once trained, the vectorial representations that emerge from pre-
text tasks capture the important features of the images, and can be 
used for comparison and categorization.

Here, we present the development, validation and use of  
cytoself, a deep learning-based approach for fully self-supervised 
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protein localization profiling and clustering. The key innovation is 
a pretext task that ensures that the localization features that emerge 
from different images of the same protein are helpful to distinguish 
the microscopy images of that protein from the images of other pro-
teins in the dataset. We demonstrate the ability of cytoself to reduce 
images to feature profiles characteristic of protein localization, 
validate their use to predict protein assignment to organelles and 
protein complexes, and compare the performance of cytoself with 
previous image featurization approaches.

Results
A robust and comprehensive image dataset. A prerequisite to our 
deep-learning approach is a collection of high-quality images of 
fluorescently tagged proteins obtained under uniform conditions. 
Our OpenCell10 dataset of live-cell confocal images of 1,311 endog-
enously tagged proteins (http://opencell.czbiohub.org) meets this 
purpose. We reasoned that providing a fiducial channel could pro-
vide a useful reference frame for our model to capture protein local-
ization. Hence, in addition to imaging the endogenous tag (split 
mNeonGreen2), we also imaged a nuclear fiducial marker (Hoechst 
33342) and converted it into a distance map (Methods). On aver-
age, we imaged the localization of a given protein in 18.59 fields 
of view (FOV). Approximately 45 cropped images from each FOV 
containing 1–3 cells were then extracted for a total of 800 cropped 
images per protein. This scale, as well as the uniform conditions 
under which the images were collected, were important because our 
model must learn to ignore irrelevant image variance and instead 
focus on protein localization. Finally, in our approach all images 
that represent the same protein were labeled by the same unique 
identifier (we used the corresponding synthetic cell line identifier, 
but the identifier may be arbitrary). This identifier does not carry 
any explicit localization information, nor is it linked to any meta-
data or annotations, but rather is used to link together all the differ-
ent images of the same protein.

A deep-learning model to generate image representations. Our 
deep-learning model is based on the vector quantized variational 
autoencoder architecture (VQ-VAE35,36). In a classical VQ-VAE, 
images are encoded into a quantized latent representation, a vec-
tor, and then decoded to reconstruct the input image (Fig. 1 and 
Supplementary File 1). The encoder and decoder are trained so 
as to minimize distortion between input and output images. The 
representation produced by the encoder is assembled by arraying a 
finite number of symbols (indices) that stand for vectors in a code-
book (Fig. 1b and Supplementary Fig. 1). The codebook vectors 
themselves evolve during training so as to be most effective for the 
encoding–decoding task35. The latest incarnation of this architec-
ture (VQ-VAE-2, ref. 37) introduces a hierarchy of representations 
that operate at multiple spatial scales (termed VQ1 and VQ2 in the 
original VQ-VAE-2 study). We chose this architecture as a starting 
point because of the large body of evidence that suggests that quan-
tized architectures currently learn the best image representations35,36. 
As shown in Fig. 1b, we developed a variant that uses a split vector 
quantization scheme to improve quantization at large spatial scales 
(Methods and Supplementary Fig. 1). This new approach to vector 
quantization achieves better perplexity as shown in Fig. 1c, which 
means better codebook use.

Protein localization encoding via self-supervision. Our model 
consists of two pretext tasks applied to each individual cropped 
image: first, it is tasked to encode and then decode the image as 
in the original VQ-VAE model. Second, it is tasked to predict the 
protein identifier associated with the image solely on the basis of 
the encoded representation. In other words, that second task aims 
to predict, for each single cropped image, which one of the 1,311 
proteins in our library the image corresponds to. The first task 

forces our model to distill lower-dimensional representations of 
the images, while the second task forces these representations to 
be strong predictors of protein identity. This second task assumes 
that protein localization is the primary image information that is 
correlated to protein identity. Therefore, predicting the identifier 
associated with each image is key to encouraging our model to learn 
localization-specific representations. It is acceptable, and in some 
cases perfectly reasonable, for these tasks to fail. For example, when 
two proteins have identical localization, it is impossible to resolve 
the identity of the tagged proteins from images alone. Moreover, 
the autoencoder might be unable to perfectly reconstruct an image 
from the intermediate representation, when constrained to make 
that representation maximally predictive of protein identity. It 
follows that the real output of our model is not the reconstructed 
image, nor the predicted identity of the tagged protein, but instead 
the distilled image representations, which we refer to as ‘localization 
encodings’, that are obtained as a necessary byproduct of satisfying 
both pretext tasks. Specifically, our model encodes two representa-
tions for each image that correspond to two different spatial scales, 
the local and global representations, that correspond to VQ1 and 
VQ2, respectively. The global representation captures large-scale 
image structure scaled-down to a 4 × 4 pixel image with 576 features 
(values) per pixel. The local representation captures finer spatially 
resolved details (25 × 25 pixel image with 64 features per pixel). 
We use the global representations to perform localization cluster-
ing, and the local representations to provide a finer and spatially 
resolved decomposition of protein localization.

