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Abstract
Cerebellar mutism syndrome (CMS) occurs in one out of four children after posterior fossa tumor surgery, with open ques-
tions regarding risk factors, pathophysiology, and prevention strategies. Because of similarities between several cerebellar 
syndromes, a common pathophysiology with damage to the dentato-thalamo-cortical and dentato-rubro-olivary pathways has 
been proposed. Hypertrophic olivary degeneration (HOD) is an imaging correlate of cerebellar injury observed for instance 
in stroke patients. Aim of this study was to investigate whether the occurrence and severity of CMS correlates with the extent 
of damage to the relevant anatomical structures and whether HOD is a time-dependent postoperative neuroimaging correlate 
of CMS. We performed a retrospective single center study of CMS patients compared with matched non-CMS controls. CMS 
occurred in 10 children (13% of the overall cohort) with a median age of 8 years. Dentate nucleus (DN) injury significantly 
correlated with CMS, and superior cerebellar peduncle (SCP) injury was associated by tendency. HOD was observed as a 
dynamic neuroimaging phenomenon in the postoperative course and its presence significantly correlated with CMS and DN 
injury. Children who later developed HOD had an earlier onset and tended to have longer persistence of CMS. These findings 
can guide surgical measures to protect the DN and SCP during posterior fossa tumor resections and to avoid a high damage 
burden (i.e., bilateral damage). Development of intraoperative neuromonitoring of the cerebellar efferent pathways as well 
as improved preoperative risk stratification could help to establish a patient-specific strategy with optimal balance between 
degree of resection and functional integrity.

Keywords  Cerebellar mutism syndrome · Posterior fossa tumor · Children · Hypertrophic olivary degeneration · Dentate 
nucleus · Superior cerebellar peduncle · Personalized medicine

Introduction

Cerebellar mutism syndrome (CMS) occurs in one out 
of four children after posterior fossa tumor surgery, with 
considerable variation across published studies [6, 26]. It 
is defined as a postoperative syndrome clinically charac-
terized by delayed onset of mutism and emotional lability, 
which can occur in combination with muscular hypotonia, 
dysphagia, and cerebellar cognitive affective syndrome and 

cerebellar motor syndrome, and is transient, although resid-
ual sequelae can persist [14]. Additionally, some authors 
differentiate between paucity and absence of speech as well 
as symptom severity and temporal course [13, 15, 16, 27].

The complex neuronal circuitry of the cerebellum was 
initially investigated with microscopic and electrophysiolog-
ical techniques [9, 33]. Modern neuroimaging studies using 
structural (e.g., diffusion tensor imaging, DTI), functional 
(e.g., functional magnetic resonance imaging, fMRI), and 
metabolic/perfusion methods (e.g., single-photon emission 
computerized tomography, SPECT, and arterial spin label-
ling perfusion MRI, ASL) provided insight into the cerebel-
lum’s connectivity and involvement in a broad spectrum of 
brain functions [1, 4, 5, 32, 36]. These include motor, cogni-
tion, language, and emotion [35]. The functional understand-
ing derived from these studies is reflected in pathological 
conditions: depending on location in the posterior versus 
anterior cerebellum, predominantly motor versus cognitive 
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deficits occur after cerebellar ischemic stroke [34]. Imag-
ing correlates of disruption of cerebellar pathways after 
ischemic and hemorrhagic stroke have been observed, with 
hypertrophic olivary degeneration (HOD) being well char-
acterized with its specific time course after cerebellar insults 
[12, 41]. Recognizing similarities between several cerebel-
lar syndromes, including CMS, a common pathophysiology, 
has been proposed [31]. The contemporary concept of CMS 
pathophysiology is damage to the dentato-thalamo-cortical 
and dentato-rubro-olivary pathways [6, 26]. While there is 
evidence of preoperative functional deficits in affected chil-
dren, the full clinical picture of CMS only develops after 
surgery and it is thus a postoperative morbidity or compli-
cation [28].

Based on the aforementioned assumptions, we hypoth-
esized that (1) similar to other types of postoperative mor-
bidity, the occurrence and severity of CMS correlates with 
the extent of damage to the relevant anatomical structures 
(i.e., structural damage burden), and that (2) similar to other 
types of cerebellar insults, such as stroke, HOD is a time-
dependent postoperative neuroimaging correlate of CMS.