Mapping the protein localization landscape with cytoself. 
Obtaining image representations that are highly correlated with 
protein localization and invariant to other sources of heterogene-
ity (that is, cell state, density and shape) is only the first step for 
biological interpretation. Indeed, while these representations are 
lower dimensional than the images themselves, they still have too 
many dimensions for direct inspection and visualization. Therefore, 
we performed dimensionality reduction using the uniform mani-
fold approximation and projection (UMAP) algorithm on the set of 
global localization encodings (that is, global representation in the 
Fig. 1) obtained from all images (Methods). In the resulting UMAP 
(Fig. 2) each point represents a single (cropped) image in our test 
dataset (that is, 10% of entire dataset, Methods), which collectively 
form a highly detailed map representing the full diversity of pro-
tein subcellular localizations. This protein localization atlas reveals 
an organization of clusters and subclusters reflective of eukaryotic 
subcellular architecture. We can evaluate and explore this map by 
labeling each protein according to its known subcellular localiza-
tion obtained from independent manual annotations of our image 
dataset (Supplementary File 2). The most pronounced delineation 
corresponds to nuclear (top right) versus nonnuclear (bottom left) 
localizations (encircled and expanded in Fig. 2, top right and bot-
tom left, respectively). Within the nuclear cluster, subclusters are 
resolved that correspond to nucleoplasm, chromatin, nuclear mem-
brane and the nucleolus. Within each region, tight clusters that 
correspond to specific cellular functions can be resolved (dashed 
outlines). For example, subunits involved in splicing (SF3 splic-
esome), transcription (core RNA polymerase) or nuclear import 
(nuclear pore) cluster tightly together (outlined in Fig. 2, dashed 
outlines). Similarly, subdomains emerge within the nonnuclear 
cluster, the largest corresponding to cytoplasmic and vesicular local-
izations. Within these domains are several well delineated clusters 
corresponding to mitochondria, endoplasmic reticulum (ER) exit 
sites (COPII), ribosomes and clathrin coated vesicles (Fig. 2). The 
large set of unlabeled points in Fig. 2 (gray dots) correspond mainly 
to proteins that exhibit mixed localization patterns. Prominent 
among these is a band of proteins interspersed between the nuclear 
and nonnuclear regions (expanded in Fig. 3a). Representative  
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proteins chosen along that path show a continuous gradation from 
mostly cytoplasmic to mostly nuclear localization.

Quantifying cytoself ’s clustering performance. To validate our 
results, clustering scores were computed (Methods, Fig. 4 and Table 1)  
using two ground-truth annotation datasets to capture known 
protein localization at two different scales: the first is a manually 
curated list of proteins with unique organelle-level localizations 
(Supplementary File 2), whereas the second is a list of proteins par-
ticipating in stable protein complexes derived from the CORUM 
database38 (Supplementary File 3). While the first ground-truth 
dataset helps us assess how well our encodings cluster together 
proteins belonging to the same organelles, the second helps us 
assess whether proteins interacting within the same complex—and 
thus functionally related—are in proximity. We compared cyto-
self to other previously developed unsupervised (CellProfiler14) or 
self-supervised (Cell inpainting11) approaches for image featuriza-
tion. We applied these methods to the OpenCell image dataset and 
then compared the results to that obtained by cytoself. UMAPs were 
calculated for each model (Methods) and compared with our set of 
ground-truth organelles and protein complexes. As can be seen in 
Extended Data Figs. 1 and 2 and Supplementary Fig. 2, the resolu-
tion obtained by cytoself exceeded that of both previous approaches. 
This was also apparent in our calculations of clustering scores  
(Fig. 4 and Table 1).

Identifying cytoself ’s essential components. To evaluate the 
impact of different aspects of our model on its clustering perfor-
mance, we conducted an ablation study. We retrained our model 
and recomputed protein localization UMAPs after individually 
removing each component or input of our model (Extended Data 
Figs. 3 and 4), including: (1) the nuclear fiducial channel, (2) the 
distance transform applied to nuclear fiducial channel, (3) the split 
vector quantization and (4) the identification pretext task. We also 
quantitatively evaluated the effects of their ablation by computing 

clustering scores for different variants (Fig. 4 and Table 1). The 
UMAP results and scores from both sets of ground-truth labels 
make it clear that the single most important component of cyto-
self, in terms of clustering performance, is the protein identification 
pretext task. The remaining components—the nuclear channel, split 
quantization, vector quantization and so on—are important but not 
crucial. Forgoing the fiducial nuclear channel entirely led to the 
smallest decrease in clustering score, suggesting that our approach 
works well even in the absence of any fiducial marker—a notable 
advantage that widens the applicability of our approach and greatly 
simplifies the experimental design39. Overall, our data show a robust 
fit with ground truth. In conclusion, although all features contribute 
to the overall performance of our model, the identification pretext 
task is the key and necessary ingredient.

Revealing unannotated protein localization. The key advantage of 
self-supervised approaches is that they are not limited by the quality, 
completeness or granularity of human annotations. To demonstrate 
this, we asked whether cytoself could resolve subtle localization dif-
ferences that are not present in image-derived manual annotations: 
focusing on proteins localized to intracellular vesicles. Even though 
several known subcategories of vesicles exist (for example, lyso-
somes versus endosomes), in both OpenCell and Human Protein 
Atlas annotations, these groups are annotated simply as ‘vesicles’. 
This reflects the difficulty for human curators to accurately distin-
guish and classify localization subcategories that present similarly 
in the images. To test whether our self-supervised approach man-
ages to capture these subcategories, we focused on a curated list 
of endosomal as well as lysosomal proteins identified by an objec-
tive criterion. Specifically, we selected proteins annotated as lyso-
somal (GO 000576500) or endosomal (GO 0031901) in Uniprot40 
(excluding targets annotated to reside in both compartments), and 
for which localization in each compartment has been confirmed 
independently by mass spectrometry41,42. As shown in Extended 
Data Fig. 5, the representation of the lysosomal versus endosomal 

a

Cropped
image

1

2

2

1

Protein ID

Reconstructed
image

VQ-VAE-2

Our model

Global
representation

Local
representation

Without
split quantization

With
split quantization

Codebook

C
ha

nn
el

Epochs

P
er

pl
ex

ity

0

10
1

10
2

10
3

12060

With split
Without split

c

In
pu

t
P

re
pr

oc
es

si
ng

S
el

f-
su

pe
rv

is
ed

 le
ar

ni
ng

Output

Cropping

Local representation

Feature spectrum

Global representation

Cropped image Reconstructed image

Localization clustering

Nucleus

Nucleus
distance

and

Protein ID

Image

Decoder

Spectrum 
conversion

Dimension 
reduction

Latent 
representation

Protein 
identification

Encoder

With identification Without identification

Latent space

Image embedding
of 2 images in the 
latent space

ID 1
ID 2
ID 3

ID n

b

Protein

Fig. 1 | Self-supervised deep learning of protein subcellular localization with cytoself. a, Workflow of the learning process. Only images and the proteins 
identifiers are required as input. We trained our model with a second fiducial channel for the cell nuclei, but its presence is optional as its performance 
contribution is negligible (Fig. 4). The protein identification pretext task ensures that images corresponding to the same or similar proteins have similar 
representations. b, Architecture of our VQ-VAE-2 (ref. 37) -based deep-learning model featuring our two innovations: split-quantization and protein 
identification pretext task. Numbers in the encoders and decoders indicate encoder1, encoder2, decoder1 or decoder2 (Supplementary File 1). Global 
representation and local representation use different codebooks. c, The level of use of the codebook (that is, perplexity) increases and then saturates 
during training and is enhanced by applying split quantization.

Nature Methods | VOL 19 | August 2022 | 995–1003 | www.nature.com/naturemethods 997

http://www.nature.com/naturemethods


Articles NaTurE METHODS

images derived from cytoself form two distinct, well-separated 
clusters (P < 10−3, Mann–Whitney U-test). This demonstrates that 
self-supervised approaches are not limited by ground-truth annota-
tions and can reveal subtle differences in protein localization not 
explicitly present in existing databases.

Extracting feature spectra for quantitative analysis. Cytoself can 
generate a highly resolved map of protein localization on the basis 
of distilled image representations. Can we dissect and understand 
the features that make up these representations and interpret their 
meaning? To identify and better define the features that make up 
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these representations, we created a feature spectrum of the main 
components contributing to each protein’s localization encoding. 
The spectra were constructed by calculating the histogram of code-
book feature indices from the local representations in Fig. 1 (see 
Extended Data Fig. 6 and Methods for details). To group related 
and possibly redundant features together, we performed hierar-
chical biclustering43 (Fig. 5a), and thus obtained a meaningful lin-
ear ordering of features by which the spectra can be sorted. This 
analysis reveals feature clusters of which we manually selected 11 
from the top levels of the feature hierarchy (Fig. 5a, bottom and 
Supplementary Fig. 3).

Representative images from each cluster illustrate the variety of 
distinctive localization patterns that are present at different levels 
across all proteins. For example, the features in the first clusters 
(i, ii, iii and iv) correspond to a wide range of diffuse cytoplasmic 
localizations. Cluster v features are unique to nucleolar proteins. 
Features making up cluster vi correspond to very small and bright 
punctate structures that are often characteristic of centrosomes, 
vesicles or cytoplasmic condensates. Clusters vii, viii and x cor-
respond to different types of nuclear localization pattern. Cluster 
ix are dark features corresponding to nonfluorescent background 
regions. Finally, cluster xi corresponds to a large variety of more 
abundant, punctate structures occurring throughout the cells, 
primarily vesicular, but also Golgi, mitochondria, cytoskeleton 
and subdomains of the ER. For a quantitative evaluation, we com-
puted the average feature spectrum for all proteins belonging to 
each localization category present in our reference set of manual 
annotations (for example, Golgi, nucleolus and so on; Fig. 5b and 
Supplementary File 4). This analysis confirms that certain spec-
tral clusters are specific to certain localization categories and thus 
correspond to characteristic textures and patterns in the images. 
For example, the highly specific chromatin and mitochondrial 

localizations both appear to elicit very narrow responses in their  
feature spectra.