Materials and methods

This retrospective study was approved by the local ethi-
cal review board (study no. 2019–417-RetroDEuA). CMS 
cases were identified in the institutional pediatric (defined as 
16 years of age or younger at time of diagnosis) brain tumor 
database between 2010 and 2017. To be eligible for inclu-
sion in this study, preoperative and follow-up MRI scans 
within 72 h after surgery and after that at least every 3 to 
6 months for at least 2 years had to be available for analysis. 
Demographic, clinical, and tumor-associated variables were 
extracted from the electronic patient database. CMS was 
graded according to the scale devised by Robertson et al., 
taking into account time of onset (day 1, days 1–2, days 
2–4, or > day 4) as well as severity and duration of mutism, 
ataxia, muscle hypotonia, and irritability (each graded into 
mild/ < 1 week, moderate/1–4 weeks, or severe/ > 4 weeks) 
[27]. The risk for developing CMS based on preoperative 
MRI was calculated with the Rotterdam Risk Score [8].

Early postoperative MRI scans performed within 72 h 
after surgery were analyzed concerning T2 signal abnor-
mality in the vermis, dentate nucleus, inferior, middle and 
superior cerebellar peduncles, inferior olivary nucleus, floor 
of the IV ventricle, and the midbrain. Serial follow-up MRI 
scans were analyzed for T2 signal abnormality with regard to 
volume and signal intensity of the inferior olivary nucleus. 
These analyses were performed on axial T2-weighted 
sequences obtained on a 1.5 or 3.0 Tesla MRI scanner (Sie-
mens Healthcare, Erlangen, Germany). HOD was radiologi-
cally defined according to methodology established in three 

published studies [11, 21, 41]. CMS cases were compared 
with non-CMS controls that were matched for age, gender, 
and histology.

Data was processed and analyzed using GraphPad Prism 
for Windows (GraphPad Software, San Diego, USA). 
Descriptive statistics are provided, with means and medians 
as indicated. For analyzing the association between groups 
and outcomes, Fisher’s exact test was used to calculate two-
tailed P values. A P value less than 0.05 was determined a 
priori to be statistically significant.

Results

Baseline characteristics of the study groups

In an overall cohort of 78 eligible pediatric posterior fossa 
tumors treated with microsurgical resections using a tel-
ovelar approach and intraoperative neuromonitoring during 
the study period, CMS occurred in 10 children (13% of the 
overall cohort), comprising 6 boys and 4 girls with a median 
age of 8 years (range 4 to 14 years). The median age in the 
non-CMS group was 9.5 years (range 4 to 13 years). Demo-
graphic, clinical, and tumor-associated variables of the CMS 
and non-CMS groups are summarized in Table 1, reflecting 
balanced groups with regard to baseline parameters. The 
median tumor volume was 40 ml (range 15 to 114 ml) in 
the CMS group and 36 ml (range 10 to 76 ml) in the non-
CMS group. The median Evans index was 0.37 (range 0.27 
to 0.46) and 0.35 (range 0.25 to 0.41), respectively. The 
median Rotterdam Risk Score was 120 (range 45 to 145) 
in children who later developed CMS, compared with 72.5 
(range 25 to 105) in those who did not (P = 0.0019) (Fig. 1). 
Gross total resections were more common in the CMS (50%) 
than in the non-CMS group (20%). Histology was medul-
loblastoma WHO grade IV (N = 5), pilocytic astrocytoma 
WHO grade I (N = 3), atypical ependymoma WHO grade II 
(N = 1), and anaplastic ependymoma WHO grade III (N = 1), 
matched in both groups. Data on molecular subgroups was 
not available for the majority of patients, as they were treated 
before implementation of the molecular subgroup consensus 
classifications into our neuropathological routine [22, 38]. 
Regarding medulloblastoma, all tumors in the CMS group 
were ß-catenin nucleonegative. In the non-CMS group, 
medulloblastomas were ß-catenin nucleonegative (N = 2), 
ß-catenin nucleopositive (N = 1), and without ß-catenin 
analysis (N = 2).