Predicting protein organelle localization with cytoself. We next 
asked whether feature spectra could be used to predict the local-
izations of proteins not present in our training data. For this pur-
pose, we computed the feature spectrum of FAM241A: a protein of 
unknown function that was not present in the training dataset. Its 
spectrum is most correlated to the consensus spectrum of proteins 
belonging to the ER (Fig. 5b–d and Supplementary Fig. 4). Indeed, 
FAM241A’s localization to the ER was validated experimentally 
by coexpression experiments showing that endogenously tagged 
FAM241A colocalizes with an ER marker (Fig. 5e). In a companion 
study10, we further validated by mass spectrometry that FAM241A 
is in fact a new subunit of the oligosaccharyltransferase complex, 
responsible for cotranslational glycosylation at the ER membrane. 
Our successful prediction of the localization of FAM241A sug-
gests that cytoself encodings can be used more generally to predict 
organelle-level localization categories. To demonstrate this, we 
focused on proteins annotated to localize to a single organelle (that 
is, not multi-localizing, Supplementary File 4). For each of these 
proteins, we recomputed the representative spectra for each of their 
known localization categories (that is, ER, mitochondria, Golgi and 
so on), but leaving out that protein, and then applied the same spec-
tral correlation as described for FAM241A. This allows us to predict 
the protein’s localization by identifying the organelle with which its 
spectrum correlates best. Extended Data Fig. 7 shows the accuracy 
of the predictions derived from this approach: for 88% of proteins, 
the spectra correlate best with the correctly annotated organelle. For 
96% of proteins, the correct annotation is within the top two predic-
tions and for 99% it is within the top three predictions. Overall, this 
form of cross-validation verifies the discriminating power of our 
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spectra and shows that the information encoded in each protein’s 
spectrum can be interpreted to predict subcellular localization.

Cytoself applicability beyond OpenCell data. Can cytoself make 
reasonable protein localization predictions for images from datasets 

other than OpenCell? To answer this question, we chose data from 
the Allen Institute Cell collection44, which also uses endogenous 
tagging and live-cell imaging, making their image data directly 
comparable to ours. The Allen collection uses a cell line (WTC11, 
induced pluripotent stem cell) whose overall morphology is very 
different from the cell line used for OpenCell (human embryonic 
kidney 293T: HEK293T). We reasoned that if cytoself manages to 
capture true features of protein localization, a compelling validation 
would be that its performance would be cell-type agnostic. Indeed, 
localization encodings for images from the Allen dataset generated 
by a cytoself model trained only on OpenCell images revealed a 
strong concordance between the embeddings of the same (or closely 
related) protein that were imaged in both cell datasets (Extended 
Data Fig. 8a). This shows that our model manages to predict protein 
localization even under conditions that were not directly included 
for training. To facilitate comparison, we focused on the intersec-
tion set of nine proteins found in both the OpenCell and Allen 
datasets (Extended Data Fig. 8b). We ran the same organelle local-
ization prediction task and observed that in 88% (eight out of nine) 
of cases the correct localization is among the top three predictions 
(Supplementary Fig. 5).

Hypothesizing protein-complex membership from images. The 
resolving power of our approach is further illustrated by examining 
known stable protein complexes, which are found to form well delin-
eated clusters in our localization UMAP (see examples highlighted 
in Fig. 2, dashed line). Fluorescent images of 11 representative sub-
units from these complexes illustrate these discrete localization pat-
terns (Fig. 3b). To substantiate these observations quantitatively, 
we computed the correlation of feature spectra between any two  
pairs of proteins in our dataset. This showed a significantly higher 
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clustering scores using organelle- and protein-complex-level ground truth and then report the mean and standard error of the mean.

Table 1 | Clustering performance comparison

Approach Organelle level Complex level

Cytoself full model 3.41 ± 0.18 5.96 ± 0.25

 Without nuclear channel 3.35 ± 0.23 5.38 ± 0.19

 Without distance transform 3.17 ± 0.18 4.90 ± 0.13

 Without vector quantization 2.98 ± 0.14 4.46 ± 0.15

 Without id. pretext task 1.13 ± 0.094 1.26 ± 0.062

 Without split quantization 2.85 ± 0.20 5.04 ± 0.16

 Without decoder 2.98 ± 0.17 4.48 ± 0.12

Lu et al. (conv3_1) 2.19 ± 0.097 2.67 ± 0.045

Lu et al. (conv4_1) 2.33 ± 0.11 2.88 ± 0.10

Lu et al. (conv5_1) 2.91 ± 0.18 3.06 ± 0.084

CellProfiler 0.129 ± 0.013 0.124 ± 0.0074

Our full model surpasses all variants considered, the previously reported cell-inpainting model11 
and CellProfiler derived representations14. We trained the models five times, computed ten 
different UMAPs, computed clustering scores using organelle- and protein-complex-level ground 
truth, and then report the mean and standard error of the mean (mean ± s.e.m.). For the latent 
representations in the inpainting model, we examined the three network layers discussed in Lu 
et al. to produce image representations for UMAP. Note that our approach works with a single 
fluorescence channel whereas the approach by Lu et al. needs at least two channels.
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correlation for protein pairs annotated to belong to the same 
complex in CORUM compared to pairs that are not (P < 10−10, 
Mann–Whitney U-test; Supplementary Fig. 6a). To further evalu-
ate the relationship between proximity in feature space and 
protein-complex membership, we examine the proportion of 
proteins in OpenCell that share complex membership with their 
most-correlated neighboring protein (Supplementary Fig. 6b). 
We find that 83% of highly correlated (>0.95) neighbor proteins 
are in the same complex, and even more weakly correlated (>0.8) 
proteins are localized to complexes 60% of the time. These results 
confirm that close proximity in feature space is highly indicative of 
protein-complex membership and suggests that the features derived 
by cytoself contain fine-grained information related to very specific 
functional relationships.

Discussion
We have shown that a self-supervised training scheme can pro-
duce image representations that capture the organization of pro-
tein subcellular localization (Fig. 2), solely on the basis of a large 
high-quality dataset of fluorescence images. Our model generates 
a high-resolution localization atlas capable of delineating not only 
organelles, but also protein complexes. Moreover, we can represent 
each image with a feature spectrum to better analyze the repertoire 
of localization patterns present in our data. Since a protein’s local-
ization is highly correlated with its cellular function, cytoself will be 
an invaluable tool to make preliminary functional predictions for 
unknown or poorly studied proteins, and for quantitatively studying 
the effect of cellular perturbations and cell state changes on protein 
subcellular localization.

Our method makes few assumptions, but imposes two pretext 
tasks (that is, image and protein identity). Of these, requiring the 
model to identify proteins based solely on their localization encod-
ings was essential. We also included Hoechst DNA-staining as a 
fiducial marker, assuming that this would provide a spatial reference 
frame against which to interpret localization. However, this added 
little to the performance of our model in terms of clustering score. 
By comparison, the self-supervised approach by Lu et al.11 applied 
a pretext task that predicts the fluorescence signal of a labeled pro-
tein in one cell from its fiducial markers and from the fluorescence 
signal in a second, different cell from the same FOV. This assumes 
that fiducial channels are available, and that protein fluorescence is 
always well-correlated to these fiducials. In contrast, our approach 
only requires a single fluorescence channel and yields better cluster-
ing performance (Fig. 4 and Table 1).

The main difference between our work and the problem 
addressed by the Human Protein Atlas Image Classification compe-
tition23 is that we do not aim to predict localization patterns on the 
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Fig. 5 | Feature spectral analysis. a, Features in the local representation are 
reordered by hierarchical clustering to form a feature spectra (Extended 
Data Fig. 6). The color bar indicates the strength of correlation. Negative 
values indicate anti-correlation. On the basis of the feature clustering, 
we manually identified 11 primary top-level clusters, which are illustrated 
with representative images (Supplementary Fig. 3). Those images have 
the highest occurrence of the corresponding features. b, Average feature 
spectrum for each unique localization family. Occurrence indicates how 
many times a quantized vector is found in the local representation of an 
image. All spectra, as well as the heatmap, are vertically aligned. c, The 
feature spectrum of FAM241A, a poorly characterized orphan protein.  
d, Correlation between FAM241A and other unique localization categories. 
The highest correlation is 0.777 with ER, next is 0.08 with cytoplasm. 
e, Experimental confirmation of the ER localization of FAM241A. The 
localization of FAM241A to the ER is experimentally confirmed by 
coexpression of a classical ER marker (mCherry fused to the SEC61B 
transmembrane domain, left) in FAM241A-mNeonGreen endogenously 
tagged cells (right). The ER marker is expressed using transient 
transfection. As a consequence, not all cells are transfected and levels of 
expression may vary. Scale bars, 10 μm.
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basis of manual annotations. Instead, we aim to discover de novo 
the landscape of possible protein localizations. This frees us from 
the limitations of these annotations that include: lack of uniform 
coverage, uneven annotation granularity, human perceptive biases 
and existing preconceptions on the architecture of the cell. This also 
circumvents the time-intensive efforts required to manually anno-
tate images.

While powerful, there remain a few avenues for further devel-
opment of cytoself. For example, we trained our model using 
two-dimensional (2D) maximum-intensity z-projections and have 
not yet leveraged the full three-dimensional (3D) confocal images 
available in the OpenCell10 dataset. The third dimension might con-
fer an advantage for specific protein localization patterns that are 
characterized by specific variations along the basal-apical cell axis. 
Other important topics to explore are the automatic suppression of 
residual batch effects, improved cell segmentation via additional 
fiducial channels, use of label-free imaging modalities, as well as 
automatic rejection of anomalous or uncharacteristic cells from our 
training dataset. More fundamentally, notable conceptual improve-
ments will require an improved self-supervised model that explic-
itly disentangles cellular heterogeneity from localization diversity45.

More generally, our ability to generate data is outpacing the 
human ability to manually annotate it. Moreover, there is already 
ample evidence that abundance of image data has a quality all its 
own: Increasing the size of an image dataset often has a higher 
impact on performance than improving the algorithm itself46. We 
envision that self-supervision will be a powerful tool to handle the 
large amount of data produced by new instruments, end-to-end 
automation and high-throughput image-based assays.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Methods
Fluorescence image dataset. All experimental and imaging details can be 
found in our companion study10. Briefly, HEK293T cells were genetically tagged 
with split-fluorescent proteins using CRISPR-based techniques47. After nuclear 
staining with Hoechst 33342, live cells were imaged with a spinning-disk confocal 
microscope (Andor Dragonfly). Typically, 18 FOV were acquired for each one 
of the 1,311 tagged proteins, for a total of 24,382 three-dimensional images of 
dimension 1,024 × 1,024 × 22 voxels.

Image data preprocessing. Each 3D confocal image was first reduced to two 
dimensions using a maximum-intensity projection along the z axis followed by 
downsampling in the xy dimensions by a factor of two to obtain a single 2D image 
per FOV (512 × 512 pixels). To help our model make use of the nuclear fiducial 
label, we applied a distance transform to a nucleus segmentation mask (below). The 
distance transform is constructed so that pixels within the nucleus were assigned 
a positive value that represents the shortest distance from the pixel to the nuclear 
boundary, and pixel values outside the nucleus were assigned a negative value 
that represents the shortest distance to the nuclear boundary (Fig. 1a). For each 
dual-channel and full FOV image, multiple regions of dimension 100 × 100 pixels 
were computationally chosen so that at least one cell is present and centered, 
resulting in a total of 1,100,253 cropped images. Cells (and their nuclei) that are 
too close to image edges are ignored. The raw pixel intensities in the fluorescence 
channel are normalized between 0 and 1, and the nuclear distance channel is 
normalized between −1 and 1.