Characteristics of CMS

Postoperative CMS was first diagnosed on day 1 in 6 patients 
and on days 1–2 and 2–4 in 2 patients each (Fig. 4). Grad-
ing of mutism, ataxia, muscle hypotonia, and irritability is 

2758 Neurosurgical Review (2022) 45:2757–2765



1 3

summarized in Fig. 4. In summary, symptoms in all four 
categories were severe and lasted > 4 weeks in a large pro-
portion of patients (80%, 80%, 60%, and 50%, respectively). 
First documented major clinical improvement of CMS symp-
toms occurred at a median of 210 days (range 99–518 days). 
Mild residual ataxia was present in 80% of children and mild 
residual speech impairment in 50%.

Injury pattern and damage burden

Analysis of serial imaging revealed DN injury in all children 
affected by CMS in this cohort. Unilateral injury of the left 
DN was observed in 5 cases, whereas the other 5 children 
had bilateral DN injury. In the non-CMS group, DN injury 
was observed in 30% of cases (left DN N = 1, bilateral DN 
N = 2). The association between uni- or bilateral DN injury 
and CMS was statistically significant (P = 0.0031), but not 
for bilateral versus unilateral/no DN injury (P = 0.0698).

In the CMS group, injury to the SCP was present in 70%. 
The left SCP was injured in 3 cases, the right SCP in 1 
case, and bilateral SCP injury was observed in 3 children. In 
the non-CMS group, only 2 cases of right SCP injury were 
found. The association between uni- or bilateral SCP injury 
and CMS was not statistically significant (P = 0.0698).

Injury to other posterior fossa structures was observed 
occasionally in both groups, without differences by tendency 
or with statistical significance. Injury pattern and damage 
burden are visualized in Fig. 2.

Hypertrophic olivary degeneration

In children with CMS, an abnormality of the inferior olivary 
nucleus (ION) was detected in 60%, of which 5 cases had 
bilateral and 1 case had right-sided ION abnormality. ION 
hypertrophy was first diagnosed in MRI scans obtained after 
a mean time of 5 months after surgery (range 1 to 8 months) 
and ION T2 hyperintensity after a mean time of 6.5 months 
(range 1 to 14 months), respectively. Resolution of ION 
hypertrophy was first evident on MRI scans performed 
after a mean time of 13.8 months after surgery (range 7 to 
26 months), whereas residual ION T2 hyperintensity per-
sisted throughout radiological follow-up in all cases (Fig. 3). 
In the non-CMS group, 1 case of right-sided ION abnormal-
ity occurred.

Presence of CMS significantly correlated with the appear-
ance of uni- or bilateral HOD in this cohort (P = 0.0198). 
The association between bilateral DN injury and uni- or 
bilateral HON was statistically significant (P = 0.0476). 
CMS occurred earlier in children who later developed 
HOD (P = 0.0365), and by tendency it took longer to resolve 
(Fig. 4). Grading of CMS symptoms did not show any ten-
dencies when comparing HOD and no-HOD groups. Chil-
dren tended to be classified into category 3 for all symptoms.Ta
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Discussion

In this study, the postoperative damage burden of anatomical 
structures involved in the dentato-thalamo-cortical and den-
tato-rubro-olivary pathways was higher in children who suf-
fered CMS after posterior fossa tumor resection: DN injury 
significantly correlated with CMS, and SCP injury was 
associated by tendency. HOD was observed as a dynamic 
neuroimaging phenomenon in the postoperative course 
and its presence significantly correlated with CMS and DN 
injury. Children who later developed HOD had an earlier 
onset and tended to have longer persistence of CMS. The 
Rotterdam Risk Score accurately predicted the occurrence of 
CMS based on preoperative MRI features. The CMS grading 
according to Robertson et al. offered limited discrimination 
in this series, as most symptoms were consistently assigned 
to category 3, i.e., severe (duration > 4 weeks).

Understanding the pathophysiology of CMS is essential 
to guide neurosurgical strategies to avoid this postoperative 
morbidity. Previous studies have examined preoperative and 
postoperative neuroimaging with different but interrelated 
aims: Preoperative imaging features were used to develop 
prediction models, one of which was applied in the pre-
sent study [8, 18, 43]. Analysis of postoperative imaging 
features indicates the anatomical structures at risk [1, 32, 
40]. While damage to the SCP and DN and thus cerebellar 