Nucleus segmentation. Nuclei are segmented by first thresholding the nucleus 
channel (Hoechst staining) and then applying a custom algorithm to segment any 
under-segmented nuclei. In the thresholding step, a background mask is generated 
by applying a low-pass Gaussian filter to the raw image, then thresholding it using 
a threshold value calculated by the iterative Minimum Cross Entropy method48,49. 
Under-segmented nuclei in the resulting mask are then segmented by applying 
the following steps: (1) we generate a second mask by applying a Laplacian 
of the Gaussian (LoG) filter to the original image, thresholding it at zero, and 
multiplying it by the background mask from the intensity thresholding step, (2) we 
morphologically close this second mask and fill holes to eliminate intra-nuclear 
holes or gaps (empirically, this requires a closing disk of radius at least 4 pixels), 
(3) we multiply the second mask again by the background mask to restore any 
true morphological holes that were present in the background mask, (4) we 
generate a mask of the local minima in the original LoG-filtered image using an 
empirically selected percentile threshold, and finally (5) we iterate over regions in 
this local-minima mask and remove them from the second mask if they partially 
overlap with the background of the refined mask. The second mask is then the final 
nucleus segmentation mask.

Detailed model architecture. All details of our model architecture are given in 
Supplementary File 1 and a diagram is shown in Fig. 1b. First, the input image 
(100 × 100 × 2 pixels) is fed to encoder1 to produce a set of latent vectors that have 
two destinations: encoder2 and VQ1 VectorQuantizer layer. In the encoder2, 
higher level representations are distilled from these latent vectors and passed to the 
output. The output of encoder2 is quantized in the VQ2 VectorQuantizer layer to 
form what we call ‘global representation’. The global representation is then passed 
to the fc2 classifier for purposes of the classification pretext task. It is also passed 
on to decoder2 to reconstruct the input data of encoder2. In this way, encoder2 
and decoder2 form an independent autoencoder. The function of layer mselyr1 is 
to adapt the output of decoder2 to match the dimensions of the output of encoder1, 
which is identical to the dimensions of the input of encoder2. In the case of the 
VQ1 VectorQuantizer layer, vectors are quantized to form what we call the local 
representations. The local representation is then passed to the fc1 classifier for 
purposes of the classification pretext task, as well as concatenated to the global 
representation that is resized to match the local representations’ dimensions. The 
concatenated result is then passed to the decoder1 to reconstruct the input image. 
Here, encoder1 and decoder1 form another autoencoder.

Split quantization. In the case of our global representation, we observed that 
the high level of spatial pooling required (4 × 4 pixels) led to codebook under-use 
because the quantized vectors are too few and each one of them has too many 
dimensions (Fig. 1b). To solve this challenge, we introduced the concept of split 
quantization. Instead of quantizing all the dimensions of a vector at once, we first 
split the vectors into subvectors of equal length and then quantize each subvectors 
using a shared codebook. The main advantage of split quantization when applied 
to the VQ-VAE architecture is that one may vary the degree of spatial pooling 
without changing the total number of quantized vectors per representation. In 
practice, to maintain the number of quantized vectors while increasing spatial 
pooling, we simply split along the channel dimension. We observed that the global 
representations’ perplexity, which indicates the level of use of the codebook, 
substantially increases when split quantization is used compared to standard 
quantization (Fig. 1c). As shown in Supplementary Fig. 1, split quantization is 
performed along the channel dimension by splitting each channel-wise vector 
into nine parts, and quantizing each of the resulting ‘subvectors’ against the same 
codebook. Split quantization is only needed for the global representation.

Global and local representations. The dimensions of the global and local 
representations are 4 × 4 × 576 and 25 × 25 × 64 voxels, respectively. These two 
representations are quantized with two separate codebooks consisting of 2,048 
64-dimensional features (or codes).

Identification pretext task. The part of our model that is tasked with identifying 
a held-back protein is implemented as a two-layer perceptron built by alternatively 
stacking fully connected layers with 1,000 hidden units and nonlinear ReLU layers. 
The output of the classifier is a one-hot encoded vector for which each coordinate 
corresponds to one of the 1,311 proteins. We use categorical cross entropy as 
classification loss during training.

Computational efficiency. Due to the large size of our image data (1,100,253 
cropped images of dimensions 100 × 100 × 2 pixels) we recognized the need to 
make our architecture more efficient and thus allow for more design iterations.  
We opted to implement the encoder using principles from the EfficientNet 
architecture to increase computational efficiency without losing learning capacity50. 
Specifically, we split the model of EfficientNetB0 into two parts to make the two 
encoders in our model (Supplementary File 1). While we did not notice a loss of 
performance for the encoder, EfficientNet did not perform as well for decoding. 
Therefore, we opted to keep a standard architecture based on a stack of residual 
blocks for the decoder51

Training protocol. The whole dataset (1,100,253 cropped images) was split into 
8:1:1 into training, validation and testing data, respectively. All results shown in the 
figures are from testing data. We used the Adam optimizer with the initial learning 
rate of 0.0004. The learning rate was multiplied by 0.1 every time the validation 
loss did not improve for four epochs, and the training was terminated when the 
validation loss did not improve for more than 12 consecutive epochs. Images were 
augmented by random rotation and flipping in the training phase.

Dimensionality reduction and clustering. Dimensionality reduction is 
performed using the UMAP52 algorithm. We used the reference open-source 
python package umap-learn (v.0.5.0) with default values for all parameters (that 
is, the Euclidean distance metric, 15 nearest neighbors and a minimal distance 
of 0.1). We used AlignedUMAP for the clustering performance evaluation to 
facilitate the comparison of the different projections derived from three variants 
of the previously described cell-inpainting model11 (Extended Data Figs. 1 and 
2) or all seven variants of our model (Extended Data Figs. 3 and 4). Hierarchical 
biclustering was performed using seaborn (v.0.11.1) with its default settings.

Ground-truth labels for localization. To evaluate the clustering performance, 
we used two sets of ground-truth labels at two different cellular scales: a manually 
curated list of proteins with exclusive organelle-level localization patterns 
(Supplementary File 2) and 38 protein complexes collected from the CORUM 
database38 (Supplementary File 3). The 38 protein complexes were collected based 
on the following conditions: (1) all subunits are present in the OpenCell data, (2) 
no overlapping subunit across the complexes and (3) each protein complex consists 
of more than one distinct subunit.

For the evaluation of feature spectra, we simply extracted the proteins with 
single-localization annotation based on the localization annotation given by the 
OpenCell database (Supplementary File 4).

Clustering score. To calculate a clustering score, we assume a collection of n points 
(vectors) in Rm, S = {xi ∈ R

m|0 ≤ i ≤ n}, and that we have a (ground truth) 
assignment of each point xi to a class Cj, and these classes form a partition of S:

S =
∪

j
Cj

Ideally, the vectors xi are such that all points in a class are tightly grouped together, 
and that the centroids of each class are as far apart from each other as possible. This 
intuition is captured in the following definition of our clustering score:

Γ(Ci) =
σ∗({μ∗(Cj)}j)

μ∗({σ∗(Cj)}j)

where {.}k denotes the set of values obtained by evaluating the expression for each 
value of parameter k, and where μ* and σ* stand for the robust mean (median) 
and robust standard deviation (computed using medians). Variance statistics 
were obtained by training the model variant five times followed by computing the 
UMAP ten times per trained model.

Feature spectrum. Extended Data Fig. 6a illustrates the workflow for constructing 
the feature spectra. Specifically, we first obtain the indices of quantized vectors in 
the latent representation for each image crop, and then calculate the histogram of 
indices in all images of each protein. As a result, we obtain a matrix of histograms 
in which rows correspond to protein identification (ID) and columns to the feature 
indices (Extended Data Fig. 6b). At this point, the order of the columns (that is, the 

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ArticlesNaTurE METHODS

feature indices) is arbitrary. Yet, different features might be highly correlated and 
thus either related or even redundant (depending on how ‘saturated’ the codebook 
is). To meaningfully order the feature indices, we compute the Pearson correlation 
coefficient between the feature index ‘profiles’ (the columns of the matrix) for 
each pair of feature indices to obtain a 2,048 × 2,048 pairwise correlation matrix 
(Extended Data Fig. 6c). Next, we perform hierarchical biclustering in which the 
feature indices with the most similar profiles are iteratively merged53. The result is 
that features that have similar profiles are grouped together (Extended Data  
Fig. 6d). This ordering yields a more meaningful and interpretable view of the 
whole spectrum of feature indices. We identified several clusters from the top levels 
of the feature hierarchy and manually segment them into 11 major feature clusters 
(ordered i to xi). Finally, for a given protein, we can produce a interpretable  
feature spectrum by ordering the horizontal axis of the quantized vectors 
histogram in the same way.

Training cell-inpainting model on OpenCell data. The cell-inpainting model 
was constructed using the code provided by its original authors (https://github.
com/alexxijielu/paired_cell_inpainting). The whole dataset was split into training, 
validation and testing sets (8:1:1). All results shown in the figures are computed on 
the basis of the test set. We used the Adam optimizer with the initial learning rate 
of 0.0004. The learning rate was multiplied by 0.1 every time the validation loss did 
not improve for four epochs, and the training was terminated when the validation 
loss did not improve for more than 12 consecutive epochs. The features to generate 
UMAP were extracted from layers denoted as ‘conv3_1’, ‘conv4_1’ and ‘conv5_1’ by 
the authors.

Applying cytoself on the Allen Institute dataset. Image data from the Allen 
Institute were downloaded from https://www.allencell.org/data-downloading.
html#DownloadImageData. Patches were made following the same procedure as 
for the OpenCell dataset including max-intensity projection and downsampling 
to match pixel resolutions. Nuclear centers were determined using the nuclear 
label included in the Allen Institute dataset. We randomly selected 80 patches per 
protein and used these for analysis.

Feature extraction with CellProfiler. CellProfiler v.4.2.1 was used to extract 
features from nuclear images (without distance transform) and fluorescence 
protein images. In the case of cytoself, we computed all features compatible to 
the data including texture features up to scale 15, for a total of 1,397 features that 
required 2 days of computation. Only features that did not require object detection 
were used, including granularity, texture and the correlations between the two 
channels. Each feature was standardized by subtracting its mean followed by 
dividing by its standard deviation.