efferent injury has been implicated to play a major role in 
CMS pathophysiology, the present study provides evidence 
of a “dose dependency”: Especially bilateral DN injury leads 
to the development of HOD in CMS patients, which is a 
trans-synaptic pathway degeneration indicating severe neu-
ronal disruption. The majority of reported connections of the 
DN are projections via the SCP and this is also part of the 
Guillain-Mollaret triangle [4, 19]. HOD can be interpreted 
as a surrogate marker of extent or severity of “collateral 
damage” after posterior fossa surgery. Our additional obser-
vation that children with HOD had in retrospect an earlier 
onset and longer persistence of CMS needs to be confirmed 
in larger cohorts. However, these findings demand for pro-
found surgical measures to protect the DN and SCP during 
posterior fossa tumor resections and avoid at least bilateral 
damage. Figure 5 shows a scenario where the DN on both 
sides is visible on the preoperative MRI within the perifocal 
edema surrounding a midline cerebellar tumor — a high-risk 
constellation for bilateral DN injury.

While preoperative risk prediction can certainly raise the 
neurosurgeon’s awareness, intraoperative neurophysiological 
monitoring (IONM) of cerebellar efferent pathways would 
be an additional major advantage. At present, IONM is well 
established for supratentorial functional areas, brainstem 
and cerebello-pontine angle, but not for monitoring of the 
cerebellum itself. Recently, the first study was published on 

Fig. 1   Rotterdam Risk Scores for CMS (red bars) and non-CMS (nCMS, green bars) patients
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Group_ 
Patient 

No.
Abnormalities on early postoperative MRI HOD on follow-up MRI

Cerebellar 
midline

Cerebellar
nuclei

Cerebellar
afferents/efferents Brainstem Brainstem

Vermis Dentate nucleus
Inferior     

cerebellar 
peduncle

Middle
cerebellar 
peduncle

Superior
cerebellar 
peduncle

Floor of 
the IV. 

ventricle
Midbrain Inferior olivary nucleus

Left Right Left Right Left Right Left Right Left Right Left Right

CMS_1

CMS_2

CMS_3
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nCMS_1

nCMS_2

nCMS_3

nCMS_4

nCMS_5

nCMS_6

nCMS_7

nCMS_8

nCMS_9

nCMS_10

Fig. 2   Injury pattern and damage burden of CMS and non-CMS patients

Fig. 3   Representative serial 
postoperative MRI scans 
of patient CMS_6 (axial 
T2-weighted sequences, time 
since tumor resection given in 
months [m]), with HOD first 
diagnosed on the MRI scan 
5 months after surgery (arrow)
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IONM of the cerebello-dentato-thalamo-cortical pathway 
[10]. The authors demonstrated that direct stimulation of 
lobules IV, V, and VI in the anterior cerebellum and lob-
ule VIIB in the posterior cerebellum leads to inhibition of 
primary motor cortex excitability for transcranial electrical 
stimulation. In contrast, IONM during resection of supraten-
torial glioma is a well-established standard technique [30]. 
Even in IONM-guided glioma surgery, an aggressive resec-
tion must be weighed against risk of neurological morbid-
ity, despite the paradigm that degree of resection strongly 
influences survival in malignant glioma patients. This notion 
has even greater relevance in children with medulloblas-
toma, where the prognostic benefit of a GTR over a NTR 
is smaller than the impact of molecular subgroup affiliation 
[39]. For WNT, SHH or group 3 medulloblastoma not even 
GTR versus STR yields a significant benefit. A risk-aversive 

surgical strategy especially in the region of the DN and SCP 
thus appears justified in these children. Indeed, we noticed 
a higher proportion of GTR in the CMS (50%) compared 
to the non-CMS group (20%), and a significant number of 
patients in our series were treated before the introduction of 
routine molecular subgroup analysis. We have since adopted 
a surgical strategy as outlined by Dhaenens and co-authors 
[8]. In addition to CMS risk prediction models, preoperative 
tumor entity or even molecular subgroup prediction models 
might help to establish a patient-specific strategy, since for 
example a group 4 medulloblastoma with metastatic dis-
ease might benefit from GTR with regard to progression 
free survival [24, 29, 39]. As a further vision for the future 
of patient-specific resection strategies, intraoperative real-
time analysis of isocitrate dehydrogenase mutation status, an 
important diagnostic and prognostic marker in glioma, has 

Fig. 4   CMS grading according 
to Robertson et al. [27], with 
categories for time of onset 
(category 1 = day 1, 2 = days 
1–2, 3 = days 2–4, and 4 =  > day 
4) and mutism, ataxia, muscle 
hypotonia, and irritability 
(category 1 = mild/ < 1 week, 
2 = moderate/1–4 weeks, and 
4 = severe/ > 4 weeks)
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been established [2]. Once such intraoperative consultations 
are also possible for mutations relevant in pediatric poste-
rior fossa tumors, the neurosurgeon would have even more 
information available to find the optimal balance between 
extent of resection and risk of morbidity, in children most 
importantly CMS.

Our study has some limitations, in addition to those 
inherent to retrospective study designs in general. The 
CMS cohort is relatively small, although within the typi-
cal range for single center studies in this field. Our findings 
help understand CMS pathophysiology and guide surgical 
strategy, but do not prove causal relationships and do not 
allow CMS prediction. The impact of avoidance of DN and 
SCP injury on the incidence of CMS has to be investigated 
in adequately powered prospective studies, since previous 
pathophysiological concepts (e.g., the role of the vermis) 
resulted in equivocal surgical study results [7, 13, 25, 27]. In 
our opinion, such studies would need to include detailed pre- 
and postoperative neuroimaging, as the surgical approach 
itself does not necessarily mean that deep cerebellar struc-
ture remains intact: While the telovelar approach “lacks inci-
sion of any part of the cerebellum,” retraction or surgical 
manipulation can of course still cause injury for instance 
to the DN [37]. Preoperative language or speech impair-
ment, laterality, left/right handedness, swallowing problems, 
and the spectrum of postoperative speech impairment could 

not be assessed in our retrospective series with adequate 
precision and sufficient statistical power. Due to the long 
period of our study, molecular data is not available for the 
majority of cases. This is a retrospective study analyzing 
structural MRI data from routine clinical protocols, and not 
using advanced neuroimaging research protocols. However, 
despite its potential advantages, advanced neuroimaging 
can also introduce further bias and difficulties in compar-
ing results across studies [20]. At least two similar stud-
ies conclude that bilateral HOD could serve as an indica-
tor of CMS [3, 23]. However, the authors also encountered 
limitations with regard to imaging protocols and data on 
laterality in a retrospective study design [23]. Laterality 
is an important aspect, as a predilection of damage to the 
right efferent cerebellar pathways and HOD in the left ION 
have been implicated in CMS, correlating with left cerebral 
hemisphere dominance for language in most humans [3]. 
The incidence of right hemisphere language dominance is 
30% in left-handed humans, highlighting the importance of 
laterality and left/right handedness in future studies on the 
pathophysiology of CMS [17].

These limitations can only be overcome in our opinion 
by multicenter prospective approaches, which can provide 
systematic data and large cohorts. We therefore endeavor 
to contribute to such studies, such as the Nordic Study of 
the Cerebellar Mutism Syndrome in Children with Brain 
Tumours of the Posterior Fossa (NCT02300766), to validate 
findings and increase the level of evidence [42].

Conclusion

DN and SCP injury and HOD are consistent findings in this 
series of children suffering CMS after telovelar approaches 
to posterior fossa tumors. The Rotterdam Risk Score accu-
rately predicted the occurrence of CMS based on preopera-
tive MRI features. Those who later developed HOD had in 
retrospect an earlier onset and longer persistence of CMS 
after tumor resection. ION abnormalities in this cohort fol-
lowed a time course also reported for other neurological 
insults to the dentato-rubro-olivary pathway. We propose a 
“dose dependency” of intraoperative “collateral damage”: 
Especially bilateral DN injury was associated with HOD in 
CMS patients, and HOD can thus be interpreted as a sur-
rogate marker of extent or severity of “collateral damage.” 
These findings demand for profound surgical measures to 
protect the DN and SCP during posterior fossa tumor resec-
tions and avoid at least bilateral damage. IONM of the cer-
ebellar efferent pathways as well as routine use of CMS risk 
prediction models in combination with preoperative tumor 
entity or even molecular subgroup prediction models might 
help to establish a patient-specific strategy with optimal bal-
ance between degree of resection and functional integrity.

Fig. 5   Axial T2-weighted sequence of a preoperative MRI showing 
the DN on both sides (arrows) within the perifocal edema surround-
ing a midline cerebellar tumor
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