Evaluation of feature correlation against protein complex. The Pearson 
correlation between any two proteins found in both the OpenCell and CORUM 
databases were computed with their feature spectra as the proximity metrics in the 
feature space. For each protein, we found the ‘nearest protein’ with which it had the 
highest correlation, and incremented the number if the correlation was higher than 
a given threshold, and if both of them shared at least one complex in the CORUM 
database. To take into account the strength of correlation, we varied the minimal 
correlation threshold thus obtaining the curve shown in Supplementary Fig. 6b.

Statistics and reproducibility. All box plots were generated using matplotlib 
(v.3.4.2). Each box indicates the extent from the first to the third quartile of the 
data, with a line representing the median. The whiskers indicate 1.5 times the 
interquartile range. Scipy (v.1.8.0) was used to compute P values and Pearson’s 
correlations.

Software and hardware. All deep-learning architectures were implemented in 
TensorFlow v.1.15 (ref. 54) on Python v.3.7. Training was performed on NVIDIA 
V100-32GB GPUs.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The image data used in this work are available at https://github.com/royerlab/
cytoself. The CORUM database is available at http://mips.helmholtz-muenchen.de/
corum/. Image data from the Allen Institute are available at https://www.allencell.
org/data-downloading.html#DownloadImageData.

Code availability
Source code for the models used in this work is available at https://github.com/
royerlab/cytoself.
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Extended Data Fig. 1 | Comparing the UMAP representations between cytoself and cell-inpainting annotated with organelle-level ground truth. Aligned 
UMAPs are given to aid visual comparison.
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Extended Data Fig. 2 | Comparing the UMAP representations between cytoself and cell-inpainting annotated with protein-complex-level ground truth. 
Aligned UMAPs are given to aid visual comparison.
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Extended Data Fig. 3 | Identifying the essential components of our model with organelle-level ground truth. Protein localization UMAPs are derived after 
removing each components of our model separately. Aligned UMAPs are given to aid visual comparison.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ArticlesNaTurE METHODS

Extended Data Fig. 4 | Identifying the essential components of our model with protein-complex-level ground truth. Protein localization UMAPs are 
derived after removing each components of our model separately. Aligned UMAPs are given to aid visual comparison.
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Extended Data Fig. 5 | cytoself discriminates between lysosomal and endosomal proteins. (a) We selected 11 proteins in OpenCell annotated in Uniprot 
as lysosomal or endosomal that are independently confirmed as such by mass spectrometry41,42. We show that cytoself is able to distinguish the lysosomal 
from endosomal proteins solely on the basis of the fluorescence images. All of these proteins are annotated on the basis of the images as ‘vesicles’ in both 
HPA and OpenCell. The min and max intensities of each image are adjusted to ensure comparable visibility. All representative images were randomly 
selected from each protein. Scale bar: 10 μm. (b) Clustering of these proteins on the basis of the feature spectra. (c) Feature spectra correlations for pairs 
of lysosomal and endosomal proteins, and for mixed lysosomal-endosomal pairs. Each box indicates the extent from the first to the third quartile of the 
data, with a line representing the median. The whiskers indicates 1.5 times the inter-quartile range. The p-values are computed using two-sided Mann–
Whitney U test.
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Extended Data Fig. 6 | Process of constructing feature spectra. (a) First, the quantized vectors in the local representation were extracted and converted 
to a histogram by counting the occurrence of each quantized vector. (b) Next, taking the average of the histograms per protein ID over all the data 
to create a 2D histogram. (c) Pearson’s correlations between any two representation indices were calculated and plotted as a 2D matrix. (d) Finally, 
hierarchical clustering was performed on the correlation map so that similar features are clustered together, revealing the structure inside the local 
representation. The whole process corresponds to the Spectrum Conversion in Fig. 1a.
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Extended Data Fig. 7 | Predicting the localization category of mono-localized OpenCell proteins by correlating the cytoself spectra of each protein with 
the representative spectra of each category – in a leave-one-out fashion. Result: 88% of proteins are correctly classified. For 96% of proteins the correct 
annotation is within the top 2 predictions, and for 99% it is within the top 3 predictions.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Visualizing the predicted localization categories of proteins present both in OpenCell and the Allen Institute dataset. The cytoself 
model is trained only on OpenCell data which is the same full model used throughout this work. UMAPs (a) and example images (b) from OpenCell 
and Allen Institute datasets for the same or related proteins. The min and max intensities of each image are adjusted to ensure comparable visibility. All 
representative images were randomly selected. Scale bar 10 μm. Protein names and contour lines in orange color are from OpenCell dataset, and those in 
green color are from Allen Institute dataset.
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Extended Data Fig. 9 | Interpreting image spectral features. Feature spectra were computed for each example proteins (a) POLR2E, (b) SEC22B, and 
(c) RPS18. Subsequently, information derived from the indicated major peaks of their feature spectra was removed by zeroing them out before passing 
the features again through the decoder. Highlighted in red are the differences between the resulting output images for the corresponding features and 
reconstructed image with full features on. The feature classes outlined in Fig. 5 are shown as background color for reference. The pixel intensities are 
rescaled to the minimum and maximum of each image. Scale bars: 10μm.
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